Nutritional Ergogenic Aids in Combat Sports: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Search
2.2. Data Extraction
2.3. Study Selection
2.4. Quality Assessment and Publication Bias
2.5. Statistical Analysis
3. Results
3.1. Included Studies
3.2. Risk of Bias and Quality Assessment of Studies
3.3. Participants
3.4. Nutritional Ergogenic Aids and Intervention Characteristics in Striking Combat Sports
3.5. Nutritional Ergogenic Aids and Intervention Characteristics in Grappling Combat Sports
3.6. Nutritional Ergogenic Aids and Intervention Characteristics in Other Combat Sports
3.7. Caffeine Meta-Analysis
4. Discussion
4.1. Effects of Caffeine in Combat Sports
4.2. Effects of Buffering Supplements in Combat Sports
4.3. Effects of Creatine Monohydrate in Combat Sports
4.4. Effects of Nitric Oxide Precursors in Combat Sports
4.5. Effects of Glycerol Supplementation in Combat Sports
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Coelho-E-Silva, M.J.; Sousa-E-Silva, P.; Morato, V.S.; Costa, D.C.; Martinho, D.V.; Rama, L.M.; Valente-Dos-Santos, J.; Werneck, A.O.; Tavares, Ó.; Conde, J.; et al. Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports. Medicina 2020, 56, 480. [Google Scholar] [CrossRef] [PubMed]
- Barley, O.R.; Chapman, D.W.; Guppy, S.N.; Abbiss, C.R. Considerations When Assessing Endurance in Combat Sport Athletes. Front. Physiol. 2019, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Błach, W.; Rydzik, Ł.; Błach, Ł.; Cynarski, W.J.; Kostrzewa, M.; Ambroży, T. Characteristics of Technical and Tactical Preparation of Elite Judokas during the World Championships and Olympic Games. Int. J. Environ. Res. Public Health 2021, 18, 5841. [Google Scholar] [CrossRef] [PubMed]
- Cynarski, W.J.; Słopecki, J.; Dziadek, B.; Böschen, P.; Piepiora, P. Indicators of Targeted Physical Fitness in Judo and Jujutsu-Preliminary Results of Research. Int. J. Environ. Res. Public Health 2021, 18, 4347. [Google Scholar] [CrossRef]
- Silva, J.J.R.; Del Vecchio, F.B.; Picanço, L.M.; Takito, M.Y.; Franchini, E. Time-motion analysis in Muay-Thai and Kick-Boxing amateur matches. J. Hum. Sport Exerc. 2011, 6, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Plush, M.G.; Guppy, S.N.; Nosaka, K.; Barley, O.R. Developing a Comprehensive Testing Battery for Mixed Martial Arts. Int. J. Exerc. Sci. 2021, 14, 941–961. [Google Scholar]
- Martinez-Rodriguez, A.; Vicente-Salar, N.; Montero-Carretero, C.; Cervello, E.; Roche, E. Nutritional strategies to reach the weight category in judo and karate athletes. Arch. Budo 2015, 11, 381–391. [Google Scholar]
- Porrini, M.; Del Bo, C. Ergogenic aids and supplements. In Sport Endocrinol; Karger Publishers: Basel, Switzerland, 2016; Volume 47, pp. 128–152. [Google Scholar]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [Green Version]
- Sports Nutrition Market Size, Share & Trends Analysis Report by Product Type (Sports Drink, Sports Supplements, Sports Food), by Distribution Channel (E-commerce, Brick and Mortar), by Region, and Segment Forecasts, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/sports-nutrition-market (accessed on 13 August 2021).
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of dietary supplement use by athletes: Systematic review and meta-analysis. Sport Med. 2016, 46, 103–123. [Google Scholar] [CrossRef] [Green Version]
- López-González, L.M.; Sánchez-Oliver, A.J.; Mata, F.; Jodra, P.; Antonio, J.; Domínguez, R. Acute caffeine supplementation in combat sports: A systematic review. J. Int. Soc. Sports Nutr. 2018, 15, 60. [Google Scholar] [CrossRef] [Green Version]
- Simoncini, L.; Lago-Rodríguez, Á.; López-Samanes, Á.; Pérez-López, A.; Domínguez, R. Effects of Nutritional Supplements on Judo-Related Performance: A Review. J. Hum. Kinet. 2021, 77, 81–96. [Google Scholar] [CrossRef]
- Maughan, R.; Greenhaff, P.L.; Hespel, P. Dietary supplements for athletes: Emerging trends and recurring themes. J. Sports Sci. 2011, 29 (Suppl. 1), S57–S66. [Google Scholar] [CrossRef]
- Martínez-Sanz, J.M.; Sospedra, I.; Ortiz, C.M.; Baladía, E.; Gil-Izquierdo, A.; Ortiz-Moncada, R. Intended or unintended doping? A review of the presence of doping substances in dietary supplements used in sports. Nutrients 2017, 9, 1093. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- The Australian Institute of Sport. AIS Sports Supplements Evidence Map. 2021. Available online: https://www.ais.gov.au/nutrition/supplements (accessed on 22 August 2021).
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Wiley Blackwell: Oxford, UK, 2011. [Google Scholar]
- O’Connor, D.; Green, S.; Higgins, J. Defining the Review Question and Developing Criteria for Including Studies. In Cochrane Handbook for Systematic Reviews of Interventionsl; Wiley Online Library: Oxford, UK, 2008; p. 83. [Google Scholar]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Ouergui, I.; Mahdi, N.; Delleli, S.; Messaoudi, H.; Chtourou, H.; Sahnoun, Z.; Bouassida, A.; Bouhlel, E.; Nobari, H.; Ardigò, L.P.; et al. Acute Effects of Low Dose of Caffeine Ingestion Combined with Conditioning Activity on Psychological and Physical Performances of Male and Female Taekwondo Athletes. Nutrients 2022, 14, 571. [Google Scholar] [CrossRef]
- Jodra, P.; Lago-Rodríguez, A.; Sánchez-Oliver, A.J.; López-Samanes, A.; Pérez-López, A.; Veiga-Herreros, P.; San Juan, A.F.; Domínguez, R. Effects of caffeine supplementation on physical performance and mood dimensions in elite and trained-recreational athletes. J. Int. Soc. Sports Nutr. 2020, 17, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pak, İ.; Cuğ, M.; Volpe, S.L.; Beaven, C.M. The effect of carbohydrate and caffeine mouth rinsing on kicking performance in competitive Taekwondo athletes during Ramadan. J. Sports Sci. 2020, 38, 795–800. [Google Scholar] [CrossRef]
- San Juan, A.F.; López-Samanes, Á.; Jodra, P.; Valenzuela, P.L.; Rueda, J.; Veiga-Herreros, P.; Pérez-López, A.; Domínguez, R. Caffeine Supplementation Improves Anaerobic Performance and Neuromuscular Efficiency and Fatigue in Olympic-Level Boxers. Nutrients 2019, 11, 2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, S.; Akbari, K.; Gahreman, D.E.; Sarshin, A.; Tabben, M.; Kaviani, M.; Sadeghinikoo, A.; Koozehchian, M.S.; Naderi, A. Caffeine and sodium bicarbonate supplementation alone or together improve karate performance. J. Int. Soc. Sports Nutr. 2019, 16, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coswig, V.S.; Gentil, P.; Irigon, F.; Del Vecchio, F.B. Caffeine ingestion changes time-motion and technical-tactical aspects in simulated boxing matches: A randomized double-blind PLA-controlled crossover study. Eur. J. Sport Sci. 2018, 18, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Silva, J.P.; Silva Santos, J.F.; Branco, B.H.; Abad, C.C.; Oliveira, L.F.; Loturco, I.; Franchini, E. Caffeine Ingestion Increases Estimated Glycolytic Metabolism during Taekwondo Combat Simulation but Does Not Improve Performance or Parasympathetic Reactivation. PLoS ONE 2015, 10, e0142078. [Google Scholar] [CrossRef]
- Santos, V.G.; Santos, V.R.; Felippe, L.J.; Almeida, J.W.; Bertuzzi, R.; Kiss, M.A.; Lima-Silva, A.E. Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo. Nutrients 2014, 6, 637–649. [Google Scholar] [CrossRef] [Green Version]
- Sarshin, A.; Fallahi, V.; Forbes, S.C.; Rahimi, A.; Koozehchian, M.S.; Candow, D.G.; Kaviani, M.; Khalifeh, S.N.; Abdollahi, V.; Naderi, A. Short-term co-ingestion of creatine and sodium bicarbonate improves anaerobic performance in trained taekwondo athletes. J. Int. Soc. Sports Nutr. 2021, 18, 10. [Google Scholar] [CrossRef]
- Gough, L.A.; Rimmer, S.; Sparks, S.A.; McNaughton, L.R.; Higgins, M.F. Post-exercise Supplementation of Sodium Bicarbonate Improves Acid Base Balance Recovery and Subsequent High-Intensity Boxing Specific Performance. Front. Nutr. 2019, 6, 155. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Da Silva Santos, J.F.; Artioli, G.G.; Loturco, I.; Abbiss, C.; Franchini, E. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur. J. Sport Sci. 2018, 18, 431–440. [Google Scholar] [CrossRef]
- Siegler, J.C.; Hirscher, K. Sodium bicarbonate ingestion and boxing performance. J. Strength Cond. Res. 2010, 24, 103–108. [Google Scholar] [CrossRef]
- Alabsi, K.; Rashidlamir, A.; Dokht, E.H. The effect of 4 Weeks of strength training and beta-alanine supplementation on anaerobic power and carnosine level in boxer players. J. Sci. Sport Exerc. 2022. [Google Scholar] [CrossRef]
- Kim, K.J.; Song, H.S.; Yoon, D.H.; Fukuda, D.H.; Kim, S.H.; Park, D.H. The effects of 10 weeks of β-alanine supplementation on peak power, power drop, and lactate response in Korean national team boxers. J. Exerc. Rehabil. 2018, 14, 985–992. [Google Scholar] [CrossRef] [Green Version]
- Donovan, T.; Ballam, T.; Morton, J.P.; Close, G.L. β-alanine improves punch force and frequency in amateur boxers during a simulated contest. Int. J. Sport Nutr. Exerc. Metab 2012, 22, 331–337. [Google Scholar] [CrossRef]
- Manjarrez-Montes de Oca, R.; Farfán-González, F.; Camarillo-Romero, S.; Tlatempa-Sotelo, P.; Francisco-Argüelles, C.; Kormanowski, A.; González-Gallego, J.; Alvear-Ordenes, I. Effects of creatine supplementation in taekwondo practitioners. Nutr. Hosp. 2013, 28, 391–399. [Google Scholar] [CrossRef]
- Miraftabi, H.; Avazpoor, Z.; Berjisian, E.; Sarshin, A.; Rezaei, S.; Domínguez, R.; Reale, R.; Franchini, E.; Samanipour, M.H.; Koozehchian, M.S.; et al. Effects of Beetroot Juice Supplementation on Cognitive Function, Aerobic and Anaerobic Performances of Trained Male Taekwondo Athletes: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 10202. [Google Scholar] [CrossRef]
- Antonietto, N.R.; Santos, D.A.D.; Costa, K.F.; Fernandes, J.R.; Queiroz, A.C.C.; Perez, D.I.V.; Munoz, E.A.A.; Miarka, B.; Brito, C.J. Beetroot extract improves specific performance and oxygen uptake in taekwondo athletes: A double-blind crossover study. Ido. Mov. Cult. 2021, 21, 12–19. [Google Scholar]
- Tatlici, A.; Çakmakçi, O. The effects of acute dietary nitrate supplementation on anaerobic power of elite boxers. Med. Dello Sport 2019, 72, 225–233. [Google Scholar] [CrossRef]
- Merino-Fernández, M.; Giráldez-Costas, V.; González-García, J.; Gutiérrez-Hellín, J.; González-Millán, C.; Matos-Duarte, M.; Ruiz-Moreno, C. Effects of 3 mg/kg Body Mass of Caffeine on the Performance of Jiu-Jitsu Elite Athletes. Nutrients 2022, 14, 675. [Google Scholar] [CrossRef]
- Krawczyk, R.; Krzysztofik, M.; Kostrzewa, M.; Komarek, Z.; Wilk, M.; Del Coso, J.; Filip-Stachnik, A. Preliminary Research towards Acute Effects of Different Doses of Caffeine on Strength-Power Performance in Highly Trained Judo Athletes. Int. J. Environ. Res. Public Health 2022, 19, 2868. [Google Scholar] [CrossRef]
- Merino Fernández, M.; Ruiz-Moreno, C.; Giráldez-Costas, V.; Gonzalez-Millán, C.; Matos-Duarte, M.; Gutiérrez-Hellín, J.; González-García, J. Caffeine Doses of 3 mg/kg Increase Unilateral and Bilateral Vertical Jump Outcomes in Elite Traditional Jiu-Jitsu Athletes. Nutrients 2021, 13, 1705. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Rocha, A.L.S.D.; Rocha, J.C.C.; Silva, V.F.D.S.; Correia-Oliveira, C.R. Caffeine ingestion increases the upper-body intermittent dynamic strength endurance performance of combat sports athletes. Eur. J. Sport Sci. 2022, 22, 227–236. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Krawczyk, R.; Krzysztofik, M.; Rzeszutko-Belzowska, A.; Dornowski, M.; Zajac, A.; Del Coso, J.; Wilk, M. Effects of acute ingestion of caffeinated chewing gum on performance in elite judo athletes. J. Int. Soc. Sports Nutr. 2021, 18, 49. [Google Scholar] [CrossRef] [PubMed]
- Carmo, K.E.O.; Pérez, D.I.V.; Valido, C.N.; Dos Santos, J.L.; Miarka, B.; Mendes-Netto, R.S.; Leite, M.M.R.; Antoniêtto, N.R.; Aedo-Muñoz, E.A.; Brito, C.J. Caffeine improves biochemical and specific performance after judo training: A double-blind crossover study in a real judo training situation. Nutr. Metab. 2021, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Negaresh, R.; Del Coso, J.; Mokhtarzade, M.; Lima-Silva, A.E.; Baker, J.S.; Willems, M.E.T.; Talebvand, S.; Khodadoost, M.; Farhani, F. Effects of different dosages of caffeine administration on wrestling performance during a simulated tournament. Eur. J. Sport Sci. 2019, 19, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Główka, N.; Grygiel, A. Dose-dependent effect of caffeine supplementation on judo-specific performance and training activity: A randomized placebo-controlled crossover trial. J. Int. Soc. Sports Nutr. 2019, 16, 38. [Google Scholar] [CrossRef] [Green Version]
- Saldanha da Silva Athayde, M.; Kons, R.L.; Detanico, D. An Exploratory Double-Blind Study of Caffeine Effects on Performance and Perceived Exertion in Judo. Percept Mot. Skills 2019, 126, 515–529. [Google Scholar] [CrossRef]
- Athayde, M.S.D.S.; Lima Kons, R.; Detanico, D. Can Caffeine Intake Improve Neuromuscular and Technical-Tactical Performance During Judo Matches? J. Strength Cond Res. 2018, 32, 3095–3102. [Google Scholar] [CrossRef]
- Astley, C.; Souza, D.; Polito, M. Acute Caffeine Ingestion on Performance in Young Judo Athletes. Pediatr. Exerc. Sci. 2017, 29, 336–340. [Google Scholar] [CrossRef]
- Diaz-Lara, F.J.; Del Coso, J.; García, J.M.; Portillo, L.J.; Areces, F.; Abián-Vicén, J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport Sci. 2016, 16, 1079–1086. [Google Scholar] [CrossRef]
- Felippe, L.C.; Lopes-Silva, J.P.; Bertuzzi, R.; McGinley, C.; Lima-Silva, A.E. Separate and Combined Effects of Caffeine and Sodium-Bicarbonate Intake on Judo Performance. Int. J. Sports Physiol. Perform. 2016, 11, 221–226. [Google Scholar] [CrossRef]
- Diaz-Lara, F.J.; Del Coso, J.; Portillo, J.; Areces, F.; García, J.M.; Abián-Vicén, J. Enhancement of High-Intensity Actions and Physical Performance During a Simulated Brazilian Jiu-Jitsu Competition with a Moderate Dose of Caffeine. Int. J. Sports Physiol. Perform. 2016, 11, 861–867. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Felippe, L.J.; Silva-Cavalcante, M.D.; Bertuzzi, R.; Lima-Silva, A.E. Caffeine ingestion after rapid weight loss in judo athletes reduces perceived effort and increases plasma lactate concentration without improving performance. Nutrients 2014, 6, 2931–2945. [Google Scholar] [CrossRef] [Green Version]
- Aedma, M.; Timpmann, S.; Ööpik, V. Effect of caffeine on upper-body anaerobic performance in wrestlers in simulated competition-day conditions. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 601–609. [Google Scholar] [CrossRef] [Green Version]
- Souissi, M.; Aloui, A.; Chtourou, H.; Aouicha, H.B.; Atheymen, R.; Sahnoun, Z. Caffeine ingestion does not affect afternoon muscle power and fatigue during the Wingate test in elite judo players. Biol. Rhythm. Res. 2015, 46, 291–298. [Google Scholar] [CrossRef]
- Ragone, L.; Guilherme Vieira, J.; Camaroti Laterza, M.; Leitão, L.; da Silva Novaes, J.; Macedo Vianna, J.; Ricardo Dias, M. Acute Effect of Sodium Bicarbonate Supplementation on Symptoms of Gastrointestinal Discomfort, Acid-Base Balance, and Performance of Jiu-Jitsu Athletes. J. Hum. Kinet. 2020, 75, 85–93. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Zawieja, E.E.; Zawieja, B.E.; Michałowska, P.; Podgórski, T. The gender dependent influence of sodium bicarbonate supplementation on anaerobic power and specific performance in female and male wrestlers. Sci. Rep. 2020, 10, 1878. [Google Scholar] [CrossRef]
- Durkalec-Michalski, K.; Zawieja, E.E.; Podgórski, T.; Zawieja, B.E.; Michałowska, P.; Łoniewski, I.; Jeszka, J. The Effect of a New Sodium Bicarbonate Loading Regimen on Anaerobic Capacity and Wrestling Performance. Nutrients 2018, 10, 697. [Google Scholar] [CrossRef] [Green Version]
- Tobias, G.; Benatti, F.B.; de Salles Painelli, V.; Roschel, H.; Gualano, B.; Sale, C.; Harris, R.C.; Lancha, A.H.; Artioli, G.G. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino Acids 2013, 45, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Artioli, G.G.; Gualano, B.; Coelho, D.F.; Benatti, F.B.; Gailey, A.W.; Lancha, A.H. Does sodium-bicarbonate ingestion improve simulated judo performance? Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 206–217. [Google Scholar] [CrossRef]
- Aedma, M.; Timpmann, S.; Ööpik, V. Dietary sodium citrate supplementation does not improve upper-body anaerobic performance in trained wrestlers in simulated competition-day conditions. Eur. J. Appl. Physiol. 2015, 115, 387–396. [Google Scholar] [CrossRef]
- Timpmann, S.; Burk, A.; Medijainen, L.; Tamm, M.; Kreegipuu, K.; Vähi, M.; Unt, E.; Oöpik, V. Dietary sodium citrate supplementation enhances rehydration and recovery from rapid body mass loss in trained wrestlers. Appl. Physiol. Nutr. Metab. 2012, 37, 1028–1037. [Google Scholar] [CrossRef]
- De Andrade Kratz, C.; de Salles Painelli, V.; de Andrade Nemezio, K.M.; da Silva, R.P.; Franchini, E.; Zagatto, A.M.; Gualano, B.; Artioli, G.G. Beta-alanine supplementation enhances judo-related performance in highly-trained athletes. J. Sci. Med. Sport 2017, 20, 403–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, B.D.; Robinson, T.L. Effects of β-alanine supplementation on performance and body composition in collegiate wrestlers and football players. J. Strength Cond Res. 2011, 25, 1804–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aedma, M.; Timpmann, S.; Lätt, E.; Ööpik, V. Short-term creatine supplementation has no impact on upper-body anaerobic power in trained wrestlers. J. Int. Soc. Sports Nutr. 2015, 12, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasalipour, M.; Parsay, S.; Melkumyan, K.; Minasyan, S. Effects of creatine and glutamine supplements in comparison with proper nutrition on performance factors of wrestlers. Adv. Environ. Biol. 2012, 6, 2726–2730. [Google Scholar]
- Tatlici, A. The effects of acute beetroot juice supplementation on lower and upper body isokinetic strength of the wrestlers. J. Mens Health 2021, 17, 249–254. [Google Scholar]
- De Oliveira, G.V.; Nascimento, L.A.D.D.; Volino-Souza, M.; Mesquita, J.S.; Alvares, T.S. Beetroot-based gel supplementation improves handgrip strength and forearm muscle O. Appl. Physiol. Nutr. Metab. 2018, 43, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, H.U.; Turnagol, H.; Demirel, A.H. Pre-exercise arginine supplementation increases time to exhaustion in elite male wrestlers. Biol. Sport 2014, 31, 187–191. [Google Scholar] [CrossRef]
- Liu, T.H.; Wu, C.L.; Chiang, C.W.; Lo, Y.W.; Tseng, H.F.; Chang, C.K. No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletes. J. Nutr. Biochem. 2009, 20, 462–468. [Google Scholar] [CrossRef]
- McKenna, Z.J.; Gillum, T.L. Effects of Exercise Induced Dehydration and Glycerol Rehydration on Anaerobic Power in Male Collegiate Wrestlers. J. Strength Cond Res. 2017, 31, 2965–2968. [Google Scholar] [CrossRef]
- De Azevedo, A.P.; Guerra, M.A.; Caldas, L.C.; Guimarães-Ferreira, L. Acute caffeine ingestion did not enhance punch performance in professional mixed-martial arts athletes. Nutrients 2019, 11, 1422. [Google Scholar] [CrossRef] [Green Version]
- Chycki, J.; Zajac, A.; Toborek, M. Bicarbonate supplementation via lactate efflux improves anaerobic and cognitive performance in elite combat sport athletes. Biol. Sport 2021, 38, 545–553. [Google Scholar] [CrossRef]
- De Oliveira, G.V.; do Nascimento, L.A.D.; Volino-Souza, M.; do Couto Vellozo, O.; Alvares, T.S. A single oral dose of beetroot-based gel does not improve muscle oxygenation parameters, but speeds up handgrip isometric strength recovery in recreational combat sports athletes. Biol. Sport 2020, 37, 93–99. [Google Scholar] [CrossRef]
- Daly, J.W.; Bruns, R.F.; Snyder, S.H. Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines. Life Sci. 1981, 28, 2083–2097. [Google Scholar] [CrossRef]
- Nurminen, M.L.; Niittynen, L.; Korpela, R.; Vapaatalo, H. Coffee, caffeine and blood pressure: A critical review. Eur. J. Clin. Nutr. 1999, 53, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Simmonds, M.J.; Minahan, C.L.; Sabapathy, S. Caffeine improves supramaximal cycling but not the rate of anaerobic energy release. Eur. J. Appl. Physiol. 2010, 109, 287–295. [Google Scholar] [CrossRef]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Ivy, J.L.; Kammer, L.; Ding, Z.; Wang, B.; Bernard, J.R.; Liao, Y.H.; Hwang, J. Improved cycling time-trial performance after ingestion of a caffeine energy drink. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Duncan, M.J.; Stanley, M.; Parkhouse, N.; Cook, K.; Smith, M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur. J. Sport Sci. 2013, 13, 392–399. [Google Scholar] [CrossRef]
- Carvalho, A.; Marticorena, F.M.; Grecco, B.H.; Barreto, G.; Saunders, B. Can I Have My Coffee and Drink It? A Systematic Review and Meta-analysis to Determine Whether Habitual Caffeine Consumption Affects the Ergogenic Effect of Caffeine. Sports Med. 2022. [Google Scholar] [CrossRef]
- De Lira, C.A.; Peixinho-Pena, L.F.; Vancini, R.L.; de Freitas Guina Fachina, R.J.; de Almeida, A.A.; Andrade, M.S.; da Silva, A.C. Heart rate response during a simulated Olympic boxing match is predominantly above ventilatory threshold 2: A cross sectional study. Open Access J. Sports Med. 2013, 4, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Chaabene, H.; Hachana, Y.; Franchini, E.; Tabben, M.; Mkaouer, B.; Negra, Y.; Hammami, M.; Chamari, K. Criterion Related Validity of Karate Specific Aerobic Test (KSAT). Asian J. Sports Med. 2015, 6, e23807. [Google Scholar] [CrossRef] [Green Version]
- Slimani, M.; Chaabène, H.; Davis, P.; Franchini, E.; Cheour, F.; Chamari, K. Performance Aspects and Physiological Responses in Male Amateur Boxing Competitions: A Brief Review. J. Strength Cond Res. 2017, 31, 1132–1141. [Google Scholar] [CrossRef]
- Ojeda-Aravena, A.; Herrera-Valenzuela, T.; Valdés-Badilla, P.; Cancino-López, J.; Zapata-Bastias, J.; García-García, J.M. Effects of 4 Weeks of a Technique-Specific Protocol with High-Intensity Intervals on General and Specific Physical Fitness in Taekwondo Athletes: An Inter-Individual Analysis. Int. J. Environ. Res. Public Health 2021, 18, 3643. [Google Scholar] [CrossRef]
- Przybylski, P.; Janiak, A.; Szewczyk, P.; Wieliński, D.; Domaszewska, K. Morphological and Motor Fitness Determinants of Shotokan Karate Performance. Int. J. Environ. Res. Public Health 2021, 18, 4423. [Google Scholar] [CrossRef]
- Hausen, M.; Freire, R.; Machado, A.B.; Pereira, G.R.; Millet, G.P.; Itaborahy, A. Maximal and Submaximal Cardiorespiratory Responses to a Novel Graded Karate Test. J. Sports Sci. Med. 2021, 20, 310–316. [Google Scholar] [CrossRef]
- Grgic, J. Effects of Combining Caffeine and Sodium Bicarbonate on Exercise Performance: A Review with Suggestions for Future Research. J. Diet Suppl. 2021, 18, 444–460. [Google Scholar] [CrossRef]
- Cunha, V.C.; Aoki, M.S.; Zourdos, M.C.; Gomes, R.V.; Barbosa, W.P.; Massa, M.; Moreira, A.; Capitani, C.D. Sodium citrate supplementation enhances tennis skill performance: A crossover, placebo-controlled, double blind study. J. Int. Soc. Sports Nutr. 2019, 16, 32. [Google Scholar] [CrossRef] [Green Version]
- Kumstát, M.; Hlinský, T.; Struhár, I.; Thomas, A. Does Sodium Citrate Cause the Same Ergogenic Effect as Sodium Bicarbonate on Swimming Performance? J. Hum. Kinet. 2018, 65, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicente-Salar, N.; Santos-Sánchez, G.; Roche, E. Nutritional Ergogenic Aids in Racquet Sports: A Systematic Review. Nutrients 2020, 12, 2842. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Lara, J.; Grgic, J.; Detanico, D.; Botella, J.; Jiménez, S.L.; Del Coso, J. Effects of acute caffeine intake on combat sports performance: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 27, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo Calvo, J.; Fei, X.; Domínguez, R.; Pareja-Galeano, H. Caffeine and Cognitive Functions in Sports: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 868. [Google Scholar] [CrossRef]
- Hadzic, M.; Eckstein, M.L.; Schugardt, M. The Impact of Sodium Bicarbonate on Performance in Response to Exercise Duration in Athletes: A Systematic Review. J. Sports Sci. Med. 2019, 18, 271–281. [Google Scholar]
- Carr, A.J.; Slater, G.J.; Gore, C.J.; Dawson, B.; Burke, L.M. Effect of sodium bicarbonate on [HCO3−], pH, and gastrointestinal symptoms. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 189–194. [Google Scholar] [CrossRef]
- Hill, C.A.; Harris, R.C.; Kim, H.J.; Harris, B.D.; Sale, C.; Boobis, L.H.; Kim, C.K.; Wise, J.A. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 2007, 32, 225–233. [Google Scholar] [CrossRef]
- Saunders, B.; Elliott-Sale, K.; Artioli, G.G.; Swinton, P.A.; Dolan, E.; Roschel, H.; Sale, C.; Gualano, B. β-alanine supplementation to improve exercise capacity and performance: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 658–669. [Google Scholar] [CrossRef] [Green Version]
- Hollidge-Horvat, M.G.; Parolin, M.L.; Wong, D.; Jones, N.L.; Heigenhauser, G.J. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E316–E329. [Google Scholar] [CrossRef] [Green Version]
- Suvi, S.; Mooses, M.; Timpmann, S.; Medijainen, L.; Unt, E.; Ööpik, V. Influence of Sodium Citrate Supplementation after Dehydrating Exercise on Responses of Stress Hormones to Subsequent Endurance Cycling Time-Trial in the Heat. Medicina 2019, 55, 103. [Google Scholar] [CrossRef] [Green Version]
- Sas-Nowosielski, K.; Wyciślik, J.; Kaczka, P. Beta-Alanine Supplementation and Sport Climbing Performance. Int. J. Environ. Res. Public Health 2021, 18, 5370. [Google Scholar] [CrossRef]
- De Andrade Nemezio, K.M.; Bertuzzi, R.; Correia-Oliveira, C.R.; Gualano, B.; Bishop, D.J.; Lima-Silva, A.E. Effect of Creatine Loading on Oxygen Uptake during a 1-km Cycling Time Trial. Med. Sci. Sports Exerc. 2015, 47, 2660–2668. [Google Scholar] [CrossRef]
- Yáñez-Silva, A.; Buzzachera, C.F.; Piçarro, I.D.C.; Januario, R.S.B.; Ferreira, L.H.B.; McAnulty, S.R.; Utter, A.C.; Souza-Junior, T.P. Effect of low dose, short-term creatine supplementation on muscle power output in elite youth soccer players. Journal of the International Society of Sports. Nutrition 2017, 14, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kreider, R.B.; Ferreira, M.; Wilson, M.; Grindstaff, P.; Plisk, S.; Reinardy, J.; Cantler, E.; Almada, A.L. Effects of creatine supplementation on body composition, strength, and sprint performance. Med. Sci. Sports Exerc. 1998, 30, 73–82. [Google Scholar] [CrossRef]
- Kim, J.; Lee, N.; Lee, J.; Jung, S.S.; Kang, S.K.; Yoon, J.D. Dietary supplementation of high-performance Korean and Japanese judoists. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 119–127. [Google Scholar] [CrossRef]
- Bescós, R.; Sureda, A.; Tur, J.A.; Pons, A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012, 42, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, J.A.; Bishop, D.J. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med. 2020, 50, 25–53. [Google Scholar] [CrossRef] [Green Version]
- McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 735–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo Calvo, J.; Alorda-Capo, F.; Pareja-Galeano, H.; Jiménez, S.L. Influence of Nitrate Supplementation on Endurance Cyclic Sports Performance: A Systematic Review. Nutrients 2020, 12, 1796. [Google Scholar] [CrossRef]
- Viribay, A.; Burgos, J.; Fernández-Landa, J.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of Arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1300. [Google Scholar] [CrossRef]
- WADA-AMA. Available online: https://www.wada-ama.org/en/questions-answers/prohibited-list-qa (accessed on 13 October 2021).
NEA 1 | Sport | |
---|---|---|
Dietary supplements | AND | Martial Arts |
Caffeine | Boxing | |
Creatine | Wrestling | |
Beta-alanine | ||
Sodium Bicarbonate | ||
Nitrates | ||
Glycerol |
Study | NEA | Dosage/Time | Duration | Participants (Gender) | Age (yrs) | Combat Sport | Level | Exercise Protocol | Main Outcomes |
---|---|---|---|---|---|---|---|---|---|
Striking Combat Sports | |||||||||
[23] Ouergui et al. (2022) | Caffeine | 3 mg/kg, 60 min before test | 1 day | 20 (10 male/10 female) | 17.5 ± 0.7 | Taekwondo | ? | TSAT + FSKT | ↓ Time of agility test ↑ Total number of kicks Perceptual training intensity Mood, feeling and vitality |
[24] Jodra et al. (2020) | Caffeine | 6 mg/kg, 60 min before test | 1 day | 8 (male) | 22.0 ± 1.8 | Boxing | International-level | Wingate test | ↑ Power Perceptual training intensity ↑ Tension, vigor and vitality ↓ Fatigue |
[25] Pak et al. (2020) | Caffeine | 6 mg/kg (mouth rinsing), 0 min before test | 1 day | 27 (18 male/9 female) | 17.0 ± 3.0 | Taekwondo | State-level | TAIKT test before, during and after Ramadan period (fed and fasting comparison) | ↑ % Successful kicks (during the first 3 weeks of Ramadan) ↓ Perceptual training intensity (during all weeks of Ramadan) |
[26] San Juan et al. (2019) | Caffeine | 6 mg/kg, 60 min before test | 1 day | 8 (male) | 22.0 ± 1.8 | Boxing | International-level | Wingate test + EMG + CMJ + HS | ↑ Power ↑ Jump height Jump power Handgrip maximal strength Blood lactate |
[27] Rezaei et al. (2019) | Caffeine | 6 mg/kg, 50 min before test | 1 day | 8 (?) | 20.5 ± 2.4 | Karate | State-level | KSAT | ↑ TTE Vertical jumps (high) Blood lactate HR Perceptual training intensity |
[28] Coswig et al. (2018) | Caffeine | 6 mg/kg, 30 min before test | 1 day | 10 (male) | 25.9 ± 5.2 | Boxing | Amateur | Combats of 3 × 2 min | ↑ Effort–Pause ratio ↑ Time of punching sequences (round 1 and 2) Number of punching sequences HR Perceptual training intensity |
[29] Lopes-Silva et al. (2015) | Caffeine | 5 mg/kg, 60 min before test | 1 day | 10 (male) | 21.0 ± 4.0 | Taekwondo | International-level | Combat of 3 × 2 min | Attack Time Total number of attacks Stepping time ↑ Blood lactate HR HR variability HR recovery Time-varying vagal-related index VO2 Aerobic energy contribution ATP-PCr energy contribution ↑ Glycolytic energy contribution Energy expenditure Perceptual training intensity |
[30] Santos et al. (2014) | Caffeine | 5 mg/kg, 50 min before test | 1 day | 10 (male) | 24.9 ± 7.3 | Taekwondo | Amateur | Combats of 2 × 3 × 2 min + Reaction-time Test before, between and after the 2 combats | ↓ Reaction time before combat 1 ↑ Number of attacks in combat 2 ↓ Number of referee breaks in combat 1 ↓ Skipping times in combat 2 ↑ Blood lactate in combat 1 HR Perceptual training intensity |
[31] Sarshin et al. (2021) | Sodium Bicarbonate |
| 5 days | 40 (male) | 21.4–23.1 ± 1.1–2.4 | Taekwondo | National level | TAIKT | ↑ Peak and Mean Power ↓ Blood lactate after test |
[32] Gough et al. (2019) | Sodium Bicarbonate | 0.3 g/kg, 65 min before test | 1 day | 7 (male) | 27.1 ± 5.1 | Boxing | International-level | HIIR + Punch test + HIIR | ↑ TTE ↑ Blood lactate after 2nd HIIR ↑ pH after 1st HIIR ↑ HR in Punch test Perceptual training intensity |
[27] Rezaei et al. (2019) | Sodium Bicarbonate |
| 3 days | 8 (?) | 20.5 ± 2.4 | Karate | State-level | KSAT | ↑ TTE Vertical jumps (high) Blood lactate HR Perceptual training intensity |
[33] Lopes-Silva et al. (2018) | Sodium Bicarbonate | 0.3 g/kg, 90 min before test | 1 day | 9 (male) | 19.4 ± 2.2 | Taekwondo | National-level | Combat of 3 × 2 min | ↑ Attack Time Total number of attacks Stepping time ↑ Blood lactate HR VO2 Aerobic energy contribution ATP-PCr energy contribution ↑ Glycolytic energy contribution in round 1 Energy expenditure Perceptual training intensity |
[34] Siegler et al. (2010) | Sodium Bicarbonate | 0.3 g/kg, 60 min before test | 1 day | 10 (?) | 22.0 ± 3.0 | Boxing | Amateur | Combat of 4 × 3 min | ↑ Punch efficacy HR in Punch test Perceptual training intensity |
[27] Rezaei et al. (2019) | Sodium Bicarbonate + Caffeine |
| 3 days | 8 (?) | 20.5 ± 2.4 | Karate | State-level | KSAT | ↑ TTE Vertical jumps (high) Blood lactate HR Perceptual training intensity |
[31] Sarshin et al. (2021) | Sodium Bicarbonate + Creatine |
| 5 days | 40 (male) | 21.4–23.1 ± 1.1–2.4 | Taekwondo | National level | TAIKT | ↑ Peak Power ↑ Mean Power and > SB or CRE alone ↓ Blood lactate after test |
[35] Alabsi et al. (2022) | Beta-alanine | 20.7–24.4 g/day (0.3 g/kg) | 4 weeks | 18 (male) | 22.0–24.4 ± 4.7–5.8 | Boxing | - | Strength training + Wingate test | Peak and Mean Power Fatigue Index Blood lactate |
[36] Kim et al. (2018) | Beta-alanine | 4.9–5.4 g/day (3 × 1650–1800 mg/day) | 10 weeks | 19 (male) | 22.2–23.0 ± 2.2–1.8 | Boxing | Amateur | Physical fitness | Maximal strength Isokinetic strength ↑ Peak power lower limbs Mean power Power endurance ↓ Power drop upper limbs Blood lactate |
[37] Donovan et al. (2012) | Beta-alanine | 6 g/day (4 × 1500 mg/day) | 4 weeks | 16 (?) | 25.0 ± 4.0 | Boxing | Amateurs | Simulated boxing protocol with a punch bag of 3 × 3 min | ↑ Number of punches ↑ Mean and accumulative punch force ↑ Blood lactate HR |
[31] Sarshin et al. (2021) | Creatine | 4 × 5 g/day | 5 days | 40 (male) | 21.4–23.1 ± 1.1–2.4 | Taekwondo | National level | TAIKT | ↑ Peak and Mean Power Blood lactate after test |
[38] Manjarrez-Montes de Oca et al. (2013) | Creatine | 50 mg/kg/day | 6 weeks | 10 (male) | 20.0 ± 2.0 | Taekwondo | Amateur | Wingate test | Peak and Mean Power Fatigue Index Blood lactate ↑ Triglycerides |
[39] Miraftabi et al. (2021) | Beetroot juice |
| 1 day | 8 (male) | 20.0 ± 4.0 | Taekwondo | National level | CMJ + FSKT + Rest + CMJ + PSTT | Total number of kicks TTE Jump height, flight time, velocity force and power Blood lactate Anaerobic performance (kick decrement index) HR Perceptual training intensity |
[40] Antonietto et al. (2021) | Beetroot extract | 1 g/? before test | 1 day | 12 (male) | 26.8 ± 8.8 | Taekwondo | - | PSTT | Blood lactate ↑ VO2 peak ↑ Anaerobic threshold |
[41] Tatlici et al. (2019) | Beetroot juice | 2 g/kg, 150 min before test | 1 day | 8 (male) | 23.0 ± 2.3 | Boxing | International and National | Upper body Wingate test | ↓ Peak and Mean Power Blood lactate HR |
Grappling combat sports | |||||||||
[42] Merino Fernández et al. (2022) | Caffeine | 3 mg/kg, 60 min before test | 1 day | 22 (11 male/11 female) | 22.0 ± 4.0 | Jiu-jitsu | ? | SFJT + Combats | ↑ Total throws ↑ SFJT index Number of attack and defensive actions ↑ HR ↑ Strength and Endurance perception ↓ Fatigue perception |
[43] Krawczyk et al. (2022) | Caffeine | 3 and 6 mg/kg, 60 min before test | 1 day | 16 (6 male/4 female) | Male: 26.4 ± 5.3 Female: 20.8 ± 1.5 | Judo | National-level | 3 x3 Bench-press + 3 × 3 Bench-pull + CMJ + Handgrip strength test + JGST | ↑ Mean velocity Bench-press (only with 6 mg/kg) ↑ Peak velocity Bench-press ↑ Mean velocity Bench-pull Peak velocity Bench-pull Jump height ↑ Number of repetitions of Grip strength Grip endurance strength Handgrip maximal strength |
[44] Merino Fernández et al. (2021) | Caffeine | 3 mg/kg, 60 min before test | 1 day | 16 (8 male/8 female) | Male: 21.5 ± 4.75 Female: 20.63 ± 3.20 | Jiu-jitsu | ? | Bilateral and Unilateral CMJ | ↑ Power (bilateral) ↑ Jump height (bilateral and right leg) ↑ Flight time (bilateral and right leg) |
[45] Lopes-Silva et al. (2021) | Caffeine | 5 mg/kg, 60 min before test | 1 day | 10 (?) | 25.2 ± 5.3 | Judo Jiu-jitsu | National level | 4xJudogi’s dynamic strength endurance test + 4xHandgrip force after each bout | ↑ Total number of repetitions ↑ Maximum Isometric Handgrip strength Blood Lactate HR Perceptual training intensity |
[46] Filip-Stachnik et al. (2021) | Caffeinated chewing gum | 2.7 and 5.4 mg/kg, 15 min before each SFJT test | 1 day | 9 (male) | 23.7 ± 4.4 | Judo | International and National level | SFJT + Combats of 4 min + SFJT | Total throws SFJT index (HR/Total throws) Blood Lactate HR Perceptual training intensity |
[47] Carmo et al. (2021) | Caffeine | 5 mg/kg, 60 min before test | 1 day | 8 (male) | 21.4 ± 2.0 | Judo | National level | SFJT + CMJ + Upper limb power test + General exercises (40 min) + Technical training (40 min) + Combats of 8 × 4 min + SFJT + CMJ + Upper limb power test | ↑ Total throws in post-training ↓ Fatigue index in post-training Power upper limbs ↑ Plasma FFA at 120 min ↓ Serum Uric acid at 120 min erum Creatinine and Glucose at 120 min ↑ Blood Lactate at 120 min Urine production HR Blood pressure Perceptual training intensity |
[48] Negaresh et al. (2019) | Caffeine |
| 1 day | 12 (male) | 24.0 ± 3.0 | Wrestling | Professional | PWPT-Hip/back strength-Vertical jump + 5 Combats of 2 × 3 min (PWPT-Hip/back strength-Vertical jump before each combat) + Hip/back strength-Vertical jump | Hip/back strength Jump Height ↓ Time to complete PWPT (only with 5 × 2 and 6.2 mg/kg of caffeine) ↑ Blood lactate after 3rd combat (only with 5 × 2 and 6.2 mg/kg of caffeine); before 4th combat (only with 5 × 2 mg/kg) and after 4th and 5th combat (only with 6.2 mg/kg) ↓ Blood lactate before 4th combat (only with 6.2 mg/kg) Urine osmolality Urine specific gravity ↑ Dehydration index (only with 10 mg/kg) ↑ HR before 2nd combat (only with 10 mg/kg); after the 3rd combat (only with 4 mg/kg and 5 × 2 mg/kg) ↓ HR after 5th combat (only with 6.2 mg/kg) ↓ Perceptual training intensity (only with 5 × 2 and 6.2 mg/kg of caffeine) |
[49] Durkalec-Michalski et al. (2019) | Caffeine | 6–9 mg/kg, 60 min before test | 1 day | 22 (male) | 21.7 ± 3.7 | Judo | State-level | SFJT and judo sparring combats (Randori) | ↑ Total throws of opponent (higher at 9 than 6 mg/kg) SFJT index (HR/Total throws) ↑ Total attacks in combat ↑ HR Perceptual training intensity |
[50] Saldanha da Silva et al. (2019) | Caffeine | 5 mg/kg, 60 min before test | 1 day | 12 (male) | 23.1 ± 4.2 | Judo | State-level | Combats of 3 × 5 min | Total number of attacks Efficiency or effectiveness scores Perceived recovery Perceptual training intensity |
[51] Athayde et al. (2018) | Caffeine | 5 mg/kg, 60 min before test | 1 day | 14 (male) | 22.5 ± 7.1 | Judo | State-level | Combats of 3 × 5 min + CMJ-HS-JGST between combats | Total number of attacks Jump height and power Grip endurance strength Handgrip maximal strength ↑ Blood lactate |
[52] Astley et al. (2017) | Caffeine | 4 mg/kg, 60 min before test | 1 day | 18 (male) | 16.1 ± 1.4 | Judo | State-level | SFJT | ↓ SFJT index (HR/Total throws) ↑ Number of throws HR ↓ Perceptual training intensity |
[53] Diaz-Lara et al. (2016 a) | Caffeine | 3 mg/kg, 60 min before test | 1 day | 14 (male) | 29.2 ± 3.3 | Brazilian Jiu-jitsu | National-level | Handgrip force + CMJ + Maximal static lift + 1RM + Bench-press repetitions to failure | ↑ Handgrip maximal strength ↑ Maximum static lift ↑ Jump height ↑ Velocity at peak power in jumps Force applied at peak power in jumps ↑ Weight, power and velocity in 1RM ↑ Number of bench-press repetitions ↑ Perceptual training intensity |
[54] Felippe et al. (2016) | Caffeine | 6 mg/kg, 60 min before test | 1 day | 10 (male) | 23.0 ± 5.0 | Judo | National-level | SFJT | Number of throws ↑ Blood lactate Perceptual training intensity |
[55] Diaz-Lara et al. (2016 b) | Caffeine | 3 mg/kg, 60 min before test | 1 day | 14 (male) | 29.2 ± 3.3 | Brazilian Jiu-jitsu | National-level | Combats of 2 × 8 min + (1RM in Bench-press + HS+ CMJ + Maximal static lift) before, between and after the 2 combats | ↑ Number of high-intensity offensive actions Number of defensive actions ↑ Handgrip maximal strength before combats ↑ Maximum static lift before combats and post-combat 1 ↑ Jump height before combats ↑ Power in 1RM before combats and post-combat 1 ↑ Velocity in 1RM Blood lactate pre- and post-combat 1 ↑ Blood lactate pre- and post-combat 2 ↑ Perceptual training intensity |
[56] Lopes-Silva et al. (2014) | Caffeine | 6 mg/kg, 60 min before test | 1 day | 6 (male) | 25.3 ± 5.7 | Judo | National-level | Reduction of 5% body weight for 5 days + SFJT | Number of throws SFJT index (HR/Total throws) ↑ Blood lactate HR ↓ Perceptual training intensity |
[57] Aedma et al. (2013) | Caffeine | 5 mg/kg, 30 min before test | 1 day | 14 (?) | 25.3 ± 4.9 | Brazilian jiu-jitsu and Wrestling | Amateur | UBISP | Power ↑ Blood lactate ↑HR ↑HR recovery Perceptual training intensity |
[58] Souissi et al. (2012) | Caffeine | 5 mg/kg, 60 min before test | 1 day | 12 (?) | 21.1 ± 1.2 | Judo | ? | Reaction time test + Wingate test | ↓ Reaction time ↑ Peak and Mean Power Fatigue Index ↑ Vigor and Anxiety |
[59] Ragone et al. (2020) | Sodium Bicarbonate | 3 × 0.1 g/kg, 80, 70 and 60 min before test | 1 day | 10 (male) | 22.2-± 3.9 | Jiu-jitsu | National-level | Handgrip strength test + Forearm muscle intermittent isometric contraction test | Maximum and Mean Handgrip strength Number of contractions Total time of contractions Blood lactate ↑ pH |
[60] Durkalec-Michalski et al. (2020) | Sodium Bicarbonate |
| 10 days | 51 (33 male/18 female) | Male: 19.5–19.7 ± 3.8–4.4 Female: 18.1–18.7 ± 2.4–2.6 | Wrestling | National-level | Wingate test + Dummy throw test + Wingate test | Peak and Mean Power ↑ Difference in power indices between 2nd and 1st Wintgate test (in 12, 16, 17 and 21 s) Number of throws Blood lactate Blood glucose Blood pyruvate |
[61] Durkalec-Michalski et al. (2018) | Sodium Bicarbonate |
| 10 days | 49 (31 male/18 female) | 18.0–19.0 ± 4.0 | Wrestling | National-level | Wingate test + Dummy throw test + Wingate test | ↓ Time to peak power Peak, Mean and Minimum Power Number of throws Blood lactate Blood glucose |
[54] Felippe et al. (2016) | Sodium Bicarbonate | 0.1 g/kg, 120, 90 and 60 min before test | 1 day | 10 (male) | 23.0 ± 5.0 | Judo | National-level | SFJT | Number of throws ↑ Blood lactate Perceptual training intensity |
[62] Tobias et al. (2013) | Sodium Bicarbonate | 0.5 g/kg (4 × 12 mg/kg) | 7 days | 37 (male) | 23.0 ± 4.0 | Judo Jiu-jitsu | International, National and State-level | 4 bouts of Wingate test | ↑ Total work ↑ Peak and Mean Power in 4th bout ↑ Blood lactate Perceptual training intensity |
[63] Artioli et al. (2007) | Sodium Bicarbonate | 0.3 g/kg, 120 min before test | 1 day | 23 (?) | 19.3–21.5 ± 2.4–3.0 | Judo | International and National-level | 3 bouts of SFJT (n = 9) 4 bouts of Wingate test (n = 14) | ↑Number of throws ↑ Peak and Mean Power in 4th bout of Wingate test ↑ Blood lactate in 3rd bout of SFJT Blood lactate in Wingate test Perceptual training intensity |
[64] Aedma et al. (2015 a) | Sodium Citrate | 0.9 g/kg, 16 h, 8 h (aprox.) and 30 min before test | 1 day | 11 (?) | 25.9 ± 6.2 | Brazilian jiu-jitsu and Wrestling | ? | 4 UBISP tests (4 × 6 min) | Peak and Mean Power ↑ pH ↑ Blood lactate after 1st test Urine osmolality Urine specific gravity Urine volume ↑ Water intake and retention ↓ Decreasing in plasma volume HR Perceptual training intensity |
[65] Timpmann et al. (2012) | Sodium Citrate | 0.6 g/kg, 16 h, 8 h (aprox.) and 120 min before test + rapid body mass loss | 1 day | 16 (?) | 22.5 ± 3.9 | Wrestling | ? | UBISP | Peak and Mean Power ↑ pH Blood lactate Urine specific gravity ↑ Increasing in plasma volume Perceptual training intensity |
[54] Felippe et al. (2016) | Sodium Bicarbonate + Caffeine |
| 1 day | 10 (male) | 23.0 ± 5.0 | Judo | National-level | SFJT | ↑ Number of throws ↑ Blood lactate Perceptual training intensity |
[66] de Andrade Kratz et al. (2017) | Beta-alanine | 6.4 g/day (4 × 1600 mg mg/day) | 4 weeks | 23 (male) | 17.2–19.3 ± 2.0–3.0 | Judo | International and National | 3 bouts of SFJT | ↑ Number of throws pH Blood lactate |
[62] Tobias et al. (2013) | Beta-alanine | 6.4 g/day (4 × 1600 mg mg/day) | 4 weeks | 37 (male) | 26.0 ± 4.0 | Judo Jiu-jitsu | International, National and State-level | 4 bouts of Wingate test | ↑ Total work ↑ Mean Power in 2nd and 3rd bout Peak Power ↑ Blood lactate Perceptual training intensity |
[67] Kern et al. (2011) | Beta-alanine | 4.4 g/day (2 × 2200 mg mg/day) | 8 weeks | 22 (male) | 19.9 ± 1.9 | Wrestling | Amateurs | Running test (274 m) + Time of hanging 90º elbows flexed | Time running Flexed arm hang time Blood lactate |
[62] Tobias et al. (2013) | Beta-alanine + Sodium Bicarbonate |
|
| 37 (male) | 26.0 ± 5.0 | Judo Jiu-jitsu | International, National and State-level | 4 bouts of Wingate test | ↑ Total work and > Ba or SB alone ↑ Mean Power in all bouts ↑ Peak Power in 1st, 2nd and 3rd bouts ↑ Blood lactate ↓ Perceptual training intensity |
[68] Aedma et al. (2015 b) | Creatine | 0.3 g/kg/day (4 × 75 mg/kg/day) | 5 days | 20 (male) | 25.6 ± 3.8 | Brazilian jiu-jitsu and Wrestling | Amateur | UBISP | Peak and Mean Power Urine specific gravity Blood lactate HR HR recovery Perceptual training intensity |
[69] Abbasalipour et al. (2012) | Creatine | 0.3 g/kg/day | 15 days | 14 (?) | 18.0–25.0 | Wrestling | Amateur | Agility test + Handgrip strength test | ↑ Handgrip strength ↑ Agility |
[70] Tatlici (2021) | Beetroot juice | 140 mL (600 mg NO3−), 150 min before test | 1 day | 8 (male) | 21.9 ± 2.3 | Wrestling | - | Knee isokinetic strength test + Shoulder internal and external rotation isokinetic strength test | Peak isokinetic strength lower limbs ↑ Peak isokinetic strength upper limbs ↑ Mean isokinetic strength lower and upper limbs |
[71] de Oliveira et al. (2018) | Beetroot-based gel | 12.2 ± 0.2 mmol Nitrate | 8 days | 12 (male) | 29.0 ± 9.0 | Brazilian jiu-jitsu | Amateur | Forearm muscle isometric strength test + Handgrip isotonic exercise | ↑ Maximal voluntary forearm contraction ↑ Muscle O2 saturation during exercise recovery Blood volume in forearm Time until fatigue ↓ Blood lactate post-exercise |
[72] Yavuz et al. (2014) | Arginine | 150 mg/kg, 60 min before test | 1 day | 9 (male) | 24.7 ± 3.8 | Wrestling | International and National | Incremental cycloergometer test to exhaustion | ↑ TTE Blood lactate HR VO2 |
[73] Liu et al. (2009) | Arginine | 6 g/day | 3 days | 10 (male) | 20.2 ± 0.6 | Judo | International and National | Intermittent anaerobic exercise test | Peak and Mean Power Blood lactate, ammonia, citrulline, nitrate and nitrite during and post-exercise ↑ Blood arginine during and post-exercise |
[74] McKenna et al. (2017) | Glycerol | 1 g/kg, 60 min before test | 1 day | 7 (male) | 19.7 ± 1.7 | Wrestling | National | Wingate test | Anaerobic power Body mass Urine specific gravity Saliva osmolality |
Mixed combat sports | |||||||||
[75] de Azevedo et al. (2019) | Caffeine | 5 mg/kg, 60 min before test | 1 day | 11 (male) | 27.6 ± 4.3 | MMA | Professional | Punching exercise protocol | Punch frequency Mean and maximum punching force Readiness to invest effort Perceptual training intensity |
[76] Chycki et al. (2020) | Sodium Bicarbonate | 10 g (2 × 5 g), 90 min before test | 21 days | 16 (male) | 24.3 ± 0.5 | Combat sports | International | Wingate test + Cognitive performance test | ↑ Total work in upper limb ↑ Peak and Mean Power in upper limb Total work in lower limb Peak and Mean Power in lowerlimb ↑ Blood lactate ↑ IGF-1 ↓ Cortisol ↓ BDNF Display time in cognitive tests |
[77] de Oliveira et al. (2020) | Beetroot-based gel | 12.2 ± 0.2 mmol Nitrate, 120 min before test | 1 day | 14 (male) | 29.9 ± 8.5 | Combat sports | Amateur | Forearm muscle isometric strength test + Handgrip isotonic exercise | ↑ Maximal voluntary forearm contraction Muscle O2 saturation Blood volume in forearm Time until fatigue |
Study | Criteria | TOTAL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
[23] Ouergui et al., 2022 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[24] Jodra et al., 2020 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[25] Park et al., 2020 | no | no | no | yes | yes | no | no | n/a | yes | yes | no | 4 |
[26] San Juan et al., 2019 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[27] Rezaei et al.,2019 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[28] Coswig et al., 2018 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[29] Lopes-Silva et al., 2015 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[30] Santos et al., 2014 | no | yes | yes | yes | yes | yes | n/a | yes | yes | yes | yes | 9 |
[31] Sarshin et al., 2021 | yes | yes | no | yes | no | no | no | yes | yes | yes | yes | 7 |
[32] Gough et al., 2019 | no | no | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 7 |
[33] Lopes-Silva et al., 2018 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[34] Siegler et al., 2010 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[35] Alabsi et al., 2022 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 9 |
[36] Kim et al., 2018 | no | no | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 7 |
[37] Donovan et al., 2012 | no | yes | n/a | yes | yes | no | no | yes | yes | yes | yes | 7 |
[38] Manjarrez-Montes de Oca et al., 2013 | yes | yes | n/a | yes | yes | yes | n/a | no | yes | yes | yes | 7 |
[39] Miraftabi et al., 2021 | yes | yes | n/a | yes | yes | yes | n/a | no | yes | yes | yes | 8 |
[40] Antonietto et al., 2021 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 9 |
[41] Tatlici et al.,2019 | yes | yes | n/a | yes | yes | no | no | yes | yes | yes | yes | 7 |
[42] Merino Fernández et al., 2022 | no | yes | n/a | yes | yes | yes | yes | yes | yes | yes | yes | 9 |
[43] Krawczyk et al., 2022 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 9 |
[44] Merino Fernandez et al., 2021 | yes | n/a | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[45] Lopes-Silva et al., 2021 | no | no | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 7 |
[46] Filip-Stachnik et al., 2021 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 9 |
[47] Carmo et al., 2021 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 9 |
[48] Negaresh et al., 2018 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[49] Durkalec-Michalski et al., 2019 | yes | yes | n/a | yes | yes | yes | n/a | no | no | yes | yes | 6 |
[50] Saldanha da Silva et al., 2019 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[51] Saldanha da Silva et al., 2018 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[52] Astley et al., 2017 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[53] Diaz-Lara et al., 2016 | no | yes | n/a | yes | yes | yes | yes | yes | yes | yes | yes | 9 |
[54] Felippe et al.,2016 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[55] Diaz-Lara et al., 2015 | no | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | 10 |
[56] Lopes-Silva et al., 2014 | no | no | n/a | yes | yes | yes | n/a | no | yes | yes | yes | 6 |
[57] Aedma et al.,2013 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[58] Souissi et al., 2012 | yes | n/a | n/a | yes | no | no | no | yes | yes | yes | yes | 5 |
[59] Ragone et al., 2020 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[60] Durkalec-Michalski et al., 2020 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[61] Durkalec-Michalski et al., 2018 | yes | yes | n/a | yes | yes | yes | n/a | no | yes | yes | yes | 7 |
[62] Tobias et al., 2013 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[63] Artioli et al., 2007 | no | no | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 7 |
[64] Aedma et al., 2014 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[65] Timpmann et al., 2012 | no | no | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 7 |
[66] Andrade Kratz et al., 2016 | no | yes | yes | yes | yes | yes | n/a | yes | yes | yes | yes | 9 |
[67] Kern et al., 2011 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[68] Aedma et al., 2015 | no | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[69] Abbasalipuor et al., 2012 | no | yes | n/a | no | no | no | no | yes | yes | yes | yes | 5 |
[70] Tatlici et al., 2021 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 9 |
[71] de Oliveira et al., 2018 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
[72] Yavuz et al.,2014 | no | yes | n/a | n/a | n/a | no | no | yes | yes | yes | yes | 5 |
[73] Liu et al., 2009 | no | yes | n/a | yes | no | no | no | yes | yes | yes | yes | 6 |
[74] McKenna et al., 2017 | no | yes | n/a | yes | no | no | no | yes | yes | yes | yes | 6 |
[75] Azevedo et al., 2019 | no | no | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 7 |
[76] Chycki et al., 2020 | yes | yes | n/a | yes | yes | no | no | yes | yes | yes | yes | 8 |
[77] Vieira de Oliveira et al., 2020 | yes | yes | n/a | yes | yes | yes | n/a | yes | yes | yes | yes | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente-Salar, N.; Fuster-Muñoz, E.; Martínez-Rodríguez, A. Nutritional Ergogenic Aids in Combat Sports: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2588. https://doi.org/10.3390/nu14132588
Vicente-Salar N, Fuster-Muñoz E, Martínez-Rodríguez A. Nutritional Ergogenic Aids in Combat Sports: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(13):2588. https://doi.org/10.3390/nu14132588
Chicago/Turabian StyleVicente-Salar, Néstor, Encarna Fuster-Muñoz, and Alejandro Martínez-Rodríguez. 2022. "Nutritional Ergogenic Aids in Combat Sports: A Systematic Review and Meta-Analysis" Nutrients 14, no. 13: 2588. https://doi.org/10.3390/nu14132588
APA StyleVicente-Salar, N., Fuster-Muñoz, E., & Martínez-Rodríguez, A. (2022). Nutritional Ergogenic Aids in Combat Sports: A Systematic Review and Meta-Analysis. Nutrients, 14(13), 2588. https://doi.org/10.3390/nu14132588