Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete’s Dietary Supplement
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karpecka, E.; Fraczek, B. Macronutrients and Water–Do They Matter in the Context of Cognitive Performance in Athletes? Balt. J. Health Phys. Act. 2022, 12, 11. [Google Scholar] [CrossRef]
- Frączek, B.; Gacek, M.; Pięta, A.; Tyrała, F.; Mazur-Kurach, P.; Karpęcka, E. Dietary Mistakes of Polish Athletes in Relation to the Frequency of Consuming Foods Recommended in the Swiss Food Pyramid for Active People. Rocz. Panstw. Zakl. Hig. 2020, 71, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, B.; Warzecha, M.; Tyrala, F.; Pieta, A. Prevalence of the Use of Effective Ergogenic Aids among Professional Athletes. Rocz. Państw. Zakładu Hig. 2016, 67, 271–278. [Google Scholar]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health Benefits of Dietary Fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Raninen, K.; Lappi, J.; Mykkänen, H.; Poutanen, K. Dietary Fiber Type Reflects Physiological Functionality: Comparison of Grain Fiber, Inulin, and Polydextrose. Nutr. Rev. 2011, 69, 9–21. [Google Scholar] [CrossRef]
- Gulati, A.S.; Dubinsky, M.C. Probiotics in Pediatric Inflammatory Bowel Diseases. Curr. Gastroenterol. Rep. 2009, 11, 238–247. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Haub, M.D. Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Capuano, E. The Behavior of Dietary Fiber in the Gastrointestinal Tract Determines Its Physiological Effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [Green Version]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary Fiber Intervention on Gut Microbiota Composition in Healthy Adults: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef] [Green Version]
- Becker, W. European Nutrition and Health Report 2004. Scand. J. Nutr. 2005, 49, 183. [Google Scholar] [CrossRef]
- Melin, A.; Tornberg, Å.B.; Skouby, S.; Møller, S.S.; Faber, J.; Sundgot-Borgen, J.; Sjödin, A. Low-Energy Density and High Fiber Intake Are Dietary Concerns in Female Endurance Athletes. Scand. J. Med. Sci. Sports 2016, 26, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Vitale, K.; Hueglin, S. Update on Vegetarian and Vegan Athletes: A Review. J. Phys. Fit. Sports Med. 2021, 10, 1–11. [Google Scholar] [CrossRef]
- Wirnitzer, K.; Boldt, P.; Lechleitner, C.; Wirnitzer, G.; Leitzmann, C.; Rosemann, T.; Knechtle, B. Health Status of Female and Male Vegetarian and Vegan Endurance Runners Compared to Omnivores—Results from the NURMI Study (Step 2). Nutrients 2019, 11, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, H.; Cielo, D.P.; Goméz-Corona, C.; Silveira, A.a.S.; Marchesan, T.A.; Galmarini, M.V.; Richards, N.S.P.S. Eating Flowers? Exploring Attitudes and Consumers’ Representation of Edible Flowers. Food Res. Int. Ott. Ont 2017, 100, 227–234. [Google Scholar] [CrossRef]
- Chen, N.-H.; Sherrie, W. Factors Influencing Consumers’ Attitudes towards the Consumption of Edible Flower. Food Qual. Prefer. 2017, 56, 93–100. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Pereira, E.L.; Saraiva, J.A.; Ramalhosa, E. Physicochemical, Antioxidant and Microbial Properties of Crystallized Pansies (Viola × Wittrockiana) during Storage. Food Sci. Technol. Int. 2019, 25, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible Flowers as Sources of Phenolic Compounds with Bioactive Potential. Food Res. Int. Ott. Ont 2018, 105, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Hazli, U.H.A.M.; Abdul-Aziz, A.; Mat-Junit, S.; Chee, C.; Kong, K. Solid-Liquid Extraction of Bioactive Compounds with Antioxidant Potential from Alternanthera Sesillis (Red) and Identification of the Polyphenols Using UHPLC-QqQ-MS/MS. Food Res. Int. 2019, 115, 241–250. [Google Scholar] [CrossRef]
- González-Barrio, R.; Periago, M.J.; Luna-Recio, C.; Garcia-Alonso, F.J.; Navarro-González, I. Chemical Composition of the Edible Flowers, Pansy (Viola Wittrockiana) and Snapdragon (Antirrhinum Majus) as New Sources of Bioactive Compounds. Food Chem. 2018, 252, 373–380. [Google Scholar] [CrossRef]
- Meurer, M.C.; Mees, M.; Mariano, L.N.B.; Boeing, T.; Somensi, L.B.; Mariott, M.; da Silva, R.d.C.M.V.d.A.F.; Dos Santos, A.C.; Longo, B.; Santos França, T.C.; et al. Hydroalcoholic Extract of Tagetes Erecta L. Flowers, Rich in the Carotenoid Lutein, Attenuates Inflammatory Cytokine Secretion and Improves the Oxidative Stress in an Animal Model of Ulcerative Colitis. Nutr. Res. N. Y. N 2019, 66, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, P.; Wojdyło, A. Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers. Antioxidants 2019, 8, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.-F.; Yang, Y.-N.; Feng, Z.-M.; Jiang, J.-S.; Zhang, P.-C. Six New Compounds from the Flowers of Chrysanthemum Morifolium and Their Biological Activities. Bioorganic Chem. 2019, 82, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.; Baskaran, K.; Pupulin, A.; Ruvinov, I.; Zaitoon, O.; Grewal, S.; Scaria, B.; Mehaidli, A.; Vegh, C.; Pandey, S. Hibiscus Flower Extract Selectively Induces Apoptosis in Breast Cancer Cells and Positively Interacts with Common Chemotherapeutics. BMC Complement. Altern. Med. 2019, 19, 98. [Google Scholar] [CrossRef] [Green Version]
- Mlček, J.; Rop, O. Fresh edible flowers of ornamental plants–A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible Flowers: Bioactive Profile and Its Potential to Be Used in Food Development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef]
- Gostin, A.; Waisundara, V. Edible Flowers as Functional Food: A Review on Artichoke (Cynara Cardunculus L.). Trends Food Sci. Technol. 2019, 86, 381–391. [Google Scholar] [CrossRef]
- Baur, F.J.; Ensminger, L.G. The Association of Official Analytical Chemists (AOAC). J. Am. Oil Chem. Soc. 1977, 54, 171–172. [Google Scholar] [CrossRef]
- Barbano, D.M.; Clark, J.L.; Dunham, C.E.; Flemin, R.J. Kjeldahl Method for Determination of Total Nitrogen Content of Milk: Collaborative Study. J. AOAC Int. 1990, 73, 849–859. [Google Scholar] [CrossRef]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef]
- Son, J.; Jang, L.-G.; Kim, B.-Y.; Lee, S.; Park, H. The Effect of Athletes’ Probiotic Intake May Depend on Protein and Dietary Fiber Intake. Nutrients 2020, 12, 2947. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, M.P.; Koido, M.; Kawaguchi, M.; Timm, D.; Ozeki, M.; Yamada, M.; Mitsuya, T.; Okubo, T. Lifestyle Related Changes with Partially Hydrolyzed Guar Gum Dietary Fiber in Healthy Athlete Individuals – A Randomized, Double-Blind, Crossover, Placebo-Controlled Gut Microbiome Clinical Study. J. Funct. Foods 2020, 72, 104067. [Google Scholar] [CrossRef]
- Slavin, J.L.; Jacobs, D.; Marquart, L.; Wiemer, K. The Role of Whole Grains in Disease Prevention. J. Am. Diet. Assoc. 2001, 101, 780–785. [Google Scholar] [CrossRef]
- Streppel, M.T.; Ocké, M.C.; Boshuizen, H.C.; Kok, F.J.; Kromhout, D. Dietary Fiber Intake in Relation to Coronary Heart Disease and All-Cause Mortality over 40 y: The Zutphen Study. Am. J. Clin. Nutr. 2008, 88, 1119–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, M.A.; O’Reilly, E.; Augustsson, K.; Fraser, G.E.; Goldbourt, U.; Heitmann, B.L.; Hallmans, G.; Knekt, P.; Liu, S.; Pietinen, P.; et al. Dietary Fiber and Risk of Coronary Heart Disease: A Pooled Analysis of Cohort Studies. Arch. Intern. Med. 2004, 164, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Griffith, J.A.; Chasan-Taber, L.; Olendzki, B.C.; Jackson, E.; Stanek, E.J.; Li, W.; Pagoto, S.L.; Hafner, A.R.; Ockene, I.S. Association between Dietary Fiber and Serum C-Reactive Protein. Am. J. Clin. Nutr. 2006, 83, 760–766. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, M.; Zhou, L.; Ling, S.; Li, Y.; Kong, B.; Huang, P. Dietary Fiber Intake and Risks of Proximal and Distal Colon Cancers. Medicine (Baltimore) 2018, 97, e11678. [Google Scholar] [CrossRef]
- Jovanovski, E.; Khayyat, R.; Zurbau, A.; Komishon, A.; Mazhar, N.; Sievenpiper, J.L.; Blanco Mejia, S.; Ho, H.V.T.; Li, D.; Jenkins, A.L.; et al. Should Viscous Fiber Supplements Be Considered in Diabetes Control? Results From a Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Care 2019, 42, 755–766. [Google Scholar] [CrossRef]
- Wei, B.; Liu, Y.; Lin, X.; Fang, Y.; Cui, J.; Wan, J. Dietary Fiber Intake and Risk of Metabolic Syndrome: A Meta-Analysis of Observational Studies. Clin. Nutr. 2018, 37, 1935–1942. [Google Scholar] [CrossRef]
- Chen, J.-P.; Chen, G.-C.; Wang, X.-P.; Qin, L.; Bai, Y. Dietary Fiber and Metabolic Syndrome: A Meta-Analysis and Review of Related Mechanisms. Nutrients 2018, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J.; Green, H. Dietary Fibre and Satiety. Nutr. Bull. 2007, 32, 32–42. [Google Scholar] [CrossRef]
- Tucker, L.A.; Thomas, K.S. Increasing Total Fiber Intake Reduces Risk of Weight and Fat Gains in Women. J. Nutr. 2009, 139, 576–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotelo, A.; López-García, S.; Basurto-Peña, F. Content of Nutrient and Antinutrient in Edible Flowers of Wild Plants in Mexico. Plant Foods Hum. Nutr. Dordr. Neth. 2007, 62, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Rachkeeree, A.; Kantadoung, K.; Suksathan, R.; Puangpradab, R.; Page, P.A.; Sommano, S.R. Nutritional Compositions and Phytochemical Properties of the Edible Flowers from Selected Zingiberaceae Found in Thailand. Front. Nutr. 2018, 5, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suksathan, R.; Rachkeeree, A.; Puangpradab, R.; Kantadoung, K.; Sommano, S.R. Phytochemical and Nutritional Compositions and Antioxidants Properties of Wild Edible Flowers as Sources of New Tea Formulations. NFS J. 2021, 24, 15–25. [Google Scholar] [CrossRef]
- Navarro-González, I.; González-Barrio, R.; García-Valverde, V.; Bautista-Ortín, A.B.; Periago, M.J. Nutritional Composition and Antioxidant Capacity in Edible Flowers: Characterisation of Phenolic Compounds by HPLC-DAD-ESI/MSn. Int. J. Mol. Sci. 2014, 16, 805–822. [Google Scholar] [CrossRef] [Green Version]
- De Bona, G.S.; Boschetti, W.; Bortolin, R.C.; Vale, M.G.R.; Moreira, J.C.F.; de Rios, A.O.; Flôres, S.H. Characterization of Dietary Constituents and Antioxidant Capacity of Tropaeolum Pentaphyllum Lam. J. Food Sci. Technol. 2017, 54, 3587–3597. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, X. Freeze-Drying of Proteins. Methods Mol. Biol. Clifton NJ 2021, 2180, 683–702. [Google Scholar] [CrossRef]
Species | Familly | Form | Common Name | Colour of Petals | Flowering Time |
---|---|---|---|---|---|
Magnolia × soulangeana | Magnoliaceae | woody | saucer magnolia | white, rose | April–May |
Sambucus nigra L. | Adoxaceae | woody | elderberry, black elder | white | May–June |
Syringa vulgaris L. (violet) | Oleaceae | woody | lilac, common lilac | violet | May–June |
Syringa vulgaris L. (white) | Oleaceae | woody | lilac, common lilac | white | May–June |
Robinia pseudoacacia | Fabaceae | woody | black locust | white | May–June |
Forsythia × intermedia | Oleaceae | woody | border forsythia | yellow | March–April |
Cichorium intybus L. | Asteraceae | herbaceous | common chicory | blue | May–September |
Bellis perennis | Asteraceae | herbaceous | daisy | white | March–November |
Tussilago farfara L. | Asteraceae | herbaceous | coltsfoot | yellow | March–May |
Calendula officinalis L. | Asteraceae | herbaceous | pot marigold, common marigold, ruddles or Scotch marigold | orange | June–September |
Taraxacum officinale F.H. Wiggers coll. | Asteraceae | herbaceous | dandelion or common dandelion | yellow | April–August |
Centaurea cyanus L. | Asteraceae | herbaceous | cornflower or bachelor’s button | blue | July–August |
TF (Total Fibre) g/100 g | IDF (Insoluble) g/100 g | SDF (Soluble) g/100 g | Protein g/100 g | |
---|---|---|---|---|
Systematic Name | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD |
Magnolia × soulangeana a | 13.22 ± 0.94 g,h,j,l | 8.69 ± 1.71 g,h,j,l | 4.53 ± 0.77 | 21.61 ± 0.04 d,g,h,j,l |
Sambucus nigra L. b | 29.13 ± 1.31 | 23.16 ± 1.88 | 5.97 ± 0.57 c,d,f | 19.70 ± 0.02 h,j,l |
Syringa vulgaris L. (violet) c | 17.21 ± 0.70 h,j,l | 13.96 ± 0.49 g,h,j,l | 3.24 ± 0.21 b,h,l | 15.63 ± 0.12 j,l |
Syringa vulgaris L. (white) d | 25.89 ± 0.75 | 24.54 ± 0.82 | 1.35 ± 0.07 b,h,l | 12.41 ± 0.07 a |
Robinia pseudoacaciae | 28.17 ± 4.20 | 24.32 ± 3.71 | 3.85 ± 0.49 | 17.83 ± 0.01 h,j,l |
Forsythia × intermedia f | 18.47 ± 1.34 h,j,l | 16.02 ± 1.70 h,j,l | 2.45 ± 0.36 b,h,l | 14.51 ± 0.01 |
Cichorium intybus L. g | 34.23 ± 0.04 g | 30.05 ± 0.38 a,c | 4.18 ± 0.42 | 12.45 ± 0.48 a |
Bellis perennis h | 38.25 ± 0.00 a,c,f | 32.12 ± 0.64 a,c,f | 6.13 ± 0.64 c,d,f | 11.10 ± 0.28 a,b,e |
Tussilago farfara L. i | 24.91 ± 0.90 j | 20.82 ± 0.84 j,l | 4.25 ± 0.06 | 14.08 ± 0.21 |
Calendula officinalis L. j | 62.33 ± 9.17 a,c,f,i | 57.54 ± 8.32 a,c,f,i | 4.79 ± 0.86 | 8.70 ± 0.01 a,b,c,e |
Taraxacum officinale F.H. Wiggers coll. k | 26.97 ± 0.86 | 22.87 ± 0.73 | 4.10 ± 0.13 | 13.24 ± 0.30 |
Centaurea cyanus L. l | 53.06 ± 0.62 a,c,f | 45.57 ± 0.77 a,c,f,i | 7.46 ± 0.15 c,d,f | 9.58 ± 0.11 a,b,c,e |
TF (Total Fibre) g/100 g | IDF (Insoluble) g/100 g | SDF (Soluble) g/100 g | Protein g/100 g | |
---|---|---|---|---|
Family | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD |
Oleaceae * | 20.52 ± 3.89 & | 18.18 ± 2.35 & | 4.65 ± 0.79 & | 14.18 ± 1.38 & |
Asteraceae & | 39.97 ± 14.01 * | 34.81 ± 13.35 * | 5.16 ± 1.32 * | 11.53 ± 1.99 * |
TF (Total Fibre) g/100 g | IDF (Insoluble) g/100 g | SDF (Soluble) g/100 g | Protein g/100 g | |
---|---|---|---|---|
Form | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD |
Woody $ | 22.02 ± 6.25 *# | 18.45 ± 6.24 # | 3.57 ± 1.53 # | 16.95 ± 3.17 # |
Herbaceous # | 39.97 ± 14.01 $ | 34.81 ± 13.35 $ | 5.16 ± 1.32 $ | 11.53 ± 1.99 $ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, K.; Koprowska, K.; Gottschling, A.; Janda-Milczarek, K. Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete’s Dietary Supplement. Nutrients 2022, 14, 2470. https://doi.org/10.3390/nu14122470
Jakubczyk K, Koprowska K, Gottschling A, Janda-Milczarek K. Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete’s Dietary Supplement. Nutrients. 2022; 14(12):2470. https://doi.org/10.3390/nu14122470
Chicago/Turabian StyleJakubczyk, Karolina, Klaudia Koprowska, Aleksandra Gottschling, and Katarzyna Janda-Milczarek. 2022. "Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete’s Dietary Supplement" Nutrients 14, no. 12: 2470. https://doi.org/10.3390/nu14122470
APA StyleJakubczyk, K., Koprowska, K., Gottschling, A., & Janda-Milczarek, K. (2022). Edible Flowers as a Source of Dietary Fibre (Total, Insoluble and Soluble) as a Potential Athlete’s Dietary Supplement. Nutrients, 14(12), 2470. https://doi.org/10.3390/nu14122470