Relationship between Dietary Macronutrients Intake and the ATHLOS Healthy Ageing Scale: Results from the Polish Arm of the HAPIEE Study
Abstract
:1. Introduction
2. Materials and Methods
3. Measurements of Healthy Ageing
4. Measurements of Macronutrient Intake
5. Potential Confounders
6. Statistical Analysis
7. Results
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Healthy Ageing. Available online: https://www.euro.who.int/en/health-topics/Life-stages/healthy-ageing/healthy-ageing (accessed on 28 February 2022).
- Population Structure and Ageing. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing (accessed on 28 February 2022).
- Promoting Healthy Ageing. Background Report for the 2019 Japanese G20 Presidency. Available online: https://www.oecd.org/g20/topics/global-health/G20-report-promoting-healthy-ageing.pdf (accessed on 28 February 2022).
- Sanchez-Niubo, A.; Forero, C.G.; Wu, Y.T.; Giné-Vázquez, I.; Prina, M.; De La Fuente, J.; Daskalopoulou, C.; Critselis, E.; De La Torre-Luque, A.; Panagiotakos, D.; et al. ATHLOS Consortium. Development of a common scale for measuring healthy ageing across the world: Results from the ATHLOS consortium. Int. J. Epidemiol. 2021, 50, 880–892. [Google Scholar] [CrossRef] [PubMed]
- Critselis, E.; Panaretos, D.; Sánchez-Niubò, A.; Giné-Vázquez, I.; Ayuso-Mateos, J.L.; Caballero, F.F.; de la Fuente, J.; Haro, J.M.; Panagiotakos, D. Ageing trajectories of health-longitudinal opportunities and synergies (ATHLOS) Healthy Ageing Scale in adults from 16 international cohorts representing 38 countries worldwide. J. Epidemiol. Community Health 2020, 74, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Caballero, F.F.; Soulis, G.; Engchuan, W.; Sánchez-Niubó, A.; Arndt, H.; Ayuso-Mateos, J.L.; Haro, J.M.; Chatterji, S.; Panagiotakos, D.B. Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: The ATHLOS project. Sci. Rep. 2017, 7, 43955. [Google Scholar] [CrossRef] [Green Version]
- Mathers, J.C. Impact of nutrition on the ageing process. Br. J. Nutr. 2015, 113 (Suppl. S1), S18–S22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, D.; Rasane, P.; Singh, J.; Kaur, S.; Kumar, V.; Mahato, D.K.; Dey, A.; Dhawan, K.; Kumar, S. Nutritional Interventions for Elderly and Considerations for the Development of Geriatric Foods. Curr. Aging Sci. 2019, 12, 15–27. [Google Scholar] [CrossRef]
- Granic, A.; Mendonça, N.; Hill, T.R.; Jagger, C.; Stevenson, E.J.; Mathers, J.C.; Sayer, A.A. Nutrition in the Very Old. Nutrients 2018, 10, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets. Available online: https://www.fao.org/documents/card/en/c/ca9692en (accessed on 28 February 2022).
- Krzymińska-Siemaszko, R.; Mossakowska, M.; Skalska, A.; Klich-Rączka, A.; Tobis, S.; Szybalska, A.; Cylkowska-Nowak, M.; Olszanecka-Glinianowicz, M.; Chudek, J.; Wieczorowska-Tobis, K. Social and economic correlates of malnutrition in Polish elderly population: The results of PolSenior study. J. Nutr. Health Aging 2015, 19, 397–402. [Google Scholar] [CrossRef]
- Melzer, T.M.; Manosso, L.M.; Yau, S.Y.; Gil-Mohapel, J.; Brocardo, P.S. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. Int. J. Mol. Sci. 2021, 22, 5026. [Google Scholar] [CrossRef]
- Coelho-Junior, H.J.; Marzetti, E.; Picca, A.; Cesari, M.; Uchida, M.C.; Calvani, R. Protein Intake and Frailty: A Matter of Quantity, Quality, and Timing. Nutrients 2020, 12, 2915. [Google Scholar] [CrossRef]
- Schoufour, J.D.; Franco, O.H.; Kiefte-de Jong, J.C.; Trajanoska, K.; Stricker, B.; Brusselle, G.; Rivadeneira, F.; Lahousse, L.; Voortman, T. The association between dietary protein intake, energy intake and physical frailty: Results from the Rotterdam Study. Br. J. Nutr. 2019, 121, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, N.; Granic, A.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Kingston, A.; Jagger, C. Protein Intake and Disability Trajectories in Very Old Adults: The Newcastle 85+ Study. J. Am. Geriatr. Soc. 2019, 67, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Tachtsis, B.; Camera, D.; Lacham-Kaplan, O. Potential Roles of n-3 PUFAs during Skeletal Muscle Growth and Regeneration. Nutrients 2018, 10, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudart, C.; Locquet, M.; Touvier, M.; Reginster, J.Y.; Bruyère, O. Association between dietary nutrient intake and sarcopenia in the SarcoPhAge study. Aging Clin. Exp. Res. 2019, 31, 815–824. [Google Scholar] [CrossRef]
- Moradell, A.; Fernández-García, Á.I.; Navarrete-Villanueva, D.; Sagarra-Romero, L.; Gesteiro, E.; Pérez-Gómez, J.; Rodríguez-Gómez, I.; Ara, I.; Casajús, J.A.; Vicente-Rodríguez, G.; et al. Functional Frailty, Dietary Intake, and Risk of Malnutrition. Are Nutrients Involved in Muscle Synthesis the Key for Frailty Prevention? Nutrients 2021, 13, 1231. [Google Scholar] [CrossRef]
- Das, A.; Cumming, R.G.; Naganathan, V.; Blyth, F.; Le Couteur, D.G.; Handelsman, D.J.; Waite, L.M.; Ribeiro, R.V.; Simpson, S.J.; Hirani, V. Associations between nutrient intakes and dietary patterns with different sarcopenia definitions in older Australian men: The concord health and ageing in men project. Public Health Nutr. 2021, 24, 4490–4505. [Google Scholar] [CrossRef]
- Beasley, J.M.; LaCroix, A.Z.; Neuhouser, M.L.; Huang, Y.; Tinker, L.; Woods, N.; Michael, Y.; Curb, J.D.; Prentice, R.L. Protein intake and incident frailty in the Women’s Health Initiative observational study. J. Am. Geriatr. Soc. 2010, 58, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Houston, D.K.; Tooze, J.A.; Garcia, K.; Visser, M.; Rubin, S.; Harris, T.B.; Newman, A.B.; Kritchevsky, S.B. Health ABC Study. Protein Intake and Mobility Limitation in Community-Dwelling Older Adults: The Health ABC Study. J. Am. Geriatr. Soc. 2017, 65, 1705–1711. [Google Scholar] [CrossRef]
- Foscolou, A.; Magriplis, E.; Tyrovolas, S.; Chrysohoou, C.; Sidossis, L.; Matalas, A.L.; Rallidis, L.; Panagiotakos, D. The association of protein and carbohydrate intake with successful aging: A combined analysis of two epidemiological studies. Eur. J. Nutr. 2019, 58, 807–817. [Google Scholar] [CrossRef]
- Shikany, J.M.; Barrett-Connor, E.; Ensrud, K.E.; Cawthon, P.M.; Lewis, C.E.; Dam, T.T.; Shannon, J.; Redden, D.T.; Osteoporotic Fractures in Men (MrOS) Research Group. Macronutrients, diet quality, and frailty in older men. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 695–701. [Google Scholar] [CrossRef]
- Verspoor, E.; Voortman, T.; van Rooij, F.J.A.; Rivadeneira, F.; Franco, O.H.; Kiefte-de Jong, J.C.; Schoufour, J.D. Macronutrient intake and frailty: The Rotterdam Study. Eur. J. Nutr. 2020, 59, 2919–2928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopinath, B.; Flood, V.M.; Kifley, A.; Louie, J.C.; Mitchell, P. Association Between Carbohydrate Nutrition and Successful Aging Over 10 Years. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1335–1340. [Google Scholar] [CrossRef] [PubMed]
- Kollia, N.; Caballero, F.F.; Sánchez-Niubó, A.; Tyrovolas, S.; Ayuso-Mateos, J.L.; Haro, J.M.; Chatterji, S.; Panagiotakos, D.B. Social determinants, health status and 10-year mortality among 10,906 older adults from the English longitudinal study of aging: The ATHLOS project. BMC Public Health 2018, 18, 1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zatonski, W.A.; Willett, W. Changes in dietary fat and declining coronary heart disease in Poland: Population based study. BMJ 2005, 331, 187–188. [Google Scholar] [CrossRef] [Green Version]
- Boylan, S.; Welch, A.; Pikhart, H.; Malyutina, S.; Pajak, A.; Kubinova, R.; Bragina, O.; Simonova, G.; Stepaniak, U.; Gilis-Januszewska, A.; et al. Dietary habits in three Central and Eastern European countries: The HAPIEE study. BMC Public Health 2009, 9, 439. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Szcześniewska, D.; Szostak-Węgierek, D.; Kwaśniewska, M.; Pająk, A.; Stepaniak, U.; Kozakiewicz, K.; Tykarski, A.; Zdrojewski, T.; Zujko, M.E.; et al. Are dietary habits of the Polish population consistent with the recommendations for prevention of cardiovascular disease?—WOBASZ II project. Kardiol. Pol. 2016, 74, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Stefler, D.; Brett, D.; Sarkadi-Nagy, E.; Kopczynska, E.; Detchev, S.; Bati, A.; Scrob, M.; Koenker, D.; Aleksov, B.; Douarin, E.; et al. Traditional Eastern European diet and mortality: Prospective evidence from the HAPIEE study. Eur. J. Nutr. 2021, 60, 1091–1100. [Google Scholar] [CrossRef]
- Stepaniak, U.; Micek, A.; Waśkiewicz, A.; Bielecki, W.; Drygas, W.; Janion, M.; Kozakiewicz, K.; Niklas, A.; Puch-Walczak, A.; Pająk, A. Prevalence of general and abdominal obesity and overweight among adults in Poland. Results of the WOBASZ II study (2013–2014) and comparison with the WOBASZ study (2003–2005). Pol. Arch. Med. Wewn. 2016, 126, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Peasey, A.; Bobak, M.; Kubinowa, R.; Malyutina, S.; Pajak, A.; Tamosiunas, A.; Pikhart, H.; Nicholson, A.; Marmot, M. Determinants of cardiovascular disease and other non-communicable diseases in Central and Eastern Europe: Rationale and design of the HAPIEE study. BMC Public Health 2006, 6, 255. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65 (Suppl. S4), 1220S–1228S; discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Wolfe, R.R. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br. J. Nutr. 2012, 108 (S2), S88–S93. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S. Three-generation Study of Women on Diets and Health Study Group. High protein intake is associated with low prevalence of frailty among old Japanese women: A multicenter cross-sectional study. Nutr. J. 2013, 12, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krok-Schoen, J.L.; Archdeacon Price, A.; Luo, M.; Kelly, O.J.; Taylor, C.A. Low Dietary Protein Intakes and Associated Dietary Patterns and Functional Limitations in an Aging Population: A NHANES analysis. J. Nutr. Health Aging 2019, 23, 338–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janowska-Miasik, E.; Waśkiewicz, A.; Witkowska, A.M.; Drygas, W.; Markhus, M.W.; Zujko, M.E.; Kjellevold, M. Diet quality in the population of Norway and Poland: Differences in the availability and consumption of food considering national nutrition guidelines and food market. BMC Public Health 2021, 21, 319. [Google Scholar] [CrossRef]
- Różańska, D.; Waśkiewicz, A.; Regulska-Ilow, B.; Kwaśniewska, M.; Pająk, A.; Stepaniak, U.; Kozakiewicz, K.; Tykarski, A.; Zdrojewski, T.R.; Drygas, W. Relationship between the dietary glycemic load of the adult Polish population and socio-demographic and lifestyle factors—Results of the WOBASZ II study. Adv. Clin. Exp. Med. 2019, 28, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Chong, C.P.; Shahar, S.; Haron, H.; Din, N.C. Habitual sugar intake and cognitive impairment among multi-ethnic Malaysian older adults. Clin. Interv. Aging 2019, 14, 1331–1342. [Google Scholar] [CrossRef] [Green Version]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, K.; Shen, C.; Shiraishi, I.; Inamura, N.; Hisatsune, T. Consumption of Oleic Acid on the Preservation of Cognitive Functions in Japanese Elderly Individuals. Nutrients 2021, 13, 284. [Google Scholar] [CrossRef]
- Sandoval-Insausti, H.; Pérez-Tasigchana, R.F.; López-García, E.; García-Esquinas, E.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Macronutrients Intake and Incident Frailty in Older Adults: A Prospective Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1329–1334. [Google Scholar] [CrossRef]
- Soltani, S.; Jayedi, A.; Shab-Bidar, S.; Becerra-Tomás, N.; Salas-Salvadó, J. Adherence to the Mediterranean Diet in Relation to All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10, 1029–1039. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Sun, D. Adherence to Mediterranean diet and risk of developing cognitive disorders: An updated systematic review and meta-analysis of prospective cohort studies. Sci. Rep. 2017, 7, 41317. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Tintle, N.L.; Imamura, F.; Qian, F.; Korat, A.V.A.; Marklund, M.; Djoussé, L.; Bassett, J.K.; Carmichael, P.H.; Chen, Y.Y.; et al. Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nat. Commun. 2021, 12, 2329. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, F.; Carney, S.; Kennedy, J.; Hayes, H.; Pender, N.; Boland, F.; Stanton, A. Associations and effects of omega-3 polyunsaturated fatty acids on cognitive function and mood in healthy adults: A protocol for a systematic review of observational and interventional studies. BMJ Open 2019, 9, e027167. [Google Scholar] [CrossRef] [Green Version]
- Martí Del Moral, A.; Fortique, F. Omega-3 fatty acids and cognitive decline: A systematic review. Nutr. Hosp. 2019, 36, 939–949. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.H.; Chiu, W.C.; Hsu, Y.P.; Lo, Y.L.; Wang, Y.H. Effects of Omega-3 Fatty Acids on Muscle Mass, Muscle Strength and Muscle Performance among the Elderly: A Meta-Analysis. Nutrients 2020, 12, 3739. [Google Scholar] [CrossRef]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A.; Hertfordshire Cohort Study Group. Diet and its relationship with grip strength in community-dwelling older men and women: The Hertfordshire cohort study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef]
- León-Muñoz, L.M.; Guallar-Castillón, P.; López-García, E.; Rodríguez-Artalejo, F. Mediterranean diet and risk of frailty in community-dwelling older adults. J. Am. Med. Dir. Assoc. 2014, 15, 899–903. [Google Scholar] [CrossRef]
- Tomata, Y.; Wang, Y.; Hägg, S.; Jylhävä, J. Fatty Acids and Frailty: A Mendelian Randomization Study. Nutrients 2021, 13, 3539. [Google Scholar] [CrossRef]
- Abdelhamid, A.; Hooper, L.; Sivakaran, R.; Hayhoe, R.P.G.; Welch, A.; PUFAH Group. The Relationship Between Omega-3, Omega-6 and Total Polyunsaturated Fat and Musculoskeletal Health and Functional Status in Adults: A Systematic Review and Meta-analysis of RCTs. Calcif. Tissue Int. 2019, 105, 353–372. [Google Scholar] [CrossRef] [Green Version]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Men n = 4820 | Women n = 5086 | p * |
---|---|---|---|
Age [years], mean (SD) | 57.9 (6.95) | 57.4 (6.98) | <0.001 |
the ATHLOS Healthy Ageing Scale, mean (SD) | 51.3 (8.90) | 47.5 (8.98) | <0.001 |
Education (%) | <0.001 | ||
middle or lower | 69.8 | 72.9 | |
university | 30.2 | 27.1 | |
Marital status (%) | <0.001 | ||
single, widowed, divorced | 13.3 | 33.1 | |
married, cohabited | 86.7 | 66.9 | |
Smoking status (%) | <0.001 | ||
current smoker | 36.0 | 28.7 | |
ex-smoker | 36.3 | 20.9 | |
Non-smoker | 27.7 | 50.4 | |
Physical activity groups (%) | 0.03 | ||
0 (min/week) | 28.9 | 30.4 | |
1–149 (min/week) | 13.7 | 12.0 | |
>150 (min/week) | 57.4 | 57.5 | |
History of CVD (%) | <0.001 | ||
no | 89.7 | 96.1 | |
yes | 10.3 | 3.9 | |
BMI [kg/m2], mean (SD) | 28.0 (4.04) | 28.3 (5.07) | <0.001 |
Energy [kcal], mean (SD) | 2255.5 (680.69) | 2043.2 (612.76) | <0.001 |
Protein [g], mean (SD) | 94.6 (13.39) | 92.6 (13.81) | <0.001 |
Carbohydrates [g], mean (SD) | 239.4 (38.90) | 255.2 (38.61) | <0.001 |
Fiber [g], mean (SD) | 17.6 (4.84) | 19.3 (5.55) | <0.001 |
Total fat [g], mean (SD) | 76.5 (14.26) | 72.7 (14.01) | <0.001 |
SFA [g], mean (SD) | 33.8 (6.96) | 32.8 (6.92) | <0.001 |
MUFA [g], mean (SD) | 28.6 (6.46) | 26.2 (6.14) | <0.001 |
PUFA [g], mean (SD) | 11.6 (2.78) | 11.3 (2.88) | <0.001 |
Omega-6 PUFA [g], mean (SD) | 4.3 (2.01) | 4.0 (1.95) | <0.001 |
Omega-3 PUFA [g], mean (SD) | 0.8 (0.42) | 0.8 (0.40) | <0.001 |
Trans fatty acids [g], mean (SD) | 2.5 (0.86) | 2.4 (0.78) | <0.001 |
Macronutrients | Men | Women | ||
---|---|---|---|---|
r | p | r | p | |
Protein | −0.007 | 0.643 | 0.044 | 0.002 |
Carbohydrates | −0.042 | 0.003 | −0.012 | 0.409 |
Fiber | −0.024 | 0.092 | 0.009 | 0.511 |
Total fat | 0.046 | 0.001 | 0.042 | 0.003 |
SFA | 0.042 | 0.004 | 0.022 | 0.117 |
MUFA | 0.039 | 0.007 | 0.038 | 0.007 |
PUFA | 0.048 | 0.001 | 0.072 | <0.001 |
Omega-6 PUFA | −0.008 | 0.601 | 0.024 | 0.091 |
Omega-3 PUFA | 0.012 | 0.385 | 0.048 | 0.001 |
Trans fatty acids | −0.029 | 0.041 | −0.008 | 0.577 |
Macronutrients | Men | Women | ||||
---|---|---|---|---|---|---|
B * | 95% CI * | p | B * | 95% CI * | p | |
Protein | ||||||
Model 1 | 0.002 | −0.025; 0.029 | 0.886 | 0.045 | 0.019; 0.072 | <0.001 |
Model 2 | 0.010 | −0.017; 0.037 | 0.494 | 0.038 | 0.011; 0.065 | 0.005 |
Model 3 | 0.030 | 0.001; 0.059 | 0.040 | 0.056 | 0.027; 0.085 | <0.001 |
Carbohydrates | ||||||
Model 1 | −0.005 | −0.033; 0.023 | 0.735 | 0.012 | −0.014; 0.039 | 0.360 |
Model 2 | −0.014 | −0.041; 0.013 | 0.333 | −0.017 | −0.044; 0.010 | 0.212 |
Model 3 | −0.014 | −0.043; 0.015 | 0.338 | −0.030 | −0.059; −0.001 | 0.046 |
Fiber | ||||||
Model 1 | 0.015 | −0.012; 0.043 | 0.278 | 0.024 | −0.003; 0.051 | 0.076 |
Model 2 | 0.005 | −0.023; 0.033 | 0.731 | 0.004 | −0.024; 0.031 | 0.799 |
Model 3 | 0.024 | −0.006; 0.053 | 0.115 | 0.009 | −0.020; 0.037 | 0.556 |
Total fat | ||||||
Model 1 | 0.015 | −0.012; 0.043 | 0.280 | 0.011 | −0.016; 0.038 | 0.430 |
Model 2 | 0.051 | 0.024; 0.078 | <0.001 | 0.021 | −0.006; 0.048 | 0.135 |
Model 3 | 0.042 | 0.013; 0.071 | 0.005 | 0.027 | −0.002; 0.056 | 0.065 |
SFA | ||||||
Model 1 | 0.016 | −0.012; 0.043 | 0.260 | −0.001 | −0.027; 0.026 | 0.960 |
Model 2 | 0.045 | 0.018; 0.072 | 0.001 | 0.003 | −0.024; 0.030 | 0.823 |
Model 3 | 0.027 | −0.002; 0.056 | 0.069 | −0.002 | −0.031; 0.027 | 0.896 |
MUFA | ||||||
Model 1 | 0.001 | −0.022; 0.034 | 0.680 | 0.003 | −0.024; 0.030 | 0.081 |
Model 2 | 0.047 | 0.020; 0.074 | 0.001 | 0.023 | −0.004; 0.050 | 0.096 |
Model 3 | 0.042 | 0.013; 0.071 | 0.005 | 0.035 | 0.006; 0.064 | 0.018 |
PUFA | ||||||
Model 1 | 0.034 | 0.007; 0.062 | 0.020 | 0.051 | 0.024; 0.077 | <0.001 |
Model 2 | 0.042 | 0.015; 0.069 | 0.002 | 0.047 | 0.020; 0.074 | 0.001 |
Model 3 | 0.053 | 0.024; 0.082 | <0.001 | 0.063 | 0.034; 0.092 | <0.001 |
Omega-6 PUFA | ||||||
Model 1 | −0.024 | −0.052; 0.003 | 0.080 | 0.013 | −0.013; 0.040 | 0.330 |
Model 2 | −0.008 | −0.035; 0.019 | 0.555 | 0.021 | −0.006; 0.048 | 0.127 |
Model 3 | −0.005 | −0.034; 0.024 | 0.718 | 0.023 | −0.005; 0.051 | 0.119 |
Omega-3 PUFA | ||||||
Model 1 | 0.006 | −0.022; 0.033 | 0.680 | 0.044 | 0.017; 0.071 | 0.001 |
Model 2 | 0.015 | −0.012; 0.042 | 0.274 | 0.041 | 0.014; 0.068 | 0.002 |
Model 3 | 0.031 | 0.002; 0.060 | 0.035 | 0.054 | 0.026; 0.082 | <0.001 |
Trans fatty acids | ||||||
Model 1 | −0.035 | −0.063; −0.008 | 0.010 | −0.017 | −0.044; 0.009 | 0.210 |
Model 2 | −0.015 | −0.042; 0.012 | 0.282 | −0.014 | −0.041; 0.013 | 0.301 |
Model 3 | −0.012 | −0.041; 0.017 | 0.393 | −0.005 | −0.033; 0.023 | 0.736 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepaniak, U.; Polak, M.; Stefler, D.; Kozela, M.; Bobak, M.; Sanchez-Niubo, A.; Ayuso-Mateos, J.L.; Haro, J.M.; Pająk, A. Relationship between Dietary Macronutrients Intake and the ATHLOS Healthy Ageing Scale: Results from the Polish Arm of the HAPIEE Study. Nutrients 2022, 14, 2454. https://doi.org/10.3390/nu14122454
Stepaniak U, Polak M, Stefler D, Kozela M, Bobak M, Sanchez-Niubo A, Ayuso-Mateos JL, Haro JM, Pająk A. Relationship between Dietary Macronutrients Intake and the ATHLOS Healthy Ageing Scale: Results from the Polish Arm of the HAPIEE Study. Nutrients. 2022; 14(12):2454. https://doi.org/10.3390/nu14122454
Chicago/Turabian StyleStepaniak, Urszula, Maciej Polak, Denes Stefler, Magdalena Kozela, Martin Bobak, Albert Sanchez-Niubo, José Luis Ayuso-Mateos, Josep Maria Haro, and Andrzej Pająk. 2022. "Relationship between Dietary Macronutrients Intake and the ATHLOS Healthy Ageing Scale: Results from the Polish Arm of the HAPIEE Study" Nutrients 14, no. 12: 2454. https://doi.org/10.3390/nu14122454
APA StyleStepaniak, U., Polak, M., Stefler, D., Kozela, M., Bobak, M., Sanchez-Niubo, A., Ayuso-Mateos, J. L., Haro, J. M., & Pająk, A. (2022). Relationship between Dietary Macronutrients Intake and the ATHLOS Healthy Ageing Scale: Results from the Polish Arm of the HAPIEE Study. Nutrients, 14(12), 2454. https://doi.org/10.3390/nu14122454