The Influence of Intensive Nutritional Education on the Iron Status in Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Statistical Analyses
2.3. Ethical Consideration
2.4. Blood Collection
2.5. Hematological and Biochemical Measurements
2.6. Dietary Intake
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cerami, C. Iron nutriture of the fetus, neonate, infant, and child. Ann. Nutr. Metab. 2017, 71, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Koleini, N.; Shapiro, J.S.; Geier, J.; Ardehali, H. Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J. Clin. Investig. 2021, 131, e148671. [Google Scholar] [CrossRef] [PubMed]
- Means, R.T. Iron deficiency and iron deficiency anemia: Implications and impact in pregnancy, fetal development, and early childhood parameters. Nutrients 2020, 12, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassebaum, N.J.; Jasrasaria, R.; Naghavi, M.; Wulf, S.K.; Johns, N.; Lozano, R.; Regan, M.; Weatherall, D.; Chou, D.P.; Eisele, T.P.; et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014, 123, 615–624. [Google Scholar] [CrossRef]
- Burden, M.J.; Westerlund, A.J.; Armony-Sivan, R.; Nelson, C.A.; Jacobson, S.W.; Lozoff, B.; Angelilli, M.L.; Jacobson, J.L. An event-related potential study of attention and recognition memory in infants with iron-deficiency anemia. Pediatricser 2007, 120, e336–e345. [Google Scholar] [CrossRef] [Green Version]
- Algarin, C.; Karunakaran, K.D.; Reyes, S.; Morales, C.; Lozoff, B.; Peirano, P.; Biswal, B. Differences on brain connectivity in adulthood are present in subjects with iron deficiency anemia in infancy. Front. Aging Neurosci. 2017, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Tseng, P.T.; Cheng, Y.S.; Yen, C.F.; Chen, Y.W.; Stubbs, B.; Whiteley, P.; Carvalho, A.F.; Li, D.J.; Chen, T.Y.; Yang, W.C.; et al. Peripheral iron levels in children with attention-deficit hyperactivity disorder: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 788. [Google Scholar] [CrossRef]
- Kordas, K. Iron, lead, and children’s behavior and cognition. Annu. Rev. Nutr. 2010, 30, 123–148. [Google Scholar] [CrossRef]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Lozoff, B.; Clark, K.M.; Jing, Y.; Armony-Sivan, R.; Angelilli, M.L.; Jacobson, S.W. Dose-response relationships between iron deficiency with or without anemia and infant socialemotional behavior. J. Pediatr. 2008, 152, 696–702. [Google Scholar] [CrossRef] [Green Version]
- Algarín, C.; Nelson, C.A.; Peirano, P.; Westerlund, A.; Reyes, S.; Lozoff, B. Iron-deficiency anemia in infancy and poorer cognitive inhibitory control at age 10 years. Dev. Med. Child Neurol. 2013, 55, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Pediatrics Collaboration; Kyu, H.H.; Pinho, C.; Wagner, J.A.; Brown, J.C.; Bertozzi-Villa, A.; Coffeng, L.E.; Dandona, L.; Erskine, H.E.; Ferrari, A.J.; et al. Global and national burden of diseases and injuries among children and adolescents between 1990 and 2013: Findings from the Global Burden of Disease 2013 Study. JAMA Pediatr. 2016, 170, 267–287. [Google Scholar] [PubMed] [Green Version]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human breast milk: A review on its composition and bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef] [PubMed]
- McCann, S.; Perapoch Amadó, M.; Moore, S.E. The role of iron in brain development: A systematic review. Nutrients 2020, 12, 2001. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, G.; Girish, M. Iron deficiency anemia in children. Indian J. Pediatr. 2015, 82, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Cacoub, P.; Macdougall, I.C.; Peyrin-Biroulet, L. Iron deficiency anaemia. Lancet 2016, 387, 907–916. [Google Scholar] [CrossRef]
- East, P.; Doom, J.R.; Blanco, E.; Burrows, R.; Lozoff, B.; Gahagan, S. Iron deficiency in infancy and neurocognitive and educational outcomes in young adulthood. Dev. Psychol. 2021, 57, 962–975. [Google Scholar] [CrossRef]
- van der Merwe, L.F.; Eussen, S.R. Iron status of young children in Europe. Am. J. Clin. Nutr. 2017, 106, 1663–1671. [Google Scholar] [CrossRef]
- Ong, T.P.; Guest, P.C. Nutritional programming effects on development of metabolic disorders in later life. Methods Mol. Biol. 2018, 1735, 3–17. [Google Scholar]
- Langley-Evans, S.C. Nutritional programming of disease: Unravelling the mechanism. J. Anat. 2009, 215, 36–51. [Google Scholar] [CrossRef]
- Langley-Evans, S.C. Nutrition in early life and the programming of adult disease: A review. J. Hum. Nutr. Diet. 2015, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Plagemann, A. Perinatal nutrition and hormone-dependent programming of food intake. Horm. Res. 2006, 65, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Baird, J.; Fisher, D.; Lucas, P.; Kleijnen, J.; Roberts, H.; Law, C. Being big or growing fast: Systematic review of size and growth in infancy and later obesity. BMJ 2005, 331, 929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, D.J.; Eriksson, J.G.; Forsen, T.; Osmond, C. Fetal origins of adult disease: Strength effects and biological basis. Int. J. Epidemiol. 2002, 31, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Barker, D.J. The developmental origins of chronic adult disease. Acta Paediatr. Suppl. 2004, 93, 26–33. [Google Scholar] [CrossRef]
- Williams, T.C.; Drake, A.J. What a general paediatrician needs to know about early life programming. Arch. Dis. Child. 2015, 100, 1058–1063. [Google Scholar] [CrossRef]
- Weker, H.; Barańska, M.; Riahi, A.; Strucińska, M.; Więch, M.; Rowicka, G.; Dyląg, H.; Klemarczyk, W.; Bzikowska, A.; Socha, P. Nutrition of infants and young children in Poland—Pitnuts 2016. Dev. Period Med. 2017, 21, 13–28. [Google Scholar]
- Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Fidler Mis, N.; Iva, H.; Jessie, M.H.; Flavia, I.; Lapillonne, A.; et al. Complementary feeding: A position paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 119–132. [Google Scholar] [CrossRef]
- Szajewska, H.; Socha, P.; Horvath, A.; Rybak, A.; Zalewski, B.M.; Nehring-Gugulska, M.; Gajewska, D.; Helwich, E. Nutrition of healthy term infants. Recommendations of the Polish Society for Paediatrics Gastroenterology, Hepatology and Nutrition. Stand. Med. Pediatr. 2021, 18, 7–24. [Google Scholar]
- The WHO Child Growth Standards. Available online: https://www.who.int/tools/child-growth-standards/standards (accessed on 19 February 2021).
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy żywienia dla Populacji Polski Nutrition Standards for the Polish Population; Narodowy Instytut Zdrowia Publicznego–Państwowy Zakład Higieny: Warsaw, Poland, 2020.
- Jacob, E.A. Hematological differences in newborn and aging: A review study. Hematol. Transfus. Int. J. 2016, 3, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Wharf, S.G.; Fox, T.E.; Fairweather-Tait, S.J.; Cook, J.D. Factors affecting iron stores in infants 4–18 months of age. Eur. J. Clin. Nutr. 1997, 51, 504–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pita-Rodríguez, G.M.; Chávez-Chong, C.; Lambert-Lamazares, B.; Montero-Díaz, M.; Selgas-Lizano, R.; Basabe-Tuero, B.; Alfonso-Sagué, K.; Díaz-Sánchez, M.E. Influence of inflammation on assessing iron-deficiency anemia in Cuban preschool shildren. MEDICC Rev. 2021, 23, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Thane, C.W.; Walmsley, C.M.; Bates, C.J.; Prentice, A.; Cole, T.J. Risk factors for poor iron status in British toddlers: Further analysis of data from the National Diet and Nutrition Survey of children aged 1.5–4.5 years. Public Health Nutr. 2000, 3, 433–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotta, R.M.M.; Oliveira Fde, C.; Magalhães, K.A.; Ribeiro, A.Q.; Sant’Ana, L.F.; Priore, S.E.; do Carmo Castro Franceschini, S. Social and biological determinants of iron deficiency anemia. Cad Saude Publica. 2011, 27, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Uijterschout, L.; Vloemans, J.; Vos, R.; Teunisse, P.P.; Hudig, C.; Bubbers, S.; Veldhorst, M.; de Leeuw, T.; van Goudoever, J.B.; Brus, F. Prevalence and risk factors of iron deficiency in healthy young children in the southwestern Netherlands. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 193–198. [Google Scholar] [CrossRef]
- Mantadakis, E.; Chatzimichael, E.; Zikidou, P. Iron deficiency anemia in children residing in high and low-income countries: Risk factors, prevention, diagnosis and therapy. Mediterr. J. Hematol. Infect Dis. 2020, 12, e2020041. [Google Scholar] [CrossRef]
- Vikram, K.; Vanneman, R. Maternal education and the multidimensionality of child health outcomes in India. J. Biosoc. Sci. 2020, 52, 57–77. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Ahmed, T.; Black, R.E.; Cousens, S.; Dewey, K.; Giugliani, E.; Haider, B.A.; Kirkwood, B.; Morris, S.S.; Sachdev, H.P.S.; et al. Maternal and Child Undernutrition Study Group. What works? Interventions for maternal and child undernutrition and survival. Lancet 2008, 371, 417–440. [Google Scholar] [CrossRef]
- Stoltzfus, R.J. Iron interventions for women and children in low-income countries. J. Nutr. 2011, 141, 756–762. [Google Scholar] [CrossRef] [Green Version]
- Bayoumi, I.; Parkin, P.C.; Birken, C.S.; Maguire, J.L.; Borkhoff, C.M.; TARGet Kids! Collaboration. Association of family income and risk of food insecurity with iron status in young children. JAMA Netw Open. 2020, 3, e208603. [Google Scholar] [CrossRef]
- Ahmad, A.; Madanijah, S.; Dwiriani, C.M.; Kolopaking, R. Effect of nutrition education and multi-nutrient biscuit interventions on nutritional and iron status: A cluster randomized control trial on undernourished children aged 6–23 months in Aceh, Indonesia. J. Nutr. Sci. Vitaminol. 2020, 66, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, J.; Barth-Jaeggi, T. Iron interventions in children from low-income and middle-income populations: Benefits and risks. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Jonker, F.A.M.; Te Poel, E.; Bates, I.; Boele van Hensbroek, M. Anaemia, iron deficiency and susceptibility to infection in children in sub-Saharan Africa, guideline dilemmas. Br. J. Haematol. 2017, 177, 878–883. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.J.; Lee, H.J.; Jang, H.B.; Park, J.Y.; Kang, J.H.; Park, K.H.; Song, J. Effects of maternal education on diet, anemia, and iron deficiency in Korean school-aged children. BMC Public Health 2011, 11, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshnevisan, F.; Kimiagar, M.; Kalantaree, N.; Valaee, N.; Shaheedee, N. Effect of nutrition education and diet modification in iron depleted preschool children in nurseries in Tehran: A pilot study. Int. J. Vitam. Nutr. Res. 2004, 74, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, M.; Hernell, O. Iron-deficiency anaemia during the first two years of life. Food Nutr. Res. 2002, 46, 20–30. [Google Scholar] [CrossRef]
- Liappis, N.; Schlebusch, H. Referenzwerte der Ferritin-Konzentration im Serum von Kindern Reference values of the ferritin concentration in the serum in children. Klin. Padiatr. 1990, 202, 99–102. [Google Scholar] [CrossRef]
- Al-Suhiemat, A.A.; Shudifat, R.M.; Obeidat, H. Maternal level of education and nutritional practices regarding iron deficiency anemia among preschoolers in Jordan. J. Pediatr. Nurs. 2020, 55, 313–319. [Google Scholar] [CrossRef]
- da Silva Lopes, K.; Yamaji, N.; Rahman, M.O.; Suto, M.; Takemoto, Y.; Garcia-Casal, M.N.; Ota, E. Nutrition-specific interventions for preventing and controlling anaemia throughout the life cycle: An overview of systematic reviews. Cochrane Database Syst. Rev. 2021, 9, CD013092. [Google Scholar] [CrossRef]
- Eussen, S.; Alles, M.; Uijterschout, L.; Brus, F.; van der Horst-Graat, J. Iron intake and status of children aged 6–36 months in Europe: A systematic review. Ann. Nutr. Metab. 2015, 66, 80–92. [Google Scholar] [CrossRef]
Parameters | Parents GR 1 | Parents GR 2 | p |
---|---|---|---|
Median (1st–3rd Quartile) | |||
Age (years) 1 | 30 (28–34) | 30 (28–34.5) | ns |
Place of residence 1 | ns | ||
Village (from the city agglomeration) | 63% | 58% | |
A city with fewer than 500,000 residents | 26% | 30% | |
A city with more than 500,000 residents | 11% | 12% | |
Education 1 | ns | ||
Primary | 0% | 3% | |
Secondary | 25% | 20% | |
Higher | 75% | 77% |
Parameters | GR 1 (n = 80) | GR 2 (n = 80) | p |
---|---|---|---|
Median (1st–3rd Quartile) | |||
Birth weight (g) 1 | 3500 (3300–3710) | 3598 (3170–3835) | ns |
Z-score for birth weight 1 | 0.686 (0.294–1.098) | 0.878 (0.039–1.343) | ns |
Parameters | GR 1 (n = 80) | GR 2 (n = 80) | p |
---|---|---|---|
Median (1st–3rd Quartile) | |||
RBC (1012/L) 1 | 3.845 (3.420–4.210) | 3.930 (3.260–4.460) | ns |
HGB (mmol/L) 1 | 6.770 (6.580–7.950) | 6.960 (6.460–7.760) | ns |
HCT (L/L) 1 | 0.371 (0.303–0.361) | 0.307 (0.286–0.362) | ns |
MCV (fL) 1 | 83.700 (79.900–87.900) | 82.400 (77.600–90.400) | ns |
MCH (fmol) 1 | 1.890 (1.710–1.930) | 1.880 (1.660–2.040) | ns |
MCHC (mmol/L) 1 | 21.920 (21.180–22.230) | 22.420 (20.870–22.980) | ns |
Iron (µg/dL) 1 | 70.100 (53.600–79.700) | 74.500 (56.600–87.400) | ns |
Transferrin (g/L) 1 | 1.990 (1.860–2.460) | 2.300 (1.956–2.720) | ns |
Ferritin (ng/mL) 1 | 171.100 (76.300–308.100) | 134.800 (37.200–227.700) | ns |
Parameters | GR 1 (n = 80) | GR 2 (n = 80) | p |
---|---|---|---|
Median (1st–3rd Quartile) | |||
RBC (1012/L) 1 | 4.300 (4.000–4.500) | 4.100 (3.700–4.500) | 0.020 |
HGB (mmol/L) 1 | 7.000 (6.525–7.400) | 6.600 (6.100–7.300) | 0.039 |
HCT (L/L) 1 | 0.329 (0.317–0.342) | 0.311 (0.287–0.349) | 0.036 |
MCV (fL) 1 | 74.800 (72.600–78.700) | 76.100 (74.950–79.500) | 0.018 |
MCH (fmol) 1 | 1.560 (1.530–1.680) | 1.640 (1.545–1.680) | ns |
MCHC (mmol/L) 1 | 21.390 (20.590–21.740) | 21.360 (20.890–21.610) | ns |
Iron (µg/dL) 1 | 63.800 (49.500–94.000) | 69.900 (41.500–89.900) | ns |
Transferrin (g/L) 1 | 3.500 (3.200–3.790) | 3.475 (3.100–4.410) | ns |
Ferritin (ng/mL) 1 | 16.800 (11.300–28.500) | 19.500 (12.200–25.700) | ns |
Parameters | GR 1 (n = 80) | GR 2 (n = 80) | p |
---|---|---|---|
Median (1st–3rd Quartile) | |||
ΔRBC (1012/L) 1 | 0.600 (−0.400–0.900) | 0.200 (−0.300–0.375) | ns |
ΔHGB (mmol/L) 1 | 0.200 (−1.600–0.600) | −0.300 (−1.200–0.250) | ns |
ΔHCT (L/L) 1 | 0.020 (−0.051–0.045) | −0.021 (−0.041–0.017) | ns |
ΔMCV (fL) 1 | −5.400 (−13.600–−2.300) | −6.600 (−10.280–−3.300) | ns |
ΔMCH (fmol) 1 | −0.200 (−0.400–−0.100) | −0.200 (−0.300–−0.100) | ns |
ΔMCHC (mmol/L) 1 | −1.200 (−1.925–0.010) | −0.800 (−1.200–−0.100) | ns |
Δiron (µg/dL) 1 | 1.800 (−19.400–18.300) | 1.300 (−37.200–14.300) | ns |
Δtransferrin (g/L) 1 | 1.200 (0.700–2.000) | 1.500 (1.100–2.100) | ns |
Δferritin (ng/mL) 1 | −144.900 (−291.200–−58.200) | −61.000 (−204.300–−15.400) | 0.009 |
Parameters | GR 1 (n = 80) | GR 2 (n = 80) | p | ||
---|---|---|---|---|---|
Low | Norm | Low | Norm | ||
RBC (1012/L) 1 | 0 | 80 | 8 | 72 | 0.007 |
HGB (mmol/L) 1 | 20 | 60 | 38 | 42 | 0.005 |
HCT (L/L) 1 | 0 | 80 | 8 | 72 | 0.002 |
MCV (fL) 1 | 0 | 80 | 12 | 68 | <0.001 |
MCH (fmol) 1 | 5 | 75 | 4 | 76 | ns |
MCHC (mmol/L) 1 | 0 | 80 | 0 | 80 | ns |
Iron (µg/dL) 1 | 13 | 67 | 22 | 58 | ns |
Transferrin (g/L) 1 | 17 | 63 | 32 | 48 | 0.016 |
Ferritin (ng/mL) 1 | 10 | 70 | 5 | 75 | ns |
Dietary Intake (% RDA) | GR 1 (n = 80) | GR 2 (n = 80) | p |
---|---|---|---|
Median (1st–3rd Quartile) | |||
Iron 1 | 101.380 (85.630–120.500) | 60.200 (43.880–103.510) | <0.001 |
Proteins 1 | 313.080 (283.780–334.520) | 305.910 (265.460–401.880) | ns |
Fibre 1 | 130.900 (103.100–179.750) | 82.000 (63.900–99.000) | <0.001 |
Vitamin C 1 | 256.730 (157.920–412.330) | 183.600 (116.970–208.880) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, D.; Podgórski, T.; Krzyżanowska-Jankowska, P.; Dobrzyńska, M.; Wichłacz-Trojanowska, N.; Przysławski, J.; Drzymała-Czyż, S. The Influence of Intensive Nutritional Education on the Iron Status in Infants. Nutrients 2022, 14, 2453. https://doi.org/10.3390/nu14122453
Woźniak D, Podgórski T, Krzyżanowska-Jankowska P, Dobrzyńska M, Wichłacz-Trojanowska N, Przysławski J, Drzymała-Czyż S. The Influence of Intensive Nutritional Education on the Iron Status in Infants. Nutrients. 2022; 14(12):2453. https://doi.org/10.3390/nu14122453
Chicago/Turabian StyleWoźniak, Dagmara, Tomasz Podgórski, Patrycja Krzyżanowska-Jankowska, Małgorzata Dobrzyńska, Natalia Wichłacz-Trojanowska, Juliusz Przysławski, and Sławomira Drzymała-Czyż. 2022. "The Influence of Intensive Nutritional Education on the Iron Status in Infants" Nutrients 14, no. 12: 2453. https://doi.org/10.3390/nu14122453
APA StyleWoźniak, D., Podgórski, T., Krzyżanowska-Jankowska, P., Dobrzyńska, M., Wichłacz-Trojanowska, N., Przysławski, J., & Drzymała-Czyż, S. (2022). The Influence of Intensive Nutritional Education on the Iron Status in Infants. Nutrients, 14(12), 2453. https://doi.org/10.3390/nu14122453