Increased Omega-3 Fatty Acid Intake Is Associated with Low Grip Strength in Elderly Korean Females
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Source and Study Population
2.2. Data Collection
2.2.1. General Characteristics
2.2.2. Grip Strength
2.2.3. Assessment of Fat Intake
2.3. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Energy Distribution and Fat Intakes
3.3. Relationship between EPA + DHA Intake and Grip Strength
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health#:~:text=At%20this%20time%20the%20share,2050%20to%20reach%20426%20million (accessed on 7 March 2022).
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I. The Epidemiology of Sarcopenia. Clin. Geriatr. Med. 2011, 27, 355–363. [Google Scholar] [CrossRef]
- Liu, C.K.; Leng, X.; Hsu, F.C.; Kritchevsky, S.B.; Ding, J.; Earnest, C.P.; Ferrucci, L.; Goodpaster, B.H.; Guralnik, J.M.; Lenchik, L.; et al. The Impact of Sarcopenia on a Physical Activity Intervention: The Lifestyle Interventions and Independence for Elders Pilot Study (LIFE-P). J. Nutr. Health Aging 2014, 18, 59–64. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Aran, L.; Bulli, G.; Curcio, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Sarcopenia: Assessment of Disease Burden and Strategies to Improve Outcomes. Clin. Interv. Aging 2018, 13, 913–927. [Google Scholar] [CrossRef] [Green Version]
- Nelke, C.; Dziewas, R.; Minnerup, J.; Meuth, S.G.; Ruck, T. Skeletal Muscle as Potential Central Link Between Sarcopenia and Immune Senescence. EBioMedicine 2019, 49, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.H.; Chiu, W.C.; Hsu, Y.P.; Lo, Y.L.; Wang, Y.H. Effects of Omega-3 Fatty Acids on Muscle Mass, Muscle Strength and Muscle Performance among the Elderly: A Meta-Analysis. Nutrients 2020, 12, 3739. [Google Scholar] [CrossRef]
- Dupont, J.; Dedeyne, L.; Dalle, S.; Koppo, K.; Gielen, E. The Role of Omega-3 in the Prevention and Treatment of Sarcopenia. Aging Clin. Exp. Res. 2019, 31, 825–836. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary Omega-3 Fatty Acid Supplementation Increases the Rate of Muscle Protein Synthesis in Older Adults: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Bird, J.K.; Troesch, B.; Warnke, I.; Calder, P.C. The Effect of Long Chain Omega-3 Polyunsaturated Fatty Acids on Muscle Mass and Function in Sarcopenia: A Scoping Systematic Review and Meta-analysis. Clin. Nutr. ESPEN 2021, 46, 73–86. [Google Scholar] [CrossRef]
- McGlory, C.; Calder, P.C.; Nunes, E.A. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse, and Disease. Front. Nutr. 2019, 6, 144. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish Oil-derived n-3 PUFA Therapy Increases Muscle Mass and Function in Healthy Older Adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Palumbo, A.S.; McSwiney, F.T.; Hone, M.; McMorrow, A.M.; Lynch, G.; De Vito, G.; Egan, B. Effects of a Long Chain n-3 Polyunsaturated Fatty Acid-rich Multi-ingredient Nutrition Supplement on Body Composition and Physical Function in Older Adults with Low Skeletal Muscle Mass. J. Diet. Suppl. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Barreto, P.S.; Maltais, M.; Guyonnet, S.; Cantet, C.; Andrieu, S.; Vellas, B. Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Lifestyle Intervention on Muscle Strength in Older Adults: Secondary Analysis of the Multidomain Alzheimer Preventive Trial (MAPT). Nutrients 2019, 11, 1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Lee, J.W.; Kim, Y.; Lee, J.H.; Kang, H.T. Increased Omega-3 Fatty Acid Intake is Inversely Associated with Sarcopenic Obesity in Women but not in Men, Based on the 2014–2018 Korean National Health and Nutrition Examination Survey. J. Clin. Med. 2020, 9, 3856. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.Y.; Jung, H.W.; Park, J.H.; Kim, J.H.; Lee, S.; Lee, E.; Lee, J.Y.; Park, S.J.; Kim, D.A.; Kim, S.J.; et al. Lower Serum n-3 Fatty Acid Level in Older Adults with Sarcopenia. Nutrients 2020, 12, 2959. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare & Korea Disease Control and Prevention Agency. Korea Health Statistics 2020: Korea National Health and Nutrition Examination Survey (KNHANES VIII-2); Korea Disease Control and Prevention Agency: Cheongju, Korea, 2021.
- Song, S.; Shim, J.E.; Song, W.O. Trends in Total Fat and Fatty Acid Intakes and Chronic Health Conditions in Korean Adults over 2007–2015. Public Health Nutr. 2019, 22, 1341–1350. [Google Scholar] [CrossRef] [Green Version]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. International Obesity Task Force; World Health Organization: Brussels, Belgium, 2000. [Google Scholar]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A Review of the Measurement of Grip Strength in Clinical and Epidemiological Studies: Towards a Standardised Approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Rural Development Administration, National Institute Agricultural Sciences. Korean Food Composition Table, 9th ed.; Rural Development Administration, National Institute Agricultural Sciences: Wanju, Korea, 2016.
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus Report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Kim, M.; Won, C.W. Prevalence of Sarcopenia in Community-dwelling Older Adults using the Definition of the European Working Group on Sarcopenia in Older People 2: Findings from the Korean Frailty and Aging Cohort Study. Age Ageing 2019, 48, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Travison, T.G.; Manini, T.M.; Patel, S.; Pencina, K.M.; Fielding, R.A.; Magaziner, J.M.; Newman, A.B.; Kiel, D.P.; Cooper, C.; et al. Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. J. Am. Geriatr. Soc. 2020, 68, 1410–1418. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.J.; Yule, V.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A. Is Hand-held Dynamometry Useful for the Measurement of Quadriceps Strength in Older People? A Comparison with the Gold Standard Bodex Dynamometry. Gerontology 2006, 52, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Fougère, B.; Boulanger, E.; Nourhashémi, F.; Guyonnet, S.; Cesari, M. Chronic Inflammation: Accelerator of Biological Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1218–1225. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, C.; Campisi, J. Chronic Inflammation (inflammaging) and its Potential Contribution to Age-associated Diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A.; Hertfordshire Cohort Study Group. Diet and its Relationship with Grip Strength in Community-dwelling Older Men and Women: The Hertfordshire Cohort Study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef]
- Little, J.P.; Phillips, S.M. Resistance Exercise and Nutrition to Counteract Muscle Wasting. Appl. Physiol. Nutr. Metab. 2009, 34, 817–828. [Google Scholar] [CrossRef]
- Ershler, W.B. A Gripping Reality: Oxidative Stress, Inflammation, and the Pathway to Frailty. J. Appl. Physiol. 2007, 103, 3–5. [Google Scholar] [CrossRef] [Green Version]
- Gerling, C.J.; Mukai, K.; Chabowski, A.; Heigenhauser, G.J.F.; Holloway, G.P.; Spriet, L.L.; Jannas-Vela, S. Incorporation of Omega-3 Fatty Acids into Human Skeletal Muscle Sarcolemmal and Mitochondrial Membranes Following 12 Weeks of Fish Oil Supplementation. Front. Physiol. 2019, 10, 348. [Google Scholar] [CrossRef]
- Caslake, M.J.; Miles, E.A.; Kofler, B.M.; Lietz, G.; Curtis, P.; Armah, C.K.; Kimber, A.C.; Grew, J.P.; Farrell, L.; Stannard, J.; et al. Effect of Sex and Genotype on Cardiovascular Biomarker Response to Fish Oils: The FINGEN Study. Am. J. Clin. Nutr. 2008, 88, 618–629. [Google Scholar] [CrossRef] [Green Version]
- Da Boit, M.; Sibson, R.; Sivasubramaniam, S.; Meakin, J.R.; Greig, C.A.; Aspden, R.M.; Thies, F.; Jeromson, S.; Hamilton, D.L.; Speakman, J.R.; et al. Sex Differences in the Effect of Fish-oil Supplementation on the Adaptive Response to Resistance Exercise Training in Older People: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2017, 105, 151–158. [Google Scholar] [CrossRef]
- Millward, D.J. Nutrition and Sarcopenia: Evidence for an Interaction. Proc. Nutr. Soc. 2012, 71, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Carbone, J.W.; McClung, J.P.; Pasiakos, S.M. Recent Advances in the Characterization of Skeletal Muscle and Whole-body Protein Responses to Dietary Protein and Exercise during Negative Energy Balance. Adv. Nutr. 2019, 10, 70–79. [Google Scholar] [CrossRef]
- The Ministry of Health and Welfare and The Korean Nutrition Society. 2020 Dietary Reference Intakes for Korean; The Ministry of Health and Welfare: Sejong, Korea, 2020.
- Statistics Korea. Korea National Health and Nutrition Examination Survey: 2015 Report of Quality Management for Statistics; Statistics Korea: Daejeon, Korea, 2015.
- Kim, M.K.; Kim, K.; Kim, C.I.; Oh, K.; Oh, Y.J.; Choi, B.Y. The Current Status and the Perspectives of Nutrition Survey. Korean J. Epidemiol. 2007, 29, 111–128. [Google Scholar]
- Sinclair, M.; Chapman, B.; Hoermann, R.; Angus, P.W.; Testro, A.; Scodellaro, T.; Gow, P.J. Handgrip Strength Adds More Prognostic Value to the Model for End-Stage Liver Disease Score Than Imaging-Based Measures of Muscle Mass in Men with Cirrhosis. Liver Transpl. 2019, 25, 1480–1487. [Google Scholar] [CrossRef]
- Craddock, J.C.; Neale, E.P.; Peoples, G.E.; Probst, Y.C. Vegetarian-based Dietary Patterns and Their Relation with Inflammatory and Immune Biomarkers: A Systematic Review and Meta-Analysis. Adv. Nutr. 2019, 10, 433–451. [Google Scholar] [CrossRef]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
Male (n = 2449) | Female (n = 3080) | ||||||
---|---|---|---|---|---|---|---|
<AI (n = 1716) | ≥AI (n = 733) | p Value | <AI (n = 2079) | ≥AI (n = 1001) | p Value | ||
Age (years) | 72.67 ± 0.14 | 72.17 ± 0.22 | 0.0578 | 73.26 ± 0.14 | 72.04 ± 0.19 | <0.0001 | |
Body mass index (kg/m2) | 23.72 ± 0.08 | 23.99 ± 0.12 | 0.0545 | 24.43 ± 0.08 | 24.20 ± 0.12 | 0.1026 | |
Grip strength (kg) | 33.13 ± 0.21 | 34.37 ± 0.30 | 0.0010 | 19.89 ± 0.14 | 20.98 ± 0.17 | <0.0001 | |
BMI distribution | <23 kg/m2 | 701 (40.08) | 257 (37.09) | 0.3442 | 732 (35.13) | 367 (37.57) | 0.4066 |
≥23 and <25 kg/m2 | 465 (28.20) | 205 (27.91) | 509 (24.66) | 248 (25.00) | |||
≥25 kg/m2 | 550 (31.73) | 271 (34.99) | 838 (40.21) | 386 (37.43) | |||
Household income | Quartile 1 (Low) | 733 (41.94) | 229 (30.10) | <0.0001 | 1134 (52.55) | 452 (42.77) | <0.0001 |
Quartile 2 | 531 (30.15) | 232 (31.63) | 525 (24.81) | 275 (28.11) | |||
Quartile 3 | 271 (16.78) | 154 (21.96) | 258 (14.49) | 153 (16.01) | |||
Quartile 4 (High) | 171 (11.13) | 111 (16.31) | 152 (8.15) | 116 (13.11) | |||
Education level | ≤Elementary school | 699 (42.48) | 207 (30.44) | <0.0001 | 1437 (73.77) | 602 (60.46) | <0.0001 |
Middle school | 279 (17.36) | 129 (19.24) | 218 (11.22) | 141 (14.77) | |||
High school | 384 (24.71) | 201 (29.02) | 180 (10.54) | 141 (16.73) | |||
≥College | 235 (15.45) | 140 (21.30) | 69 (4.47) | 63 (8.05) | |||
Marital status | Married | 1489 (87.26) | 650 (90.01) | 0.0983 | 1016 (47.78) | 545 (54.39) | 0.0038 |
Others | 227 (12.74) | 83 (9.99) | 1063 (52.22) | 456 (45.61) | |||
Current smoking | Yes | 306 (18.00) | 126 (18.05) | 0.9816 | 42 (2.32) | 23 (2.81) | 0.4902 |
Drinking | Yes | 987 (58.40) | 435 (61.87) | 0.1623 | 366 (18.70) | 182 (19.17) | 0.7907 |
Walking activity | Yes | 646 (42.10) | 305 (48.02) | 0.0255 | 599 (31.93) | 345 (38.55) | 0.0026 |
Muscle exercise activity | Yes | 439 (28.41) | 208 (31.66) | 0.1818 | 152 (8.49) | 99 (12.31) | 0.0073 |
Male (n = 2449) | Female (n = 3080) | |||||
---|---|---|---|---|---|---|
<AI (n = 1716) | ≥AI (n = 733) | p Value | <AI (n = 2079) | ≥AI (n = 1001) | p Value | |
Energy (kcal) | 1934.95 ± 29.09 | 2106.65 ± 37.99 | <0.0001 | 1467.21 ± 29.91 | 1694.34 ± 33.11 | <0.0001 |
Energy distribution | ||||||
Carbohydrate (%) | 69.47 ± 0.44 | 66.65 ± 0.48 | <.0001 | 69.40 ± 0.75 | 65.40 ± 0.75 | <0.0001 |
Protein (%) | 13.86 ± 0.16 | 16.16 ± 0.20 | <.0001 | 13.32 ± 0.25 | 15.45 ± 0.27 | <0.0001 |
Fat (%) | 16.67 ± 0.35 | 17.18 ± 0.38 | 0.2020 | 17.28 ± 0.58 | 19.14 ± 0.57 | <0.0001 |
PUFA (%) 1 | 4.53 ± 0.11 | 5.29 ± 0.13 | <0.0001 | 4.84 ± 0.21 | 5.71 ± 0.21 | <0.0001 |
MUFA (%) 1 | 5.12 ± 0.14 | 5.25 ± 0.15 | 0.4280 | 5.22 ± 0.22 | 5.86 ± 0.21 | <0.0001 |
SFA (%) 1 | 5.25 ± 0.13 | 4.87 ± 0.14 | 0.0047 | 5.42 ± 0.18 | 5.64 ± 0.18 | 0.0742 |
Omega-3 PUFA (%) 1 | 0.74 ± 0.03 | 1.30 ± 0.05 | <0.0001 | 0.78 ± 0.06 | 1.26 ± 0.06 | <0.0001 |
Omega-6 PUFA (%) 1 | 3.81 ± 0.10 | 3.99 ± 0.10 | 0.0857 | 4.07 ± 0.18 | 4.46 ± 0.18 | 0.0003 |
Total fat (g) | 35.90 ± 1.06 | 39.07 ± 1.18 | 0.0049 | 29.17 ± 1.23 | 35.50 ± 1.33 | <0.0001 |
Total PUFA (g) 1 | 9.76 ± 0.32 | 11.97 ± 0.38 | <0.0001 | 8.07 ± 0.43 | 10.48 ± 0.42 | <0.0001 |
Total MUFA (g) 1 | 11.15 ± 0.40 | 11.97 ± 0.42 | 0.0474 | 8.91 ± 0.43 | 10.92 ± 0.47 | <0.0001 |
Total SFA (g) 1 | 11.18 ± 0.36 | 11.05 ± 0.39 | 0.7261 | 9.17 ± 0.37 | 10.49 ± 0.41 | <0.0001 |
Total cholesterol (mg) | 172.10 ± 6.11 | 252.68 ± 9.96 | <0.0001 | 132.33 ± 8.04 | 222.13 ± 8.62 | <0.0001 |
α-linolenic acid (mg) | 1386.12 ± 65.18 | 1580.24 ± 80.88 | 0.0203 | 1203.79 ± 90.73 | 1567.50 ± 87.42 | <0.0001 |
EPA+DHA (mg) 1 | 141.76 ± 33.61 | 1120.07 ± 74.88 | <0.0001 | 20.55 ± 22.98 | 564.09 ± 27.73 | <0.0001 |
Total omega-3 PUFA (g) 1 | 1.57 ± 0.08 | 2.87 ± 0.12 | <0.0001 | 1.25 ± 0.10 | 2.23 ± 0.09 | <0.0001 |
Total omega-6 PUFA (g) 1 | 8.22 ± 0.28 | 9.09 ± 0.32 | 0.0018 | 6.83 ± 0.37 | 8.26 ± 0.37 | <0.0001 |
Ratio of omega-6/omega-3 PUFA | 7.68 ± 0.30 | 4.13 ± 0.22 | <0.0001 | 7.20 ± 0.28 | 4.18 ± 0.25 | <.0001 |
Male (n = 2449) | Female (n = 3080) | |||||
---|---|---|---|---|---|---|
Low Grip Strength (n = 340) | Normal Grip Strength (n = 2109) | p Value | Low Grip Strength (n = 957) | Normal Grip Strength (n = 2123) | p Value | |
Total fat (g) | 35.26 ± 1.72 | 37.24 ± 0.97 | 0.1766 | 31.06 ± 1.47 | 32.27 ± 1.21 | 0.1891 |
Total PUFA (g) 1 | 10.05 ± 0.60 | 10.61 ± 0.30 | 0.2917 | 8.91 ± 0.52 | 9.21 ± 0.40 | 0.3376 |
Total MUFA (g) 1 | 10.96 ± 0.63 | 11.50 ± 0.35 | 0.3224 | 9.58 ± 0.51 | 9.88 ± 0.43 | 0.3457 |
Total SFA (g) 1 | 10.71 ± 0.52 | 11.19 ± 0.33 | 0.2677 | 9.55 ± 0.44 | 9.82 ± 0.36 | 0.3554 |
Total cholesterol (mg) | 196.11 ± 14.08 | 201.14 ± 6.19 | 0.7143 | 163.32 ± 9.49 | 175.14 ± 8.12 | 0.0576 |
α-linolenic acid (mg) | 1321.49 ± 119.54 | 1471.33 ± 58.72 | 0.1642 | 1363.79 ± 105.97 | 1368.11 ± 83.56 | 0.9573 |
EPA + DHA (mg) 1 | 462.81 ± 58.99 | 490.68 ± 51.08 | 0.5574 | 236.73 ± 28.93 | 272.15 ± 25.7 | 0.1166 |
Total omega-3 PUFA (g) 1 | 1.88 ± 0.15 | 2.04 ± 0.08 | 0.2052 | 1.65 ± 0.11 | 1.70 ± 0.09 | 0.6014 |
Total omega-6 PUFA (g) 1 | 8.17 ± 0.50 | 8.57 ± 0.26 | 0.3601 | 7.27 ± 0.45 | 7.52 ± 0.35 | 0.3258 |
Ratio of omega-6/omega-3 PUFA 1 | 6.61 ± 0.40 | 6.40 ± 0.28 | 0.6467 | 6.09 ± 0.28 | 5.78 ± 0.26 | 0.2481 |
Male | Female | ||||||||
---|---|---|---|---|---|---|---|---|---|
Crude | Adjusted | Crude | Adjusted | ||||||
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | ||
EPA and DHA 1 | <AI | 1 | 1 | 1 | 1 | ||||
intake | ≥AI | 0.687 (0.511–0.923) | 0.0129 | 1.291 (0.900–1.853) | 0.1644 | 0.631 (0.520–0.765) | <0.0001 | 0.777 (0.616–0.979) | 0.0322 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, Y.-J.; Cui, X.-S.; Shin, S.-H. Increased Omega-3 Fatty Acid Intake Is Associated with Low Grip Strength in Elderly Korean Females. Nutrients 2022, 14, 2374. https://doi.org/10.3390/nu14122374
Bae Y-J, Cui X-S, Shin S-H. Increased Omega-3 Fatty Acid Intake Is Associated with Low Grip Strength in Elderly Korean Females. Nutrients. 2022; 14(12):2374. https://doi.org/10.3390/nu14122374
Chicago/Turabian StyleBae, Yun-Jung, Xiang-Shun Cui, and Seung-Ho Shin. 2022. "Increased Omega-3 Fatty Acid Intake Is Associated with Low Grip Strength in Elderly Korean Females" Nutrients 14, no. 12: 2374. https://doi.org/10.3390/nu14122374
APA StyleBae, Y. -J., Cui, X. -S., & Shin, S. -H. (2022). Increased Omega-3 Fatty Acid Intake Is Associated with Low Grip Strength in Elderly Korean Females. Nutrients, 14(12), 2374. https://doi.org/10.3390/nu14122374