Differential Effects of Dietary versus Exercise Intervention on Intrahepatic MAIT Cells and Histological Features of NAFLD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participants
2.3. Study Design
2.4. Dietary and Cardiorespiratory Assessment
2.4.1. Cardiorespiratory Fitness Assessment
2.4.2. Dietary and Cardiorespiratory Assessments
2.5. Histological Analysis and Isolation of MAIT Cell Populations
2.5.1. Transient Elastography
2.5.2. Liver Histology
2.5.3. Tissue Collection for Analysis of Circulating and Intra-Hepatic MAIT Cell Populations
2.5.4. Preparation of Liver Immune Cells
2.5.5. Immunophenotyping by Flow Cytometry
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Improvements in Clinical Parameters with Diet and Exercise
3.3. Differential Improvement in Histological Outcomes between Diet and Exercise
3.4. Alterations in Circulating and Intrahepatic MAIT Cell Populations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.B. From sugar to liver fat and public health: Systems biology driven studies in understanding non-alcoholic fatty liver disease pathogenesis. Proc. Nutr. Soc. 2019, 78, 290–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehl, A.M.; Day, C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2017, 377, 2063–2072. [Google Scholar] [CrossRef] [PubMed]
- Henao-Mejia, J.; Elinav, E.; Jin, C.; Hao, L.; Mehal, W.Z.; Strowig, T.; Thaiss, C.A.; Kau, A.L.; Eisenbarth, S.C.; Jurczak, M.J.; et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012, 482, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Ekstedt, M.; Hagstrom, H.; Nasr, P.; Fredrikson, M.; Stal, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, L.E.; Roche, H.M.; Sheedy, F.J. Obesity, COVID-19 and innate immunometabolism. Br. J. Nutr. 2021, 125, 628–632. [Google Scholar] [CrossRef]
- O’Gorman, P.; Norris, S. Exercising in the COVID-19 era: Implications in non-alcoholic fatty liver disease (NAFLD). BMJ Open Gastroenterol. 2021, 8, e000568. [Google Scholar] [CrossRef]
- Eslam, M.; Sanyal, A.J.; George, J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- EASL; EASD; EASO. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Kenneally, S.; Sier, J.H.; Moore, J.B. Efficacy of dietary and physical activity intervention in non-alcoholic fatty liver disease: A systematic review. BMJ Open Gastroenterol. 2017, 4, e000139. [Google Scholar] [CrossRef] [PubMed]
- Koutoukidis, D.A.; Astbury, N.M.; Tudor, K.E.; Morris, E.; Henry, J.A.; Noreik, M.; Jebb, S.A.; Aveyard, P. Association of Weight Loss Interventions With Changes in Biomarkers of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2019, 179, 1262–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378.e5. [Google Scholar] [CrossRef] [PubMed]
- Dusseaux, M.; Martin, E.; Serriari, N.; Péguillet, I.; Premel, V.; Louis, D.; Milder, M.; Le Bourhis, L.; Soudais, C.; Treiner, E.; et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011, 117, 1250–1259. [Google Scholar] [CrossRef] [PubMed]
- Kurioka, A.; Walker, L.J.; Klenerman, P.; Willberg, C.B. MAIT cells: New guardians of the liver. Clin. Transl. Immunol. 2016, 5, e98. [Google Scholar] [CrossRef]
- Pisarska, M.M.; Dunne, M.R.; O’Shea, D.; Hogan, A.E. Interleukin-17 producing mucosal associated invariant T cells-emerging players in chronic inflammatory diseases? Eur. J. Immunol. 2020, 50, 1098–1108. [Google Scholar] [CrossRef]
- Magalhaes, I.; Pingris, K.; Poitou, C.; Bessoles, S.; Venteclef, N.; Kiaf, B.; Beaudoin, L.; Da Silva, J.; Allatif, O.; Rossjohn, J.; et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Investig. 2015, 125, 1752–1762. [Google Scholar] [CrossRef] [Green Version]
- Carolan, E.; Tobin, L.M.; Mangan, B.A.; Corrigan, M.; Gaoatswe, G.; Byrne, G.; Geoghegan, J.; Cody, D.; O’Connell, J.; Winter, D.C.; et al. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J. Immunol. 2015, 194, 5775–5780. [Google Scholar] [CrossRef]
- Jeffery, H.C.; van Wilgenburg, B.; Kurioka, A.; Parekh, K.; Stirling, K.; Roberts, S.; Dutton, E.E.; Hunter, S.; Geh, D.; Braitch, M.K.; et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J. Hepatol. 2016, 64, 1118–1127. [Google Scholar] [CrossRef] [Green Version]
- Hegde, P.; Weiss, E.; Paradis, V.; Wan, J.; Mabire, M.; Sukriti, S.; Rautou, P.E.; Albuquerque, M.; Picq, O.; Gupta, A.C.; et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat. Commun. 2018, 9, 2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Huang, B.; Jiang, X.; Chen, W.; Zhang, J.; Wei, Y.; Chen, Y.; Lian, M.; Bian, Z.; Miao, Q.; et al. Mucosal-Associated Invariant T Cells Improve Nonalcoholic Fatty Liver Disease Through Regulating Macrophage Polarization. Front. Immunol. 2018, 9, 1994. [Google Scholar] [CrossRef] [PubMed]
- Diedrich, T.; Kummer, S.; Galante, A.; Drolz, A.; Schlicker, V.; Lohse, A.W.; Kluwe, J.; Eberhard, J.M.; Schulze Zur Wiesch, J. Characterization of the immune cell landscape of patients with NAFLD. PLoS ONE 2020, 15, e0230307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamichhane, R.; Munro, F.; Harrop, T.W.R.; de la Harpe, S.M.; Dearden, P.K.; Vernall, A.J.; McCall, J.L.; Ussher, J.E. Human liver-derived MAIT cells differ from blood MAIT cells in their metabolism and response to TCR-independent activation. Eur. J. Immunol. 2021, 51, 879–892. [Google Scholar] [CrossRef] [PubMed]
- Non-Alcoholic Fatty Liver Disease Short Food Frequency Questionnaire Participant Information Leaflet. Available online: https://archive.researchdata.leeds.ac.uk/491/ (accessed on 5 April 2022).
- O’Gorman, P.; Naimimohasses, S.; Monaghan, A.; Kennedy, M.; Melo, A.M.; Ní Fhloinn, D.; Doherty, D.G.; Beddy, P.; Finn, S.P.; Moore, J.B.; et al. Improvement in histological endpoints of MAFLD following a 12-week aerobic exercise intervention. Aliment. Pharmacol. Ther. 2020, 52, 1387–1398. [Google Scholar] [CrossRef]
- Bredin, C.; Naimimohasses, S.; Norris, S.; Wright, C.; Hancock, N.; Hart, K.; Moore, J.B. Development and relative validation of a short food frequency questionnaire for assessing dietary intakes of non-alcoholic fatty liver disease patients. Eur. J. Nutr. 2020, 59, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.C.; Albar, S.A.; Morris, M.A.; Mulla, U.Z.; Hancock, N.; Evans, C.E.; Alwan, N.A.; Greenwood, D.C.; Hardie, L.J.; Frost, G.S.; et al. Development of a UK Online 24-h Dietary Assessment Tool: Myfood24. Nutrients 2015, 7, 4016–4032. [Google Scholar] [CrossRef] [Green Version]
- Heyward, V.H. Advanced Fitness Assessment and Exercise Prescription, 7th ed.; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Rockey, D.C.; Caldwell, S.H.; Goodman, Z.D.; Nelson, R.C.; Smith, A.D. Liver biopsy. Hepatology 2009, 49, 1017–1044. [Google Scholar] [CrossRef]
- Conroy, M.J.; Galvin, K.C.; Doyle, S.L.; Kavanagh, M.E.; Mongan, A.M.; Cannon, A.; Moore, G.Y.; Reynolds, J.V.; Lysaght, J. Parallel Profiles of Inflammatory and Effector Memory T Cells in Visceral Fat and Liver of Obesity-Associated Cancer Patients. Inflammation 2016, 39, 1729–1736. [Google Scholar] [CrossRef]
- Eldridge, S.M.; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A. CONSORT 2010 statement: Extension to randomised pilot and feasibility trials. Pilot Feasibility Stud. 2016, 2, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, M.J.; VanWormer, J.J.; Crain, A.L.; Boucher, J.L.; Histon, T.; Caplan, W.; Bowman, J.D.; Pronk, N.P. Weight-loss outcomes: A systematic review and meta-analysis of weight-loss clinical trials with a minimum 1-year follow-up. J. Am. Diet. Assoc. 2007, 107, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, A.; Loftus, R.M.; Pisarska, M.M.; Tobin, L.M.; Bergin, R.; Wood, N.A.W.; Foley, C.; Mat, A.; Tinley, F.C.; Bannan, C.; et al. Obesity Reduces mTORC1 Activity in Mucosal-Associated Invariant T Cells, Driving Defective Metabolic and Functional Responses. J. Immunol. 2019, 202, 3404–3411. [Google Scholar] [CrossRef]
- Villarreal-Calderon, J.R.; Cuellar, R.X.; Ramos-Gonzalez, M.R.; Rubio-Infante, N.; Castillo, E.C.; Elizondo-Montemayor, L.; Garcia-Rivas, G. Interplay between the Adaptive Immune System and Insulin Resistance in Weight Loss Induced by Bariatric Surgery. Oxid. Med. Cell Longev. 2019, 2019, 3940739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cottam, D.R.; Schaefer, P.A.; Shaftan, G.W.; Angus, L.D. Dysfunctional immune-privilege in morbid obesity: Implications and effect of gastric bypass surgery. Obes. Surg. 2003, 13, 49–57. [Google Scholar] [CrossRef]
- Viardot, A.; Lord, R.V.; Samaras, K. The effects of weight loss and gastric banding on the innate and adaptive immune system in type 2 diabetes and prediabetes. J. Clin. Endocrinol. Metab. 2010, 95, 2845–2850. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, A.; Dixit, V.M. Death receptors: Signaling and modulation. Science 1998, 281, 1305–1308. [Google Scholar] [CrossRef] [Green Version]
- Hanson, E.D.; Danson, E.; Nguyen-Robertson, C.V.; Fyfe, J.J.; Stepto, N.K.; Bartlett, D.B.; Sakkal, S. Maximal exercise increases mucosal associated invariant T cell frequency and number in healthy young men. Eur. J. Appl. Physiol. 2017, 117, 2159–2169. [Google Scholar] [CrossRef] [Green Version]
- Hanson, E.D.; Danson, E.; Evans, W.S.; Wood, W.A.; Battaglini, C.L.; Sakkal, S. Exercise Increases Mucosal-associated Invariant T Cell Cytokine Expression but Not Activation or Homing Markers. Med. Sci. Sports Exerc. 2019, 51, 379–388. [Google Scholar] [CrossRef]
- Hanson, E.D.; Bates, L.C.; Harrell, E.P.; Bartlett, D.B.; Lee, J.T.; Wagoner, C.W.; Alzer, M.S.; Amatuli, D.J.; Jensen, B.C.; Deal, A.M.; et al. Exercise training partially rescues impaired mucosal associated invariant t-cell mobilization in breast cancer survivors compared to healthy older women. Exp. Gerontol. 2021, 152, 111454. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Sellami, M.; Gasmi, M.; Denham, J.; Hayes, L.D.; Stratton, D.; Padulo, J.; Bragazzi, N. Effects of Acute and Chronic Exercise on Immunological Parameters in the Elderly Aged: Can Physical Activity Counteract the Effects of Aging? Front. Immunol. 2018, 9, 2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Toubal, A.; Kiaf, B.; Beaudoin, L.; Cagninacci, L.; Rhimi, M.; Fruchet, B.; da Silva, J.; Corbett, A.J.; Simoni, Y.; Lantz, O.; et al. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat. Commun. 2020, 11, 3755. [Google Scholar] [CrossRef]
- Czaja, A.J. Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease. World J. Gastroenterol. 2021, 27, 3705–3733. [Google Scholar] [CrossRef]
Parameters | Control (n = 14) | Diet (n = 15) | Exercise (n = 16) | p Value |
---|---|---|---|---|
Age (y) | 55 (20) | 58 (14) | 61 (15) | 0.3581 a |
Gender, n (%) | ||||
Female | 7 (50.0%) | 8 (53.3%) | 12 (75%) | 0.5331 b |
Male | 7 (50.0%) | 7 (46.7%) | 4 (25%) | |
Body weight (kg) | 102.8 ± 33.3 | 97.3 ± 22.3 | 95.6 ± 20.0 | 0.7276 c |
BMI (kg/m2) | 35.9 ± 7.1 | 33.9 ± 5.3 | 36.1 ± 6.9 | 0.5996 c |
Hypertension n (%) | 7 (50.0%) | 8 (53.3%) | 9 (56.3%) | 0.9431 b |
Diabetes/IGT n (%) | 10 (71.4%) | 8 (53.3%) | 11 (68.8%) | 0.5391 b |
Metabolic Syndrome | 7 (50.0%) | 7 (46.7%) | 9 (56.3%) | 0.8630 b |
HbA1c (mmol/mol) | 46 (19) | 40 (8) | 47 (24) | 0.2126 a |
Urate (μmol/L) | 365 ± 99 | 351 ± 95 | 324 ± 68 | 0.4362 c |
Vitamin D (nmol/L) | 33 (20) | 52 (26) | 56 (57) | 0.1632 a |
Triglycerides (mmol/L) | 1.8 (1.4) | 1.9 (1.4) | 1.4 (1.4) | 0.4797 a |
LDL-C (mmol/L) | 2.1 ± 0.9 | 2.4 ± 1.0 | 2.3 ± 0.8 | 0.7501 c |
HDL-C (mmol/L) | 1.3 ± 0.3 | 1.2 ± 0.3 | 1.4 ± 0.5 | 0.1055 c |
ALT (IU/L) | 66 (37) | 45 (70) | 47 (26) | 0.2763 a |
AST (IU/L) | 56 (30) | 33 (47) | 33 (14) | 0.1371 a |
GGT (IU/L) | 113 (148) | 61 (61) | 58 (92) | 0.1420 a |
Brunt Fibrosis | ||||
Stage 0/1 | 4 (28.6%) | 7 (46.7%) | 5 (31.3%) | N/A d |
Stage 2 | 2 (14.2%) | 2 (13.3%) | 4 (25.0%) | |
Stage 3 | 4 (28.6%) | 4 (26.7%) | 5 (31.3%) | |
Stage 4 | 4 (28.6%) | 2 (13.3%) | 2 (12.5%) | |
Histological scoring | ||||
(NAS < 5) | 5 (35.7%) | 8 (56.3%) | 10 (62.5%) | 0.6355 c |
(NAS ≥ 5) | 9 (64.3%) | 7 (43.7%) | 6 (37.5%) |
Control (n = 14) | Diet (n = 15) | Exercise (n = 16) | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | T0 | T1 | p Value | T0 | T1 | p Value | T0 | T1 | p Value |
Weight (kg) | 102.8 ± 33.3 | 102.8 ± 31.6 | 0.9899 | 97.0 ± 22.3 | 90.0 ± 19.9 | <0.0001 | 95.6 ± 20.0 | 93.6 ± 19.8 | 0.0005 |
BMI (kg/m2) | 35.9 ± 7.1 | 36.4± 7.7 | 0.1422 | 33.9 ± 5.3 | 32.0 ± 5.3 | 0.0002 | 36.1 ± 7.0 | 35.0 ± 6.7 | <0.0001 |
WC a (cm) | 105.4 ± 14.0 | 105.2 ± 14.1 | 0.8911 | 119.9 ± 16.0 | 108.3 ± 14.9 | <0.0001 | 111.2 ± 15.3 | 107.2 ±15.7 | <0.0001 |
HbA1c (mmol/mol) | 46.0 (18.8) | 43.0 (22.8) | 0.9629 | 40.0 (8.0) | 37.0 (6.0) | 0.0027 | 46.5 (23.8) | 45.0 (23) | 0.0298 |
CAP (dB/m) | 325.6 ± 64.7 | 341.0 ± 56.8 | 0.2149 | 330.4 ± 47.4 | 289.2 ± 43.2 | 0.0036 | 334.4 ± 43.4 | 288.3 ± 73.9 | 0.0033 |
Liver Stiffness (kPa) | 17.1 (9.7) | 13.7 (12.1) | 0.2166 | 12.0 (4.5) | 9.5 (4.8) | 0.0154 | 12.3 (7.1) | 8.9 (5.4) | 0.0038 |
FAST score | 0.68 ± 0.22 | 0.57 ± 0.23 | 0.0399 | 0.54 ± 0.23 | 0.38 ± 0.25 | 0.0042 | 0.51 ± 0.21 | 0.43 ± 0.18 | 0.0838 |
FIB-4 score | 1.57 (0.72) | 1.30 (0.61) | 0.0284 | 1.34 (0.89) | 1.44 (0.70) | 0.2314 | 1.32 (0.67) | 1.27 (0.81) | 0.137 |
ALT (IU/L) | 66.0 (37.3) | 47.0 (46.8) | 0.0342 | 45.0 (70.0) | 32.0 (32.0) | 0.0054 | 46.5 (25.5) | 40.5 (20.5) | 0.0856 |
AST (IU/L) | 56.0 (29.8) | 34.5 (21.3) | 0.0289 | 33.0 (47.0) | 30.0 (28.0) | 0.0777 | 33.0 (14.0) | 33.0 (11.0) | 0.1682 |
GGT (IU/L) | 113.0 (147.8) | 84.0 (103.5) | 0.5114 | 61.0 (61.0) | 38.0 (45.0) | <0.0001 | 57.5 (91.5) | 44.0 (69.8) | 0.0287 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naimimohasses, S.; O’Gorman, P.; Wright, C.; Ni Fhloinn, D.; Holden, D.; Conlon, N.; Monaghan, A.; Kennedy, M.; Gormley, J.; Beddy, P.; et al. Differential Effects of Dietary versus Exercise Intervention on Intrahepatic MAIT Cells and Histological Features of NAFLD. Nutrients 2022, 14, 2198. https://doi.org/10.3390/nu14112198
Naimimohasses S, O’Gorman P, Wright C, Ni Fhloinn D, Holden D, Conlon N, Monaghan A, Kennedy M, Gormley J, Beddy P, et al. Differential Effects of Dietary versus Exercise Intervention on Intrahepatic MAIT Cells and Histological Features of NAFLD. Nutrients. 2022; 14(11):2198. https://doi.org/10.3390/nu14112198
Chicago/Turabian StyleNaimimohasses, Sara, Philip O’Gorman, Ciara Wright, Deirdre Ni Fhloinn, Dean Holden, Niall Conlon, Ann Monaghan, Megan Kennedy, John Gormley, Peter Beddy, and et al. 2022. "Differential Effects of Dietary versus Exercise Intervention on Intrahepatic MAIT Cells and Histological Features of NAFLD" Nutrients 14, no. 11: 2198. https://doi.org/10.3390/nu14112198