Handgrip Strength Values Depend on Tumor Entity and Predict 180-Day Mortality in Malnourished Cancer Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Setting
2.2. Patient Population
2.3. Assessment and Classification of Handgrip Strength
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Patient Cohort
3.2. Handgrip Measurement in the Study Population
3.3. Association of Handgrip with Adverse Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schuetz, P.; Seres, D.; Lobo, D.N.; Gomes, F.; Kaegi-Braun, N.; Stanga, Z. Management of disease-related malnutrition for patients being treated in hospital. Lancet 2021, 398, 1927–1938. [Google Scholar] [CrossRef]
- Ryan, A.M.; Power, D.G.; Daly, L.; Cushen, S.J.; Ni Bhuachalla, E.; Prado, C.M. Cancer-associated malnutrition, cachexia and sarcopenia: The skeleton in the hospital closet 40 years later. Proc. Nutr. Soc. 2016, 75, 199–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscaritoli, M.; Lucia, S.; Farcomeni, A.; Lorusso, V.; Saracino, V.; Barone, C.; Plastino, F.; Gori, S.; Magarotto, R.; Carteni, G.; et al. Prevalence of malnutrition in patients at first medical oncology visit: The PreMiO study. Oncotarget 2017, 8, 79884–79896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imoberdorf, R.; Meier, R.; Krebs, P.; Hangartner, P.J.; Hess, B.; Staubli, M.; Wegmann, D.; Ruhlin, M.; Ballmer, P.E. Prevalence of undernutrition on admission to Swiss hospitals. Clin. Nutr. 2010, 29, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Felder, S.; Lechtenboehmer, C.; Bally, M.; Fehr, R.; Deiss, M.; Faessler, L.; Kutz, A.; Steiner, D.; Rast, A.C.; Laukemann, S.; et al. Association of nutritional risk and adverse medical outcomes across different medical inpatient populations. Nutrition 2015, 31, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Khalatbari-Soltani, S.; Marques-Vidal, P. The economic cost of hospital malnutrition in Europe; a narrative review. Clin. Nutr. ESPEN 2015, 10, e89–e94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planas, M.; Alvarez-Hernandez, J.; Leon-Sanz, M.; Celaya-Perez, S.; Araujo, K.; Garcia de Lorenzo, A.; PREDyCES® Researchers. Prevalence of hospital malnutrition in cancer patients: A sub-analysis of the PREDyCES(R) study. Support. Care Cancer 2016, 24, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Lis, C.G.; Gupta, D.; Lammersfeld, C.A.; Markman, M.; Vashi, P.G. Role of nutritional status in predicting quality of life outcomes in cancer--a systematic review of the epidemiological literature. Nutr. J. 2012, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Hebuterne, X.; Lemarie, E.; Michallet, M.; de Montreuil, C.B.; Schneider, S.M.; Goldwasser, F. Prevalence of malnutrition and current use of nutrition support in patients with cancer. J. Parenter. Enter. Nutr. 2014, 38, 196–204. [Google Scholar] [CrossRef]
- Anker, S.D.; Laviano, A.; Filippatos, G.; John, M.; Paccagnella, A.; Ponikowski, P.; Schols, A.M.; Espen. ESPEN Guidelines on Parenteral Nutrition: On cardiology and pneumology. Clin. Nutr. 2009, 28, 455–460. [Google Scholar] [CrossRef]
- Prado, C.M.; Anker, S.D.; Coats, A.J.S.; Laviano, A.; von Haehling, S. Nutrition in the spotlight in cachexia, sarcopenia and muscle: Avoiding the wildfire. J. Cachexia Sarcopenia Muscle 2021, 12, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Bargetzi, L.; Bargetzi, M.; Laviano, A.; Stanga, Z.; Schuetz, P. Inflammation reduces the effect of nutritional therapy on clinical outcomes in cancer patients. Ann. Oncol. 2021, 32, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Schutz, P.; Bally, M.; Stanga, Z.; Keller, U. Loss of appetite in acutely ill medical inpatients: Physiological response or therapeutic target? Swiss Med. Wkly. 2014, 144, w13957. [Google Scholar] [CrossRef] [PubMed]
- Casaer, M.P.; Van den Berghe, G. Nutrition in the acute phase of critical illness. N. Engl. J. Med. 2014, 370, 1227–1236. [Google Scholar] [CrossRef]
- Steemburgo, T.; Averbuch, N.C.; Belin, C.H.S.; Behling, E.B. Hand Grip Strength and nutritional status in hospitalized oncological patients. Rev. Nutr. 2018, 31, 489–499. [Google Scholar]
- Humphreys, J.; de la Maza, P.; Hirsch, S.; Barrera, G.; Gattas, V.; Bunout, D. Muscle strength as a predictor of loss of functional status in hospitalized patients. Nutrition 2002, 18, 616–620. [Google Scholar] [CrossRef]
- Norman, K.; Stobaus, N.; Gonzalez, M.C.; Schulzke, J.D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Punzi, L.; Soysal, P.; Incalzi, R.A.; Saller, A.; Maggi, S. Effect of nutritional supplementations on physical performance and muscle strength parameters in older people: A systematic review and meta-analysis. Ageing Res. Rev. 2019, 51, 48–54. [Google Scholar] [CrossRef]
- Olguin, T.; Bunout, D.; de la Maza, M.P.; Barrera, G.; Hirsch, S. Admission handgrip strength predicts functional decline in hospitalized patients. Clin. Nutr. ESPEN 2017, 17, 28–32. [Google Scholar] [CrossRef]
- Pereira, A.A.C.; Zaia, R.D.; Souza, G.H.G.; Luizeti, B.O.; Andreola, R.; Junior, A.O.V.; Ferrari, A. The Correlation between Hand Grip Strength and Nutritional Variables in Ambulatory Cancer Patients. Nutr. Cancer 2021, 73, 221–229. [Google Scholar] [CrossRef]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Arai, H.; Kritchevsky, S.B.; Guralnik, J.; Bauer, J.M.; Pahor, M.; Clark, B.C.; Cesari, M.; et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J. Nutr. Health Aging 2018, 22, 1148–1161. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, F.; Schuetz, P.; Bounoure, L.; Austin, P.; Ballesteros-Pomar, M.; Cederholm, T.; Fletcher, J.; Laviano, A.; Norman, K.; Poulia, K.A.; et al. ESPEN guidelines on nutritional support for polymorbid internal medicine patients. Clin. Nutr. 2018, 37, 336–353. [Google Scholar] [CrossRef] [Green Version]
- Kilgour, R.D.; Vigano, A.; Trutschnigg, B.; Lucar, E.; Borod, M.; Morais, J.A. Handgrip strength predicts survival and is associated with markers of clinical and functional outcomes in advanced cancer patients. Support. Care Cancer 2013, 21, 3261–3270. [Google Scholar] [CrossRef]
- Steiber, N. Strong or Weak Handgrip? Normative Reference Values for the German Population across the Life Course Stratified by Sex, Age, and Body Height. PLoS ONE 2016, 11, e0163917. [Google Scholar] [CrossRef] [Green Version]
- Werle, S.; Goldhahn, J.; Drerup, S.; Simmen, B.R.; Sprott, H.; Herren, D.B. Age- and gender-specific normative data of grip and pinch strength in a healthy adult Swiss population. J. Hand Surg. Eur. Vol. 2009, 34, 76–84. [Google Scholar] [CrossRef]
- Wong, S.L. Grip strength reference values for Canadians aged 6 to 79: Canadian Health Measures Survey, 2007 to 2013. Health Rep. 2016, 27, 3–10. [Google Scholar]
- Amaral, C.A.; Amaral, T.L.M.; Monteiro, G.T.R.; Vasconcellos, M.T.L.; Portela, M.C. Hand grip strength: Reference values for adults and elderly people of Rio Branco, Acre, Brazil. PLoS ONE 2019, 14, e0211452. [Google Scholar] [CrossRef] [Green Version]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Kutty, V.R.; Lanas, F.; Hui, C.; Quanyong, X.; Zhenzhen, Q.; Jinhua, T.; Noorhassim, I.; et al. Reference ranges of handgrip strength from 125,462 healthy adults in 21 countries: A prospective urban rural epidemiologic (PURE) study. J. Cachexia Sarcopenia Muscle 2016, 7, 535–546. [Google Scholar] [CrossRef]
- Schuetz, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; Tribolet, P.; Bregenzer, T.; Braun, N.; et al. Individualised nutritional support in medical inpatients at nutritional risk: A randomised clinical trial. Lancet 2019, 393, 2312–2321. [Google Scholar] [CrossRef]
- Schuetz, P.; Fehr, R.; Baechli, V.; Geiser, M.; Gomes, F.; Kutz, A.; Tribolet, P.; Bregenzer, T.; Hoess, C.; Pavlicek, V.; et al. Design and rationale of the effect of early nutritional therapy on frailty, functional outcomes and recovery of malnourished medical inpatients trial (EFFORT): A pragmatic, multicenter, randomized-controlled trial. Int. J. Clin. Trials 2018, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Merker, M.; Felder, M.; Gueissaz, L.; Bolliger, R.; Tribolet, P.; Kagi-Braun, N.; Gomes, F.; Hoess, C.; Pavlicek, V.; Bilz, S.; et al. Association of Baseline Inflammation With Effectiveness of Nutritional Support Among Patients With Disease-Related Malnutrition: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e200663. [Google Scholar] [CrossRef] [PubMed]
- Bretschera, C.; Boesiger, F.; Kaegi-Braun, N.; Hersberger, L.; Lobo, D.N.; Evans, D.C.; Tribolet, P.; Gomes, F.; Hoess, C.; Pavlicek, V.; et al. Admission serum albumin concentrations and response to nutritional therapy in hospitalised patients at malnutrition risk: Secondary analysis of a randomised clinical trial. EClinicalMedicine 2022, 45, 101301. [Google Scholar] [CrossRef]
- Kaegi-Braun, N.; Tribolet, P.; Gomes, F.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Kutz, A.; Bregenzer, T.; Hoess, C.; et al. Six-month outcomes after individualized nutritional support during the hospital stay in medical patients at nutritional risk: Secondary analysis of a prospective randomized trial. Clin. Nutr. 2021, 40, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Kaegi-Braun, N.; Tribolet, P.; Baumgartner, A.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; Hoess, C.; et al. Value of handgrip strength to predict clinical outcomes and therapeutic response in malnourished medical inpatients: Secondary analysis of a randomized controlled trial. Am. J. Clin. Nutr. 2021, 114, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Hersberger, L.; Stanga, Z.; Schuetz, P. Reply: The Importance of Objective Nutritional Indexes in Heart Failure Patients. J. Am. Coll. Cardiol. 2021, 78, 856–857. [Google Scholar] [CrossRef]
- Efthymiou, A.; Hersberger, L.; Reber, E.; Schonenberger, K.A.; Kagi-Braun, N.; Tribolet, P.; Mueller, B.; Schuetz, P.; Stanga, Z.; EFFORT Study Group. Nutritional risk is a predictor for long-term mortality: 5-Year follow-up of the EFFORT trial. Clin. Nutr. 2021, 40, 1546–1554. [Google Scholar] [CrossRef]
- Baumgartner, A.; Pachnis, D.; Parra, L.; Hersberger, L.; Bargetzi, A.; Bargetzi, L.; Kaegi-Braun, N.; Tribolet, P.; Gomes, F.; Hoess, C.; et al. The impact of nutritional support on malnourished inpatients with aging-related vulnerability. Nutrition 2021, 89, 111279. [Google Scholar] [CrossRef]
- Baumgartner, A.; Hasenboehler, F.; Cantone, J.; Hersberger, L.; Bargetzi, A.; Bargetzi, L.; Kaegi-Braun, N.; Tribolet, P.; Gomes, F.; Hoess, C.; et al. Effect of nutritional support in patients with lower respiratory tract infection: Secondary analysis of a randomized clinical trial. Clin. Nutr. 2021, 40, 1843–1850. [Google Scholar] [CrossRef]
- Bargetzi, L.; Brack, C.; Herrmann, J.; Bargetzi, A.; Hersberger, L.; Bargetzi, M.; Kaegi-Braun, N.; Tribolet, P.; Gomes, F.; Hoess, C.; et al. Nutritional support during the hospital stay reduces mortality in patients with different types of cancers: Secondary analysis of a prospective randomized trial. Ann. Oncol. 2021, 32, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Bargetzi, A.; Emmenegger, N.; Wildisen, S.; Nickler, M.; Bargetzi, L.; Hersberger, L.; Segerer, S.; Kaegi-Braun, N.; Tribolet, P.; Gomes, F.; et al. Admission kidney function is a strong predictor for the response to nutritional support in patients at nutritional risk. Clin. Nutr. 2021, 40, 2762–2771. [Google Scholar] [CrossRef] [PubMed]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z.; An Ad Hoc Espen Working Group. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Available online: https://www.ncmedical.com/item_699.html (accessed on 29 April 2020).
- Hillman, T.E.; Nunes, Q.M.; Hornby, S.T.; Stanga, Z.; Neal, K.R.; Rowlands, B.J.; Allison, S.P.; Lobo, D.N. A practical posture for hand grip dynamometry in the clinical setting. Clin. Nutr. 2005, 24, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W.; Maljanian, R.; Ferullo, J. Mortality and readmission of the elderly one year after hospitalization for pneumonia. Aging Clin. Exp. Res. 2004, 16, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef]
- Sanson, G.; Sadiraj, M.; Barbin, I.; Confezione, C.; De Matteis, D.; Boscutti, G.; Zaccari, M.; Zanetti, M. Prediction of early- and long-term mortality in adult patients acutely admitted to internal medicine: NRS-2002 and beyond. Clin. Nutr. 2020, 39, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Hersberger, L.; Bargetzi, L.; Bargetzi, A.; Tribolet, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; et al. Nutritional risk screening (NRS 2002) is a strong and modifiable predictor risk score for short-term and long-term clinical outcomes: Secondary analysis of a prospective randomised trial. Clin. Nutr. 2020, 39, 2720–2729. [Google Scholar] [CrossRef]
- Ravasco, P. Nutrition in Cancer. Nestle Nutr. Inst. Workshop Ser. 2015, 82, 91–102. [Google Scholar] [CrossRef] [Green Version]
Overall | Female | Male | |
---|---|---|---|
n | 628 | 260 | 368 |
Sociodemographic | |||
Age (years), mean (SD) | 72.0 (12.5) | 72.3 (11.5) | 71.9 (13.2) |
Nutritional status | |||
BMI (kg/m2), mean (SD) | 24.6 (4.8) | 24.6 (5.4) | 24.6 (4.3) |
Weight (kg), mean (SD) | 70.7 (14.9) | 65.3 (14.0) | 74.4 (14.5) |
Height (cm), mean (SD) | 168.6 (8.8) | 162.2 (6.5) | 173.1 (7.2) |
NRS 3 | 175 (27.9%) | 72 (27.7%) | 103 (28.0%) |
NRS 4 | 200 (31.8%) | 85 (32.7%) | 115 (31.3%) |
NRS 5 | 253 (40.3%) | 103 (39.6%) | 150 (40.8%) |
Main diagnosis | |||
Cancer | 319 (50.8%) | 141 (54.2%) | 178 (48.4%) |
Infection | 132 (21.0%) | 44 (16.9%) | 88 (23.9%) |
Cardiovascular | 34 (5.4%) | 16 (6.2%) | 18 (4.9%) |
Frailty | 45 (7.2%) | 21 (8.1%) | 24 (6.5%) |
Lung | 22 (3.5%) | 7 (2.7%) | 15 (4.1%) |
Gastrointestinal | 29 (4.6%) | 15 (5.8%) | 14 (3.8%) |
Neurological/psychiatric | 13 (2.1%) | 5 (1.9%) | 8 (2.2%) |
Renal | 11 (1.8%) | 3 (1.2%) | 8 (2.2%) |
Metabolic | 6 (1.0%) | 3 (1.2%) | 3 (0.8%) |
Other | 12 (1.9%) | 4 (1.5%) | 8 (2.2%) |
Comorbidities | |||
Tumor | 580 (92.4%) | 237 (91.2%) | 343 (93.2%) |
Hypertension | 313 (49.8%) | 137 (52.7%) | 176 (47.8%) |
Chronic kidney disease (without kidney replacement therapy) | 190 (30.3%) | 71 (27.3%) | 119 (32.3%) |
Coronary heart disease | 156 (24.8%) | 47 (18.1%) | 109 (29.6%) |
Diabetes mellitus | 125 (19.9%) | 49 (18.8%) | 76 (20.7%) |
Chronic heart failure | 73 (11.6%) | 23 (8.8%) | 50 (13.6%) |
Chronic obstructive pneumopathypulmonary disease | 70 (11.1%) | 24 (9.2%) | 46 (12.5%) |
Peripheral arterial vascular disease | 43 (6.8%) | 13 (5.0%) | 30 (8.2%) |
Stroke | 39 (6.2%) | 10 (3.8%) | 29 (7.9%) |
Dementia | 14 (2.2%) | 6 (2.3%) | 8 (2.2%) |
Tumor entity | |||
Hematological tumors | 124 (19.7%) | 53 (20.4%) | 71 (19.3%) |
Lung cancer | 103 (16.4%) | 29 (11.2%) | 74 (20.1%) |
Gastrointestinal tumors | 78 (12.4%) | 30 (11.5%) | 48 (13.0%) |
Prostate carcinoma | 62 (9.9%) | 62 (16.8%) | |
Breast carcinoma | 56 (8.9%) | 55 (21.2%) | 1 (0.3%) |
Other * | 205 (32.6%) | 93 (35.8%) | 112 (30.4%) |
Handgrip strength (kg), mean (SD) | |||
Overall HGS | 23.6 (10.7) | 17.3 (6.3) | 28.0 (10.8) |
Overall (n = 628) | Female (n = 260) | Male (n = 368) | |||||||
---|---|---|---|---|---|---|---|---|---|
Age (year) | n | HGS Mean (kg) (SD) | p | n | HGS Mean (kg) (SD) | p | n | HGS Mean (kg) (SD) | p |
<50 | 30 | 38.5 (15.4) | <0.001 | 21 | 23.1 (8.9) | <0.001 | 9 | 45.1 (12.7) | <0.001 |
50–59 | 66 | 29.6 (10.3) | 40 | 23.2 (6.0) | 26 | 33.7 (10.5) | |||
60–69 | 119 | 24.4 (9.9) | 66 | 19.0 (6.6) | 53 | 28.8 (10.0) | |||
70–79 | 233 | 23.3 (8.9) | 135 | 17.3 (6.3) | 98 | 27.6 (8.0) | |||
80–89 | 146 | 19.6 (9.2) | 84 | 14.5 (5.3) | 62 | 23.4 (9.6) | |||
≥90 | 34 | 15.7 (8.7) | 22 | 8.8 (4.8) | 12 | 19.5 (8.0) | |||
Tumor entity | |||||||||
Hematological tumors | 124 | 23.1 (11.0) | <0.001 | 53 | 18.3 (7.0) | 0.48 | 71 | 26.7 (12.1) | 0.002 |
Lung cancer | 103 | 27.4 (10) | 29 | 18.9 (4.5) | 74 | 30.8 (9.6) | |||
Gastrointestinal tumors | 78 | 24.1 (11.3) | 30 | 16.4 (6.0) | 48 | 28.9 (11.2) | |||
Prostate carcinoma | 62 | 23.6 (7.4) | - | - | 62 | 23.6 (7.4) | |||
Breast carcinoma | 56 | 17 (17.4) | 55 | 16.9 (7.4) | 1 | 18 | |||
Other * | 205 | 23.7 (11.5) | 93 | 16.9 (7.4) | 112 | 29.3 (11.3) |
HGS Mean (SD), Patients with No Event | HGS Mean (SD), Patients with Event | HGS Decrease Cont (−10 kg) | HGS Decrease Cont (−10 kg) | |
---|---|---|---|---|
All patients | Unadjusted OR or Coef (95% CI), p-value | * Adjusted OR or Coef (95% CI), p-value | ||
Primary endpoint | ||||
180-day all-cause mortality | 24.42 (11.13) | 22.35 (9.99) | 1.2 (1.03 to 1.41) p = 0.019 | 1.52 (1.19 to 1.94), p = 0.001 |
Short-term endpoints (30 days) | ||||
All-cause mortality | 23.81 (10.65) | 22.15 (11.37) | 1.16 (0.92 to 1.48) p = 0.211 | 1.59 (1.13 to 2.22), p = 0.007 |
Adverse outcome | 23.82 (10.73) | 23.17 (10.76) | 1.06 (0.9 to 1.24) p = 0.481 | 1.23 (0.98 to 1.54), p = 0.077 |
Admission to the intensive care unit | 23.71 (10.8) | 19 (6.1) | 1.64 (0.89 to 3.01) p = 0.114 | 2.58 (1.08 to 6.16), p = 0.033 |
Non-elective hospital readmission | 23.42 (10.71) | 25.1 (10.92) | 0.87 (0.7 to 1.08) p = 0.211 | 0.84 (0.61 to 1.15), p = 0.283 |
Any major complication | 23.87 (10.85) | 20.53 (8.84) | 1.39 (1.02 to 1.89) p = 0.038 | 1.65 (1.09 to 2.51), p = 0.018 |
Decline in functional status of ≥10% * | 23.75 (10.5) | 22.93 (11.9) | 1.08 (0.88 to 1.31) p = 0.475 | 1.18 (0.89 to 1.58), p = 0.254 |
Mean length of stay (days) | - | - | 0.22 (−0.29 to 0.73) p = 0.398 | 0.65 (−0.08 to 1.37), p = 0.081 |
Mean Barthel Index score (points) | - | - | −1.69 (−2.48 to −0.9) p < 0.001 | −1.44 (−2.56 to −0.33), p = 0.011 |
Long-term endpoints (180 days) | ||||
Mean EQ-5D VAS (points) | - | - | −0.81 (−2.87 to 1.25) p = 0.442 | −1.2 (−4.14 to 1.75), p = 0.425 |
Mean EQ-5D index (points) | - | - | −0.02 (−0.03 to 0) p = 0.027 | −0.01 (−0.03 to 0.01), p = 0.363 |
Incidence of one or more falls | 23.84 (10.69) | 20.37 (10.53) | 1.41 (1.04 to 1.91) p = 0.027 | 1.58 (1.02 to 2.46), p = 0.04 |
Female patients | ||||
Primary endpoint | ||||
180-day all-cause mortality | 18.14 (7.08) | 15.9 (6.31) | 1.62 (1.11 to 2.37) p = 0.013 | 1.54 (0.89 to 2.65), p = 0.122 |
Short-term endpoints (30 days) | ||||
All-cause mortality | 17.68 (6.79) | 14.33 (7.17) | 2.05 (1.12 to 3.74) p = 0.02 | 2.26 (1.03 to 4.95), p = 0.041 |
Adverse outcome | 17.39 (6.77) | 17.24 (7.22) | 1.03 (0.7 to 1.52) p = 0.876 | 1.31 (0.8 to 2.15), p = 0.275 |
Admission to the intensive care unit | 17.32 (6.94) | 18.43 (4.83) | 0.79 (0.26 to 2.37) p = 0.673 | 1.33 (0.3 to 5.83), p = 0.704 |
Non-elective hospital readmission | 17.05 (6.89) | 19.63 (6.55) | 0.57 (0.32 to 1.01) p = 0.055 | 0.75 (0.37 to 1.55), p = 0.444 |
Any major complication | 17.4 (6.84) | 16.63 (7.59) | 1.18 (0.6 to 2.32) p = 0.638 | 1.55 (0.67 to 3.57), p = 0.304 |
Decline in functional status of ≥10% | 17.66 (6.84) | 15.51 (6.98) | 1.58 (0.95 to 2.62) p = 0.076 | 1.23 (0.64 to 2.39), p = 0.532 |
Mean length of stay (days) | - | - | 0.33 (−0.88 to 1.53) p = 0.596 | 0.43 (−1.06 to 1.92), p = 0.569 |
Mean Barthel Index score (points) | - | - | −2.89 (−4.92 to −0.86) p = 0.005 | −2.44 (−4.94 to 0.06), p = 0.056 |
Long-term endpoints (180 days) | ||||
Mean EQ-5D VAS (points) | - | - | −2.91 (−7.42 to 1.6) p = 0.204 | −1.47 (−6.89 to 3.95), p = 0.592 |
Mean EQ-5D index (points) | - | - | −0.05 (−0.09 to −0.01) p = 0.013 | −0.04 (−0.09 to 0.01), p = 0.084 |
Incidence of one or more falls | 17.59 (6.84) | 13.56 (6.13) | 2.38 (1.14 to 4.95) p = 0.021 | 3.57 (1.36 to 9.41), p = 0.01 |
Male patients | ||||
Primary endpoint | ||||
180-day all-cause mortality | 29.33 (11.26) | 26.23 (9.79) | 1.32 (0.01 to 1.63) p = 2.69 | 1.59 (1.19 to 2.12), p = 0.002 |
Short-term endpoints (30 days) | ||||
All-cause mortality | 28.29 (10.73) | 26.38 (11.01) | 1.19 (0.25 to 1.61) p = 1.14 | 1.61 (1.09 to 2.38), p = 0.016 |
Adverse outcome | 28.54 (10.66) | 27 (10.96) | 1.15 (0.2 to 1.41) p = 1.28 | 1.18 (0.91 to 1.55), p = 0.218 |
Admission to the intensive care unit | 28.18 (10.77) | 19.67 (7.76) | 2.77 (0.05 to 7.73) p = 1.95 | 4.28 (0.83 to 22.16), p = 0.083 |
Non-elective hospital readmission | 27.92 (10.65) | 29.02 (11.78) | 0.91 (0.53 to 1.22) p = −0.62 | 0.79 (0.54 to 1.15), p = 0.217 |
Any major complication | 28.47 (10.83) | 23.09 (8.77) | 1.76 (0.01 to 2.71) p = 2.58 | 1.61 (0.95 to 2.73), p = 0.08 |
Decline in functional status of ≥10% * | 28.24 (10.47) | 27.14 (12.09) | 1.1 (0.45 to 1.42) p = 0.76 | 1.19 (0.86 to 1.66), p = 0.297 |
Mean length of stay (days) | - | - | 0.47 (0.17 to 1.15) p = 1.38 | 0.59 (−0.28 to 1.46), p = 0.182 |
Mean Barthel Index score (points) | - | - | −1.67 (0 to −0.69) p = −3.35 | −0.96 (−2.2 to 0.29), p = 0.132 |
Long-term endpoints (180 days) | ||||
Mean EQ-5D VAS (points) | - | - | −1.27 (0.39 to 1.63) p = −0.86 | −0.45 (−4.18 to 3.28), p = 0.813 |
Mean EQ-5D index (points) | - | - | −0.01 (0.47 to 0.01) p = −0.73 | 0 (−0.03 to 0.02), p = 0.810 |
Incidence of one or more falls | 28.42 (10.69) | 23.78 (10.67) | 1.61 (0.02 to 2.37) p = 2.4 | 1.29 (0.78 to 2.11), p = 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tribolet, P.; Kaegi-Braun, N.; Gressies, C.; Baumgartner, A.; Wagner, K.-H.; Stanga, Z.; Schuetz, P. Handgrip Strength Values Depend on Tumor Entity and Predict 180-Day Mortality in Malnourished Cancer Patients. Nutrients 2022, 14, 2173. https://doi.org/10.3390/nu14102173
Tribolet P, Kaegi-Braun N, Gressies C, Baumgartner A, Wagner K-H, Stanga Z, Schuetz P. Handgrip Strength Values Depend on Tumor Entity and Predict 180-Day Mortality in Malnourished Cancer Patients. Nutrients. 2022; 14(10):2173. https://doi.org/10.3390/nu14102173
Chicago/Turabian StyleTribolet, Pascal, Nina Kaegi-Braun, Carla Gressies, Annic Baumgartner, Karl-Heinz Wagner, Zeno Stanga, and Philipp Schuetz. 2022. "Handgrip Strength Values Depend on Tumor Entity and Predict 180-Day Mortality in Malnourished Cancer Patients" Nutrients 14, no. 10: 2173. https://doi.org/10.3390/nu14102173
APA StyleTribolet, P., Kaegi-Braun, N., Gressies, C., Baumgartner, A., Wagner, K. -H., Stanga, Z., & Schuetz, P. (2022). Handgrip Strength Values Depend on Tumor Entity and Predict 180-Day Mortality in Malnourished Cancer Patients. Nutrients, 14(10), 2173. https://doi.org/10.3390/nu14102173