The Effect of Nutrition and Exercise on Body Composition, Exercise Capacity, and Physical Functioning in Advanced CKD Patients
Abstract
:1. Introduction
2. Methods
3. Physical Inactivity and Physical Function in CKD Patients
4. Frailty, Protein Energy Wasting and Chronic Kidney Disease
5. Causes of Decreased Physical Activity in CKD Patients
6. Results
Nutrition and Exercise Training
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wilund, K.R.; Thompson, S.; Viana, J.L.; Wang, A.Y.-M. Physical Activity and Health in Chronic Kidney Disease. Nephrol. Public Health Worldw. 2021, 199, 43–55. [Google Scholar] [CrossRef]
- Zhang, M.; Kim, J.C.; Li, Y.; Shapiro, B.B.; Porszasz, J.; Bross, R.; Feroze, U.; Upreti, R.; Martin, D.; Kalantar-Zadeh, K.; et al. Relation between Anxiety, Depression, and Physical Activity and Performance in Maintenance Hemodialysis Patients. J. Ren. Nutr. 2014, 24, 252–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.-N.; Shapiro, B.; Kim, J.C.; Zhang, M.; Porszasz, J.; Bross, R.; Feroze, U.; Upreti, R.; Martin, D.; Kalantar-Zadeh, K.; et al. Association between quality of life and anxiety, depression, physical activity and physical performance in maintenance hemodialysis patients. Chronic Dis. Transl. Med. 2016, 2, 110–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.C.; Kalantar-Zadeh, K.; Kopple, J.D. Frailty and Protein-Energy Wasting in Elderly Patients with End Stage Kidney Disease. J. Am. Soc. Nephrol. 2012, 24, 337–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantar-Zadeh, K.; Kopple, J.D.; Humphreys, M.H.; Block, G. Comparing outcome predictability of markers of malnutrition-inflammation complex syndrome in haemodialysis patients. Nephrol. Dial. Transplant. 2004, 19, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Painter, P.; Roshanravan, B. The association of physical activity and physical function with clinical outcomes in adults with chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2013, 22, 615–623. [Google Scholar] [CrossRef]
- MacKinnon, H.J.; Wilkinson, T.J.; Clarke, A.L.; Gould, D.W.; O’Sullivan, T.F.; Xenophontos, S.; Watson, E.L.; Singh, S.J.; Smith, A.C. The association of physical function and physical activity with all-cause mortality and adverse clinical outcomes in nondialysis chronic kidney disease: A systematic review. Ther. Adv. Chronic Dis. 2018, 9, 209–226. [Google Scholar] [CrossRef]
- Greenwood, S.A.; Castle, E.; Lindup, H.; Mayes, J.; Waite, I.; Grant, D.; Mangahis, E.; Crabb, O.; Shevket, K.; MacDougall, I.C.; et al. Mortality and morbidity following exercise-based renal rehabilitation in patients with chronic kidney disease: The effect of programme completion and change in exercise capacity. Nephrol. Dial. Transplant. 2018, 34, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Olvera-Soto, M.G.; Valdez-Ortiz, R.; Alvarenga, J.C.L.; Espinosa-Cuevas, M.D.L. Effect of Resistance Exercises on the Indicators of Muscle Reserves and Handgrip Strength in Adult Patients on Hemodialysis. J. Ren. Nutr. 2016, 26, 53–60. [Google Scholar] [CrossRef]
- Bohm, C.; Stewart, K.; Onyskie-Marcus, J.; Esliger, D.; Kriellaars, D.; Rigatto, C. Effects of intradialytic cycling compared with pedometry on physical function in chronic outpatient hemo-dialysis: A prospective randomized trial. Nephrol. Dial. Transplant. 2014, 29, 1947–1955. [Google Scholar] [CrossRef] [Green Version]
- Martin-Alemañy, G.; Espinosa-Cuevas, M.D.L.; Pérez-Navarro, M.; Wilund, K.R.; Miranda-Alatriste, P.; Cortés-Pérez, M.; García-Villalobos, G.; Gómez-Guerrero, I.; Cantú-Quintanilla, G.; Ramírez-Mendoza, M.; et al. Effect of Oral Nutritional Supplementation with and without Exercise on Nutritional Status and Physical Function of Adult Hemodialysis Patients: A Parallel Controlled Clinical Trial (AVANTE-HEMO Study). J. Ren. Nutr. 2020, 30, 126–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.H.; Biruete, A.; Tomayko, E.J.; Wu, P.T.; Fitschen, P.; Chung, H.R.; Ali, M.; McAuley, E.; Fernhall, B.; Phillips, S.A.; et al. Results from the randomized controlled IHOPE trial suggest no effects of oral protein supplementation and exercise training on physical function in hemodialysis patients. Kidney Int. 2019, 96, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Limwannata, P.; Satirapoj, B.; Chotsriluecha, S.; Thimachai, P.; Supasyndh, O. Effectiveness of renal-specific oral nutritional supplements compared with diet counseling in mal-nourished hemodialysis patients. Int. Urol. Nephrol. 2021, 53, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Sahathevan, S.; Karupaiah, T.; Khor, B.-H.; Singh, B.K.S.; Daud, Z.A.M.; Fiaccadori, E.; Sabatino, A.; Chinna, K.; Gafor, A.H.A.; Bavanandan, S.; et al. Muscle Status Response to Oral Nutritional Supplementation in Hemodialysis Patients With Protein Energy Wasting: A Multi-Center Randomized, Open Label-Controlled Trial. Front. Nutr. 2021, 8, 743324. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, J.L.; Deger, S.M.; Perkins, B.W.; Mambungu, C.; Sha, F.; Mason, O.J.; Stewart, T.G.; Ikizler, T.A. Effects of long-term intradialytic oral nutrition and exercise on muscle protein homeostasis and markers of mitochondrial content in patients on hemodialysis. Am. J. Physiol. Physiol. 2020, 319, F885–F894. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Robinson-Cohen, C.; Ellis, C.; Headley, S.A.; Tuttle, K.; Wood, R.J.; Evans, E.E.; Milch, C.M.; Moody, K.A.; Germain, M.; et al. Metabolic Effects of Diet and Exercise in Patients with Moderate to Severe CKD: A Randomized Clinical Trial. J. Am. Soc. Nephrol. 2017, 29, 250–259. [Google Scholar] [CrossRef]
- Aydemir, N.; Pike, M.M.; Alsouqi, A.; Headley, S.A.; Tuttle, K.; Evans, E.E.; Milch, C.M.; Moody, K.A.; Germain, M.; Lipworth, L.; et al. Effects of diet and exercise on adipocytokine levels in patients with moderate to severe chronic kidney disease. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1375–1381. [Google Scholar] [CrossRef]
- Zilles, M.; Betz, C.; Jung, O.; Gauer, S.; Hammerstingl, R.; Wächtershäuser, A.; Vogl, T.J.; Geiger, H.; Asbe-Vollkopf, A.; Pliquett, R.U. How to Prevent Renal Cachexia? A Clinical Randomized Pilot Study Testing Oral Supplemental Nutrition in Hemodialysis Patients with and without Human Immunodeficiency Virus Infection. J. Ren. Nutr. 2018, 28, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Martin-Alemañy, G.; Valdez-Ortiz, R.; Olvera-Soto, G.; Gomez-Guerrero, I.; Aguire-Esquivel, G.; Cantu-Quintanilla, G.; Lopez-Alvarenga, J.C.; Miranda-Alatriste, P.; Espinosa-Cuevas, A. The effects of resistance exercise and oral nutritional supplementation during hemodialysis on indicators of nutritional status and quality of life. Nephrol. Dial. Transplant. 2016, 31, 1712–1720. [Google Scholar] [CrossRef]
- Hristea, D.; Deschamps, T.; Paris, A.; Lefrançois, G.; Collet, V.; Savoiu, C.; Ozenne, S.; Coupel, S.; Testa, A.; Magnard, J. Combining intra-dialytic exercise and nutritional supplementation in malnourished older haemodialysis patients: Towards better quality of life and autonomy. Nephrology 2016, 21, 785–790. [Google Scholar] [CrossRef]
- Tomayko, E.J.; Kistler, B.M.; Fitschen, P.J.; Wilund, K.R. Intradialytic Protein Supplementation Reduces Inflammation and Improves Physical Function in Maintenance Hemodialysis Patients. J. Ren. Nutr. 2015, 25, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molsted, S.; Harrison, A.P.; Eidemak, I.; Andersen, J.L. The effects of high-load strength training with protein- or nonprotein-containing nutritional supplemen-tation in patients undergoing dialysis. J. Ren. Nutr. 2013, 23, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Sheshadri, A.; Kittiskulnam, P.; Lazar, A.A.; Johansen, K.L. A Walking Intervention to Increase Weekly Steps in Dialysis Patients: A Pilot Randomized Controlled Trial. Am. J. Kidney Dis. 2020, 75, 488–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheshadri, A.; Kittiskulnam, P.; Lai, J.C.; Johansen, K.L. Effect of a pedometer-based walking intervention on body composition in patients with ESRD: A ran-domized controlled trial. BMC Nephrol. 2020, 21, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, A.B.; Ta, V.; Iqbal, S.; Gomez, Y.H.; Mavrakanas, T.; Barré, P.; Vasilevsky, M.; Rahme, E.; Daskalopoulou, S.S. The Impact of Intradialytic Pedaling Exercise on Arterial Stiffness: A Pilot Randomized Controlled Trial in a Hemodialysis Population. Am. J. Hypertens. 2018, 31, 458–466. [Google Scholar] [CrossRef]
- Manfredini, F.; Mallamaci, F.; D’Arrigo, G.; Baggetta, R.; Bolignano, D.; Torino, C.; Lamberti, N.; Bertoli, S.; Ciurlino, D.; Rocca-Rey, L.; et al. Exercise in Patients on Dialysis: A Multicenter, Randomized Clinical Trial. J. Am. Soc. Nephrol. 2016, 28, 1259–1268. [Google Scholar] [CrossRef]
- Thompson, S.; Klarenbach, S.; Molzahn, A.; Lloyd, A.; Gabrys, I.; Haykowsky, M.; Tonelli, M. Randomised factorial mixed method pilot study of aerobic and resistance exercise in haemodialysis patients: DIALY-SIZE! BMJ Open 2016, 6, e012085. [Google Scholar] [CrossRef] [Green Version]
- Bennett, P.N.; Fraser, S.; Barnard, R.; Haines, T.; Ockerby, C.; Street, M.; Wang, W.C.; Daly, R. Effects of an intradialytic resistance training programme on physical function: A prospective stepped-wedge randomized controlled trial. Nephrol. Dial. Transplant. 2015, 31, 1302–1309. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.I.; Fournier, M.; Wang, H.; Storer, T.W.; Casaburi, R.; Kopple, J.D. Effect of endurance and/or strength training on muscle fiber size, oxidative capacity, and capillarity in hemodialysis patients. J. Appl. Physiol. 2015, 119, 865–871. [Google Scholar] [CrossRef]
- Matsufuji, S.; Shoji, T.; Yano, Y.; Tsujimoto, Y.; Kishimoto, H.; Tabata, T.; Emoto, M.; Inaba, M. Effect of Chair Stand Exercise on Activity of Daily Living: A Randomized Controlled Trial in Hemodialysis Patients. J. Ren. Nutr. 2015, 25, 17–24. [Google Scholar] [CrossRef]
- Kirkman, D.; Mullins, P.; Junglee, N.A.; Kumwenda, M.; Jibani, M.M.; Macdonald, J.H. Anabolic exercise in haemodialysis patients: A randomised controlled pilot study. J. Cachexia Sarcopenia Muscle 2014, 5, 199–207. [Google Scholar] [CrossRef] [PubMed]
- De Lima, M.C.; de Cicotoste, C.; de Cardoso, K.; Junior, L.A.F.; Monteiro, M.B.; Dias, A.S. Effect of exercise performed during hemodialysis: Strength versus aerobic. Ren. Fail. 2013, 35, 697–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.-J.; Sohng, K.-Y. Effects of Progressive Resistance Training on Body Composition, Physical Fitness and Quality of Life of Patients on Hemodialysis. J. Korean Acad. Nurs. 2012, 42, 947–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.L.; Godfrey, S.; Ng, T.T.; Moorthi, R.; Liangos, O.; Ruthazer, R.; Jaber, B.L.; Levey, A.S.; Castaneda-Sceppa, C. Effect of intra-dialytic, low-intensity strength training on functional capacity in adult haemodialysis patients: A randomized pilot trial. Nephrol. Dial. Transplant. 2010, 25, 1936–1943. [Google Scholar] [CrossRef] [Green Version]
- Kopple, J.D.; Wang, H.; Casaburi, R.; Fournier, M.; Lewis, M.I.; Taylor, W.; Storer, T.W. Exercise in Maintenance Hemodialysis Patients Induces Transcriptional Changes in Genes Favoring Anabolic Muscle. J. Am. Soc. Nephrol. 2007, 18, 2975–2986. [Google Scholar] [CrossRef] [Green Version]
- Cheema, B.; Abas, H.; Smith, B.; O’Sullivan, A.; Chan, M.; Patwardhan, A.; Kelly, J.; Gillin, A.; Pang, G.; Lloyd, B.; et al. Progressive Exercise for Anabolism in Kidney Disease (PEAK): A Randomized, Controlled Trial of Resistance Training during Hemodialysis. J. Am. Soc. Nephrol. 2007, 18, 1594–1601. [Google Scholar] [CrossRef] [Green Version]
- Storer, T.W.; Casaburi, R.; Sawelson, S.; Kopple, J.D. Endurance exercise training during haemodialysis improves strength, power, fatigability and physical performance in maintenance haemodialysis patients. Nephrol. Dial. Transplant. 2005, 20, 1429–1437. [Google Scholar] [CrossRef] [Green Version]
- Van Vilsteren, M.C.; de Greef, M.H.; Huisman, R.M. The effects of a low-to-moderate intensity pre-conditioning exercise programme linked with exercise counselling for sedentary haemodialysis patients in The Netherlands: Results of a ran-domized clinical trial. Nephrol. Dial. Transplant. 2005, 20, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Pike, M.M.; Alsouqi, A.; Headley, S.A.; Tuttle, K.; Evans, E.E.; Milch, C.M.; Moody, K.A.; Germain, M.; Stewart, T.G.; Lipworth, L.; et al. Supervised Exercise Intervention and Overall Activity in CKD. Kidney Int. Rep. 2020, 5, 1261–1270. [Google Scholar] [CrossRef]
- Kittiskulnam, P.; Sheshadri, A.; Johansen, K.L. Consequences of CKD on Functioning. Semin. Nephrol. 2016, 36, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, S.A.; Koufaki, P.; Mercer, T.H.; MacLaughlin, H.; Rush, R.; Lindup, H.; O’Connor, E.; Jones, C.; Hendry, B.M.; Macdougall, I.C.; et al. Effect of Exercise Training on Estimated GFR, Vascular Health, and Cardiorespiratory Fitness in Patients With CKD: A Pilot Randomized Controlled Trial. Am. J. Kidney Dis. 2015, 65, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Leal, D.V.; Ferreira, A.; Watson, E.L.; Wilund, K.R.; Viana, J.L. Muscle-Bone Crosstalk in Chronic Kidney Disease: The Potential Modulatory Effects of Exercise. Calcif. Tissue Res. 2021, 108, 461–475. [Google Scholar] [CrossRef]
- Bennett, P.N.; Thompson, S.; Wilund, K.R. An introduction to Exercise and Physical Activity in Dialysis Patients: Preventing the unacceptable journey to physical dysfunction. Semin. Dial. 2019, 32, 281–282. [Google Scholar] [CrossRef] [PubMed]
- Martens, R.J.H.; Van Der Berg, J.D.; Stehouwer, C.D.A.; Henry, R.M.A.; Bosma, H.; Dagnelie, P.C.; Van Dongen, M.C.J.M.; Eussen, S.J.P.M.; Schram, M.; Sep, S.J.S.; et al. Amount and pattern of physical activity and sedentary behavior are associated with kidney function and kidney damage: The Maastricht Study. PLoS ONE 2018, 13, e0195306. [Google Scholar] [CrossRef]
- Stengel, B.; Tarver–Carr, M.E.; Powe, N.R.; Eberhardt, M.S.; Brancati, F.L. Lifestyle Factors, Obesity and the Risk of Chronic Kidney Disease. Epidemiology 2003, 14, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Kopple, J.D.; Kim, J.C.; Shapiro, B.B.; Zhang, M.; Li, Y.; Porszasz, J.; Bross, R.; Feroze, U.; Upreti, R.; Kalantar-Zadeh, K. Factors Affecting Daily Physical Activity and Physical Performance in Maintenance Dialysis Patients. J. Ren. Nutr. 2015, 25, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.C.; Shapiro, B.B.; Zhang, M.; Li, Y.; Porszasz, J.; Bross, R.; Feroze, U.; Upreti, R.; Kalantar-Zadeh, K.; Kopple, J.D. Daily physical activity and physical function in adult maintenance hemodialysis patients. J. Cachexia Sarcopenia Muscle 2014, 5, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Bennett, P.N.; Kohzuki, M.; Bohm, C.; Roshanravan, B.; Bakker, S.J.; Viana, J.L.; MacRae, J.M.; Wilkinson, T.J.; Wilund, K.R.; Van Craenenbroeck, A.H.; et al. Global Policy Barriers and Enablers to Exercise and Physical Activity in Kidney Care. J. Ren. Nutr. 2021. [Google Scholar] [CrossRef]
- Wilund, K.R.; Viana, J.L.; Perez, L.M. A Critical Review of Exercise Training in Hemodialysis Patients: Personalized Activity Prescriptions Are Needed. Exerc. Sport Sci. Rev. 2020, 48, 28–39. [Google Scholar] [CrossRef]
- Robinson-Cohen, C.; Littman, A.J.; Duncan, G.E.; Weiss, N.S.; Sachs, M.; Ruzinski, J.; Kundzins, J.; Rock, D.; de Boer, I.H.; Ikizler, T.; et al. Physical Activity and Change in Estimated GFR among Persons with CKD. J. Am. Soc. Nephrol. 2013, 25, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Yoda, M.; Inaba, M.; Okuno, S.; Yoda, K.; Yamada, S.; Imanishi, Y.; Mori, K.; Shoji, T.; Ishimura, E.; Yamakawa, T.; et al. Poor muscle quality as a predictor of high mortality independent of diabetes in hemodialysis patients. Biomed. Pharmacother. 2012, 66, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Kaysen, G.A.; Dalrymple, L.S.; Grimes, B.A.; Glidden, D.V.; Anand, S.; Chertow, G.M. Association of physical activity with survival among ambulatory patients on dialysis: The Compre-hensive Dialysis Study. Clin. J. Am. Soc. Nephrol. 2013, 8, 248–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, P.; Marques, E.A.; Leal, D.V.; Ferreira, A.; Wilund, K.R.; Viana, J.L. Association between physical activity and mortality in end-stage kidney disease: A systematic review of observational studies. BMC Nephrol. 2021, 22, 227. [Google Scholar] [CrossRef] [PubMed]
- Kopple, J.D. Physical Performance and All-Cause Mortality in CKD. J. Am. Soc. Nephrol. 2013, 24, 689–690. [Google Scholar] [CrossRef] [PubMed]
- Roshanravan, B.; Robinson-Cohen, C.; Patel, K.V.; Ayers, E.; Littman, A.J.; de Boer, I.H.; Ikizler, T.A.; Himmelfarb, J.; Katzel, L.I.; Kestenbaum, B.; et al. Association between Physical Performance and All-Cause Mortality in CKD. J. Am. Soc. Nephrol. 2013, 24, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.L.; Painter, P. Exercise in Individuals With CKD. Am. J. Kidney Dis. 2012, 59, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 popula-tion-based surveys with 1.9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Zelle, D.M.; Klaassen, G.; Van Adrichem, E.; Bakker, S.J.; Corpeleijn, E.; Navis, G. Physical inactivity: A risk factor and target for intervention in renal care. Nat. Rev. Nephrol. 2017, 13, 152–168. [Google Scholar] [CrossRef]
- Beddhu, S.; Baird, B.C.; Zitterkoph, J.; Neilson, J.; Greene, T. Physical Activity and Mortality in Chronic Kidney Disease (NHANES III). Clin. J. Am. Soc. Nephrol. 2009, 4, 1901–1906. [Google Scholar] [CrossRef] [Green Version]
- Beddhu, S.; Wei, G.; Marcus, R.L.; Chonchol, M.; Greene, T. Light-intensity physical activities and mortality in the United States general population and CKD sub-population. Clin. J. Am. Soc. Nephrol. 2015, 10, 1145–1153. [Google Scholar] [CrossRef] [Green Version]
- Stack, A.G.; Murthy, B. Exercise and Limitations in Physical Activity Levels among New Dialysis Patients in the United States: An Epidemiologic Study. Ann. Epidemiol. 2008, 18, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Chertow, G.M.; Kutner, N.G.; Dalrymple, L.S.; Grimes, B.A.; Kaysen, G.A. Low level of self-reported physical activity in ambulatory patients new to dialysis. Kidney Int. 2010, 78, 1164–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, J.; Krasnoff, J.; Da Silva, M.; Hsu, C.-Y.; Frassetto, L.; Johansen, K.L.; Painter, P. Physical functioning in patients with chronic kidney disease. J. Nephrol. 2008, 21, 550–559. [Google Scholar] [PubMed]
- Brodin, E.; Ljungman, S.; Sunnerhagen, K.S. Rising from a chair A simple screening test for physical function in predialysis patients. Scand. J. Urol. Nephrol. 2008, 42, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Tentori, F.; Elder, S.J.; Thumma, J.; Pisoni, R.L.; Bommer, J.; Fissell, R.B.; Fukuhara, S.; Jadoul, M.; Keen, M.L.; Saran, R. Physical exercise among participants in the Dialysis Outcomes and Practice Patterns Study (DOPPS): Cor-relates and associated outcomes. Nephrol. Dial. Transplant. 2010, 25, 3050–3062. [Google Scholar] [CrossRef] [PubMed]
- Cobo, G.; Gallar, P.; Gama-Axelsson, T.; Di Gioia, C.; Qureshi, A.R.; Camacho, R.; Vigil, A.; Heimbürger, O.; Ortega, O.; Rodriguez, I.; et al. Clinical determinants of reduced physical activity in hemodialysis and peritoneal dialysis patients. J. Nephrol. 2014, 28, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Avesani, C.M.; Trolonge, S.; Deleaval, P.; Baria, F.; Mafra, D.; Irving, G.F.; Chauveau, P.; Teta, D.; Kamimura, M.A.; Cuppari, L.; et al. Physical activity and energy expenditure in haemodialysis patients: An international survey. Nephrol. Dial. Transplant. 2011, 27, 2430–2434. [Google Scholar] [CrossRef] [Green Version]
- Kopple, J.D.; Storer, T.; Casburi, R. Impaired exercise capacity and exercise training in maintenance hemodialysis patients. J. Ren. Nutr. 2005, 15, 44–48. [Google Scholar] [CrossRef]
- Painter, P.L.; Agarwal, A.; Drummond, M. Physical Function and Physical Activity in Peritoneal Dialysis Patients. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2017, 37, 598–604. [Google Scholar] [CrossRef]
- Carrero, J.J.; Johansen, K.L.; Lindholm, B.; Stenvinkel, P.; Cuppari, L.; Avesani, C. Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int. 2016, 90, 53–66. [Google Scholar] [CrossRef]
- Painter, P.; Kuskowski, M. A closer look at frailty in ESRD: Getting the measure right. Hemodial. Int. 2012, 17, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Cohen, A.A.; Xue, Q.-L.; Walston, J.; Bandeen-Roche, K.; Varadhan, R. The physical frailty syndrome as a transition from homeostatic symphony to cacophony. Nat. Aging 2021, 1, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Otobe, Y.; Rhee, C.M.; Nguyen, M.; Kalantar-Zadeh, K.; Kopple, J.D. Current status of the assessment of sarcopenia, frailty, physical performance and functional status in chronic kidney disease patients. Curr. Opin. Nephrol. Hypertens. 2021, 31, 109–128. [Google Scholar] [CrossRef]
- Hanlon, P.; Nicholl, B.I.; Jani, B.D.; Lee, D.; McQueenie, R.; Mair, F.S. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mor-tality: A prospective analysis of 493,737 UK Biobank participants. Lancet Public Health 2018, 3, e323–e332. [Google Scholar] [CrossRef]
- Pilotto, A.; Custodero, C.; Maggi, S.; Polidori, M.C.; Veronese, N.; Ferrucci, L. A multidimensional approach to frailty in older people. Ageing Res. Rev. 2020, 60, 101047. [Google Scholar] [CrossRef]
- Bielecka-Dabrowa, A.; Ebner, N.; dos Santos, M.R.; Ishida, J.; Hasenfuss, G.; Haehling, S. Cachexia, muscle wasting, and frailty in cardiovascular disease. Eur. J. Heart Fail. 2020, 22, 2314–2326. [Google Scholar] [CrossRef]
- Tandon, P.; Montano-Loza, A.J.; Lai, J.C.; Dasarathy, S.; Merli, M. Sarcopenia and frailty in decompensated cirrhosis. J. Hepatol. 2021, 75, S147–S162. [Google Scholar] [CrossRef]
- Ness, K.K.; Wogksch, M.D. Frailty and aging in cancer survivors. Transl. Res. 2020, 221, 65–82. [Google Scholar] [CrossRef]
- Assar, M.E.; Laosa, O.; Rodríguez Mañas, L. Diabetes and frailty. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 52–57. [Google Scholar] [CrossRef]
- Chowdhury, R.; Peel, N.; Krosch, M.; Hubbard, R. Frailty and chronic kidney disease: A systematic review. Arch. Gerontol. Geriatr. 2017, 68, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roshanravan, B.; Khatri, M.; Robinson-Cohen, C.; Levin, G.; Patel, K.V.; de Boer, I.H.; Seliger, S.; Ruzinski, J.; Himmelfarb, J.; Kestenbaum, B. A Prospective Study of Frailty in Nephrology-Referred Patients with CKD. Am. J. Kidney Dis. 2012, 60, 912–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm-Leen, E.R.; Hall, Y.N.; Tamura, M.K.; Chertow, G.M. Frailty and Chronic Kidney Disease: The Third National Health and Nutrition Evaluation Survey. Am. J. Med. 2009, 122, 664–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reese, P.P.; Cappola, A.R.; Shults, J.; Townsend, R.R.; Gadegbeku, C.A.; Anderson, C.; Baker, J.F.; Carlow, D.; Sulik, M.; Lo, J.C.; et al. Physical Performance and Frailty in Chronic Kidney Disease. Am. J. Nephrol. 2013, 38, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.L.; Dalrymple, L.S.; Delgado, C.; Kaysen, G.A.; Kornak, J.; Grimes, B.; Chertow, G.M. Association between Body Composition and Frailty among Prevalent Hemodialysis Patients: A US Renal Data System Special Study. J. Am. Soc. Nephrol. 2013, 25, 381–389. [Google Scholar] [CrossRef] [Green Version]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef]
- Lodebo, B.T.; Shah, A.; Kopple, J.D. Is it Important to Prevent and Treat Protein-Energy Wasting in Chronic Kidney Disease and Chronic Dialysis Patients? J. Ren. Nutr. 2018, 28, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, E.A.; Zheng, R.; Carter, C.E.; Mak, R.H. Cachexia/Protein energy wasting syndrome in CKD: Causation and treatment. Semin. Dial. 2019, 32, 493–499. [Google Scholar] [CrossRef]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Feroze, U.; Martin, D.; Kalantar-Zadeh, K.; Kim, J.C.; Reina-Patton, A.; Kopple, J.D. Anxiety and Depression in Maintenance Dialysis Patients: Preliminary Data of a Cross-sectional Study and Brief Literature Review. J. Ren. Nutr. 2012, 22, 207–210. [Google Scholar] [CrossRef]
- Kopple, J.D.; Shapiro, B.B.; Feroze, U.; Kim, J.C.; Zhang, M.; Li, Y.; Martin, D.J. Hemodialysis treatment engenders anxiety and emotional distress. Clin. Nephrol. 2017, 88, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Han, X.; Cui, Y.; Ye, Y.; Purrunsing, Y.; Wang, N. Parathyroid Hormone Fragments: New Targets for the Diagnosis and Treatment of Chronic Kidney Dis-ease-Mineral and Bone Disorder. BioMed Res. Int. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamojska, S.; Szklarek, M.; Niewodniczy, M.; Nowicki, M. Correlates of habitual physical activity in chronic haemodialysis patients. Nephrol. Dial. Transplant. 2006, 21, 1323–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majchrzak, K.M.; Pupim, L.B.; Chen, K.; Martin, C.J.; Gaffney, S.; Greene, J.H.; Ikizler, T.A. Physical activity patterns in chronic hemodialysis patients: Comparison of dialysis and nondialysis days. J. Ren. Nutr. 2005, 15, 217–224. [Google Scholar] [CrossRef]
- Diesel, W.; Knight, B.K.; Noakes, T.D.; Swanepoel, C.R.; Smit, R.V.Z.; Kaschula, R.O.; Sinclair-Smith, C.C. Morphologic Features of the Myopathy Associated With Chronic Renal Failure. Am. J. Kidney Dis. 1993, 22, 677–684. [Google Scholar] [CrossRef]
- Lewis, M.I.; Fournier, M.; Wang, H.; Storer, T.W.; Casaburi, R.; Cohen, A.H.; Kopple, J.D. Metabolic and morphometric profile of muscle fibers in chronic hemodialysis patients. J. Appl. Physiol. 2012, 112, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Skiba, R.; Matyjek, A.; Syryło, T.; Niemczyk, S.; Rymarz, A. Advanced Chronic Kidney Disease is a Strong Predictor of Hypogonadism and is Associated with Decreased Lean Tissue Mass. Int. J. Nephrol. Renov. Dis. 2020, 13, 319–327. [Google Scholar] [CrossRef]
- Chan, W.; Valerie, K.C.; Chan, J.C. Expression of insulin-like growth factor-1 in uremic rats: Growth hormone resistance and nutritional intake. Kidney Int. 1993, 43, 790–795. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, F.; Chen, Y.; Tsao, T.; Nouri, P.; Rabkin, R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J. Clin. Investig. 2001, 108, 467–475. [Google Scholar] [CrossRef]
- Deger, S.M.; Hewlett, J.R.; Gamboa, J.; Ellis, C.D.; Hung, A.M.; Siew, E.D.; Mamnungu, C.; Sha, F.; Bian, A.; Stewart, T.G.; et al. Insulin resistance is a significant determinant of sarcopenia in advanced kidney disease. Am. J. Physiol. Metab. 2018, 315, E1108–E1120. [Google Scholar] [CrossRef]
- Ding, H.; Gao, X.L.; Hirschberg, R.; Vadgama, J.V.; Kopple, J.D. Impaired actions of insulin-like growth factor 1 on protein Synthesis and degradation in skeletal muscle of rats with chronic renal failure. Evidence for a postreceptor defect. J. Clin. Investig. 1996, 97, 1064–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.J.; Liu, S.; Gurung, R.L.; Chan, C.; Ang, K.; Tang, W.E.; Tavintharan, S.; Sum, C.F.; Lim, S.C. Relationship Between Fasting Plasma Glucagon Level and Renal Function-A Cross-Sectional Study in Indi-viduals With Type 2 Diabetes. J. Endocr. Soc. 2019, 3, 273–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherwin, R.S.; Bastl, C.; Finkelstein, F.O.; Fisher, M.; Black, H.; Hendler, R.; Felig, P. Influence of uremia and hemodialysis on the turnover and metabolic effects of glucagon. J. Clin. Investig. 1976, 57, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-W.; Li, B.H.; Reynolds, K.; Jacobsen, S.J.; Rhee, C.M.; Sim, J.J. Association between hypothyroidism and chronic kidney disease observed among an adult population 55 years and older. Medicine 2020, 99, e19569. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.M.; Kalantar-Zadeh, K.; Streja, E.; Carrero, J.-J.; Ma, J.Z.; Lu, J.L.; Kovesdy, C.P. The relationship between thyroid function and estimated glomerular filtration rate in patients with chronic kidney disease. Nephrol. Dial. Transplant. 2014, 30, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Sundell, M.B.; Cavanaugh, K.L.; Wu, P.; Shintani, A.; Hakim, R.M.; Ikizler, T.A. Oral protein supplementation alone improves anabolism in a dose-dependent manner in chronic he-modialysis patients. J. Ren. Nutr. 2009, 19, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Majchrzak, K.M.; Pupim, L.B.; Flakoll, P.J.; Ikizler, T.A. Resistance exercise augments the acute anabolic effects of intradialytic oral nutritional supplemen-tation. Nephrol. Dial. Transplant. 2008, 23, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Pupim, L.B.; Flakoll, P.J.; Levenhagen, D.K.; Ikizler, T.A. Exercise augments the acute anabolic effects of intradialytic parenteral nutrition in chronic hemodialysis patients. Am. J. Physiol. Metab. 2004, 286, E589–E597. [Google Scholar] [CrossRef]
- Pupim, L.B.; Flakoll, P.J.; Brouillette, J.R.; Levenhagen, D.K.; Hakim, R.M.; Ikizler1, T.A. Intradialytic parenteral nutrition improves protein and energy homeostasis in chronic hemodialysis pa-tients. J. Clin. Investig. 2002, 110, 483–492. [Google Scholar] [CrossRef]
- Pupim, L.B.; Majchrzak, K.M.; Flakoll, P.J.; Ikizler, T. Intradialytic Oral Nutrition Improves Protein Homeostasis in Chronic Hemodialysis Patients with Deranged Nutritional Status. J. Am. Soc. Nephrol. 2006, 17, 3149–3157. [Google Scholar] [CrossRef]
- Kopple, J.D.; Bernard, D.; Messana, J.; Swartz, R.; Bergström, J.; Lindholm, B.; Lim, V.; Brunori, G.; Leiserowitz, M.; Bier, D.M.; et al. Treatment of malnourished CAPD patients with an amino acid based dialysate. Kidney Int. 1995, 47, 1148–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delarue, J.; Maingourd, C.; Objois, M.; Pinault, M.; Cohen, R.; Couet, C.; Lamisse, F. Effects of an amino acid dialysate on leucine metabolism in continuous ambulatory peritoneal dialysis patients. Kidney Int. 1999, 56, 1934–1943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjiong, H.L.; Berg, J.W.V.D.; Wattimena, J.L.; Rietveld, T.; Van Dijk, L.J.; Van Der Wiel, A.M.; Van Egmond, A.M.; Fieren, M.W.; Swart, R. Dialysate as Food: Combined Amino Acid and Glucose Dialysate Improves Protein Anabolism in Renal Failure Patients on Automated Peritoneal Dialysis. J. Am. Soc. Nephrol. 2005, 16, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Mitch, W.E. Robert H Herman Memorial Award in Clinical Nutrition Lecture, 1997. Mechanisms causing loss of lean body mass in kidney disease. Am. J. Clin. Nutr. 1998, 67, 359–366. [Google Scholar] [CrossRef]
- Mitch, W.E. Malnutrition: A frequent misdiagnosis for hemodialysis patients. J. Clin. Investig. 2002, 110, 437–439. [Google Scholar] [CrossRef]
Column | Reference, Study Design | No. of Patients | Type of Patients | Methods of Intervention | Duration | Significant Results |
---|---|---|---|---|---|---|
1 | Limwanata et al., 2021 [13], randomized controlled trial | Rx1-26 Rx2-30 Control-24 | Malnourished HD, age range 18–75 years | Rx1: ONS (370 kcal/day, 17 g protein, 42.2 g carbohydrate, 16.4 g lipid) Rx2: ONS (370 kcal/day, 16.6 g protein, 33 g carbohydrate, 19.8 g lipid) Control: dietary counseling | 1 month | Significant changes within each group: Rx1: ↑ dietary intake of energy, protein, fat, fiber, and magnesium, ↑ mid-arm circumference, ↑ body weight, ↑ BMI, ↑ pre-albumin and albumin; ↓ MIS; no change in muscle mass, handgrip strength, percentage body fat, and triceps skinfold thickness Rx2: ↑ dietary intake of energy, protein, fat, fiber, and magnesium, ↑ mid-arm circumference, ↑ handgrip strength, ↑ body weight, ↑ BMI; ↓ MIS; no change in muscle mass, percentage body fat, triceps skinfold thickness, and pre-albumin and albumin Control: no change in any markers Two Rx groups vs. control: ↑ dietary intake of energy, protein, fat, fiber, and magnesium, ↑ albumin; ↓ MIS; no change in muscle mass, mid-arm circumference, handgrip strength, body weight, BMI, percentage body fat, triceps skinfold thickness, and pre-albumin |
2 | Sahathevan et al., 2021 [14], randomized, open-label controlled trial | Rx-29 Control-27 | HD with PEW, age range 18–70 years | Rx: ONS (475 kcal, 21.7 g protein) taken 30 min after initiation of HD and at home on non-HD days combined with nutrition counseling. Control: nutrition counseling alone | 6 months | Significant changes within each group: Rx: ↑ dietary energy or protein intake, ↑ mid-thigh girth, ↑ dry weight, ↑ pre-albumin Control: No change in any markers Rx group vs. control: ↑ rectus femoris thickness and CSA at midpoint, ↑ vastus intermedius thickness at midpoint; ↓ dietary energy intake, ↓ MIS, ↓ PEW; no change in appetite, handgrip strength, physical activity level, BMI, albumin, hsCRP and IL-6 |
3 | Martin-Alemany et al., 2020 [11], randomized parallel controlled trial | Rx1-15 Rx2-15 Rx3-15 | Young HD older than 18 years, mean age 29 ± SD 9.3 years | Rx1: ONS (480 kcal, 20 g protein, 56 g carbohydrate, 20 g lipid) Rx2: ONS + aerobic exercise (consisting of pedaling stationary bike during the first 2 h of the HD session) Rx3: ONS + resistance exercise (four sets of 20 repetitions for 40 min during the first 2 h of the HD sessions) | 3 months | Significant changes within each group: Rx1: ↑ handgrip strength, ↑ 6MWT, ↑ TUG, ↑ body weight, ↑ BMI, ↑ albumin Rx2: ↑ handgrip strength, ↑ 6MWT, ↑ TUG, ↑ STS; ↓ albumin Rx3: ↑ handgrip strength, ↑ 6MWT, ↑ TUG, ↑ STS, ↑ weight, ↑ BMI, ↑ percentage body fat, ↑ triceps skinfold thickness, ↑ albumin Rx1 vs. Rx2 vs. Rx3: No change in mid-arm circumference, arm muscle circumference, arm muscle area, physical activity, body weight, BMI, fat mass, triceps skinfold thickness, albumin, and c-reactive protein |
4 | Gamboa et al., 2020 [15], prospective randomized, open-label, parallel arm trial | Rx1-6 Rx2-6 | HD, older than 18 years | Rx1: ONS during HD (480 kcal, 16.7 g protein, 52.8 g carbohydrate, 22.7 g lipid) Rx2: ONS during HD (480 kcal, 16.7 g protein, 52.8 g carbohydrate, 22.7 g lipid) + resistance exercise (leg press within 30 min before each HD session) | 6 months | Significant changes within each group: Rx1 and Rx2 at 3 months: ↑ markers of mitochondrial content in muscle (mtDNA copy no.); no change in mitochondrial PGC-1 alpha Rx1 and Rx2 at 6 months: ↑ forearm protein net balance, ↑ mid-thigh CSA, ↑ mid-thigh fat area; no change in mid-thigh muscle area Rx1 vs. Rx2 at 3 months: No change in forearm protein net balance, whole body protein metabolism, mtDNA copy no., mitochondrial PGC-1 alpha, mid-thigh CSA, mid-thigh muscle area, and mid-thigh fat area Rx1 vs. Rx2 at 6 months: No change in forearm protein net balance, whole body protein metabolism, mid-thigh CSA, mid-thigh muscle area, and mid-thigh fat area |
5 | Jeong et al., 2019 [12], randomized controlled trial | Rx1-38 Rx2-29 Control-34 | HD, age range 30–80 years | Rx1: 30 g whey protein at beginning of each HD session Rx2: 30 g whey protein+ supervised exercise training (cycle ergometer up to 45 min) Control: ~150 g of a non-nutritive beverage during HD | 12 months | Significant changes within each group: Rx1: at 6 months: ↑ dietary protein intake, ↑ gait speed; no change in muscle strength (leg maximal flexion force), STS, and TUG at 12 months: ↑ dietary protein intake, ↑ gait speed; no change in muscle strength (leg maximal flexion force), STS, and TUG Rx2: at 6 months: ↑ dietary protein intake, ↑ muscle strength (leg maximal flexion force), ↑ STS, ↑ TUG, ↑ gait speed at 12 months: ↑ dietary protein intake, ↑ muscle strength (leg maximal flexion force), ↑ gait speed; no change in STS and TUG Control at 6 months and at 12 months: ↑ gait speed (only at 6 months); no change in dietary protein intake, muscle strength (leg maximal flexion force), STS, and TUG Two Rx groups vs. control: No change in albumin, IL-6, and CRP |
6 | Ikizler et al., 2018, Aydemir et al. 2020 [16,17], randomized controlled trial | Rx1-30 Rx2-28 Rx3-27 Control-26 | Moderate to severe overweight or obese CKD (stage 3 and 4), age range 18–75 years | Rx1: aerobic exercise+ calorie restriction Rx2: usual activity+ calorie restriction Rx3: aerobic exercise+ usual dietControl: usual activity+ usual diet | 4 months | Significant changes within each group: Rx1: ↓ percentage body fat, ↓ body weight, ↓ F2-isoprostane, ↓ IL-6; no change in VO2 peak Rx2: ↑ plasma adiponectin; ↓ percentage body fat, ↓ body weight, ↓ F2-isoprostane, ↓ IL-6; no change in VO2 peak Rx3: ↓ F2-isoprostane, ↓ IL-6; no change in VO2 peak, percentage body fat, and body weight Rx1 vs. control: ↓ percentage body fat, ↓ body weight |
7 | Zilles et al., 2018 [18], prospective randomized trial | Rx1-7 HIV positive Rx2-16 HIV negative (treatment: 8, control: 8) | HD patients with and without HIV, age range 18–75 years | Rx1: ONS (250 kcal, 9.4 g protein, 25 g carbohydrates, 12.5 g lipid) consumed after HD and on non-HD days Rx2: Treatment: ONS (250 kcal, 9.4 g protein, 25 g carbohydrate, 12.5 g lipid) consumed after HD and on non-HD days Rx2: Control: no nutritional supplement | 6 months | Significant changes within each group: In both Rx1 and Rx2: No change in iliopsoas muscle thickness at CSA, mid-arm circumference, subjective global assessment, BMI, subcutaneous fat thickness, albumin, c-reactive protein, IL-1beta, tumor necrosis factor alpha, and IL-6 Only in Rx1: ↑ body cell mass Significant changes in Rx1 and Rx2 Treatment combined: ↑ BMI; no change in phase angle alpha and albumin Rx1 vs. Rx2: No change in iliopsoas muscle thickness at CSA, mid-arm circumference, body cell mass, phase angle alpha, subjective global assessment, BMI, subcutaneous fat thickness, albumin, c-reactive protein, (IL)-1beta, tumor necrosis factor alpha, and IL-6 |
8 | Martin Alemany et al., 2016 [19], randomized trial | Rx1-19 Rx2-17 | HD patients older than 18 years with no physical activity (86% had a BMI <23 kg/m2, 83% had a serum albumin <3.8 g/dL, and 55.5% were diagnosed with PEW) | Rx1: ONS during HD (434 kcal, 19.2 g protein, 22.8 g lipid) Rx2: ONS during HD (434 kcal, 19.2 g protein, 22.8 g lipid) + resistance exercise | 3 months | Significant changes within each group: In both Rx1 and Rx2: ↑ dietary energy or protein intake, ↑ mid-arm circumference, ↑ mid-arm muscle circumference, ↑ phase angle, ↑ handgrip strength, ↑ body weight, ↑ BMI, ↑ triceps skinfold thickness, ↑ percentage body fat, ↑ albumin Rx1 vs. Rx2: No change in dietary energy or protein intake, mid-arm muscle circumference, mid-arm circumference, phase angle, handgrip strength, PEW, body weight, BMI, triceps skinfold thickness, percentage body fat, and albumin |
9 | Hristea et al., 2016 [20], randomized controlled trial | Rx1-10 Rx2-11 | Old HD patients with PEW, mean age 69.7 ± SD 14.2 years | Rx1: ONS or IDPN Rx2: ONS or IDPN+ exercise (moderate intensity cycling at the beginning of HD) | 6 months | Significant changes within each group: Rx2: ↑ total energy intake, ↑ 6MWT Rx1 vs. Rx2: No change in dietary energy or protein intake, quadriceps force, lean-tissue index, PEW, BMI, fat-tissue index, albumin, pre-albumin, and c-reactive protein |
10 | Tomayko et al., 2015 [21], randomized controlled trial | Rx1-11 Rx2-12 Control-15 | HD patients older than 30 years | Rx1: 27 g whey protein beverage (15 min before HD) Rx2: 27 g soy protein beverage (15 min before HD) Control: 2 g non caloric placebo beverage (15 min before HD) | 6 months | Significant changes within each group: In both Rx1 and Rx2: ↑ gait speed, ↑ shuttle walk test; ↓ IL-6 Control: ↓ gait speed Two Rx groups vs. control: ↑ gait speed; no change in whole body lean mass, shuttle walk test, body weight, whole body fat, and albumin |
11 | Molsted et al., 2013 [22], randomized controlled trial | Rx1-16 Rx2-13 Control-29 | Dialysis patients undergoing HD or PD, more than 18 years | Rx1: ONS (251 kcal, 9.4 g protein, 25 g carbohydrate, 12.5 g lipid) + strength training Rx2: non-protein ONS (251 kcal, 2.4 g carbohydrate, 27.3 g lipid) + strength training Control: usual care | 4 months | Rx1 vs. Rx2: No change in energy intake, muscle fiber composition or size, muscle power (leg extension), muscle strength (knee extension), physical performance (chair stand test), body weight, and BMI Two Rx groups vs. control: ↑ energy intake, ↑ muscle power (leg extension), ↑ muscle strength (knee extension), ↑ physical performance (chair stand test), ↑ body weight, ↑ BMI; ↓ type 2x muscle fiber number |
Column | Reference, Study Design | No. of Patients | Type of Participants | Methods of Intervention | Duration | Significant Results |
---|---|---|---|---|---|---|
1 | Sheshadri et al., 2020 [23,24], randomized controlled trial | Rx-30 Control-30 | Undergoing HD or PD; older than 18 years | Rx: Used pedometers with counseling to increase their daily steps by 10% each week. Control: usual care | 3 months intervention and 3 months post-intervention follow-up | Rx vs. control at 3 months: ↑ daily steps, ↑ heart rate variability; no change in total body muscle mass, BMI, fat mass, short physical performance battery score, and endothelial function Rx vs. control at 6 months: ↑ total body muscle mass; ↓ BMI, ↓ fat mass; no change in daily steps, short physical performance battery score, endothelial function, or heart rate variability |
2 | Cooke et al., 2018 [25], open-label randomized controlled trial | Rx-10 Control-10 | HD; mean age 55 ± SD 16 years, mean BMI 26.4 ± SD 5.2 kg/m2 | Rx: pedaling exercise during HD Control: usual care | 4 months | Rx vs. control: ↑ waist:hip ratio; ↓ heart rate-corrected augmentation index, ↓ carotid femoral pulse wave velocity, ↓ heart rate; no change in handgrip strength, gait speed, BMI, albumin, peripheral, and central blood pressure |
3 | Manfredini et al., 2017 [26], randomized controlled trial | Rx-151 Control-145 | HD or CAPD | Rx: low-intensity home-based personalized walking exercise Control: usual care | 6 months | Rx vs. control: ↑ 6MWT; ↓ STS; no change in albumin, heart rate, and blood pressure |
4 | Thompson et al., 2016 [27], randomized controlled trial | Rx1-8 Rx2-7 Rx3-8 Control-8 | HD; older than 18 years | Rx1: aerobic exercise (cycling) during HD Rx2: resistance exercise during HD Rx3: combined exercise (aerobic + resistance) during HD Control: routine stretching during HD | 3 months | Three Rx groups vs. control: No change in 6MWT, STS, and muscle strength (one repetition maximum) |
5 | Bennett et al., 2016 [28], prospective stepped intradialytic resistance training randomized controlled trial | Rx1-80 Rx2-80 Rx3-68 | HD; older than 18 years | Rx1, Rx2, Rx3: resistance exercise during HD. The time of commencement of the resistance training program in each HD unit was determined randomly. | Rx1: 9 months Rx2: 6 months Rx3: 3 months | With intradialytic resistance training: ↑ STS; ↓ 8-ft timed up-and-go |
6 | Olvera-Soto et al., 2016 [9], randomized controlled trial | Rx-30 Control-31 | HD; older than 18 years, (83% with some grade of malnutrition) | Rx: resistance exercise during HD Control: usual care | 3 months | Significant changes within each group: Rx: ↑ percentage body fat, ↑ arm muscle circumference, ↑ arm muscle area, ↑ handgrip strength Control: ↓ handgrip strength Rx vs. control: ↑ handgrip strength; no change in dietary protein or energy intake, percentage body fat, arm muscle circumference, and arm muscle area |
7 | Lewis et al., 2015 [29], randomized controlled trial | Rx1-15 Rx2-13 Rx3-17 Rx4-14 Control-22 | HD; mean age 42.1 ± SD 1.5 years; healthy matched controls mean age 40.9 ± SD 2.6 years | Rx1: HD, no training Rx2: HD, endurance training Rx3: HD, strength training RX4: HD, a combination of endurance and strength training Control: normal sedentary people with no exercise training | 22 weeks | Significant changes within each group: Rx2: ↑ number of capillaries in type I and IIA fibers of vastus lateralis, ↑ capillary density of vastus lateralis, ↑ capillary-to-fiber ratio Rx3: No change in the number of capillaries in any type of fibers of vastus lateralis, capillary density of vastus lateralis, and capillary-to-fiber ratio. Rx4: ↓ thickness of type I and IIA fiber CSA in vastus lateralis; ↑ capillary number in type I, IIA, and IIX fibers of vastus lateralis; ↑ capillary density of vastus lateralis, ↑ capillary-to-fiber ratio With any type of training (Rx2, Rx3, and Rx4) vs. no training (Rx1): No change in the proportion of type I, IIA, and IIX fibers in vastus lateralis muscle and succinate dehydrogenase activity in type I, IIA, and IIX fibers in vastus lateralis |
8 | Matsufuji et al., 2015 [30], prospective randomized parallel controlled trial | Rx-12 Control-15 | HD; age range 61–79 years | Rx: chair stand exercise before HD Control: stretching exercise before HD | 3 months | Rx vs. control: ↑ functional independence measure; no change in thigh circumference, knee extensor strength, 6MWT, and albumin |
9 | Bohm et al., 2014 [10], prospective randomized trial | Rx1-30 Rx2-30 | HD; older than 18 years | Rx1: ergometer cycling during HD Rx2: pedometer home-based walking | 6 months | Significant changes within each group: Rx1: ↑ STS, ↑ SR; no change in VO2 peak, 6MWT, and PAL Rx2: ↑ STS, ↑ SR; no change in VO2 peak, 6MWT, and PAL Rx1 vs. Rx2: No change in VO2 peak, 6MWT, STS, SR, and PAL |
10 | Kirkman et al., 2014 [31], randomized controlled trial | Rx1-12 Rx2-5 Control1: 11 Control2: 4 | HD; older than 18 years; normal sedentary individuals | Rx1: progressive resistance training during HD Rx2: progressive resistance training in normal individuals Control1: low-intensity lower body stretching during HD Control2: low-intensity lower body stretching in normal individuals | 3 months | Rx1 vs. control1: ↑ thigh muscle volume, ↑ knee extensor strength; no change in STS, 6MWT, and 8-ft get-up-and-go test Rx2 vs. control2: ↑ STS, ↑ 6MWT; no change in thigh muscle volume, knee extensor strength, and 8-ft get-up-and-go test Rx1 vs Rx2: ↑ STS (greater increase in normal group); no change in thigh muscle volume, knee extensor strength, 6MWT, and 8-ft get-up-and-go test |
11 | De lima et al., 2013 [32], randomized controlled trial | Rx1-11 Rx2-10 Control-11 | HD; age range 18–75 years | Rx1: strength training during HD Rx2: aerobic training during HD Control: usual care | 2 months | Two Rx groups vs. control: ↑ respiratory muscular strength, ↑ number of steps achieved |
12 | Song et al., 2012 [33], randomized controlled trial | Rx-20 Control-20 | HD; older than 18 years | Rx: resistance training during HD Control: usual care | 3 months | Rx vs. control: ↑ skeletal muscle mass, ↑ leg muscle strength; ↓ body fat rate; no change in visceral far area, waist circumference, arm muscle circumference, and handgrip strength |
13 | Chen et al., 2010 [34], randomized controlled trial | Rx-25 Control-25 | HD; older than 30 years; serum albumin < 4.2 g/dL | Rx: low-intensity strength training during HD Control: stretching exercise | 6 months (48 exercise sessions) | Rx vs. control: ↑ lean whole-body mass, ↑ leg lean mass, ↑ knee extensor strength, ↑ short physical performance battery score, ↑ self-reported physical function, ↑ leisure-time physical activity; ↓ whole-body fat mass |
14 | Kopple et al., 2007 [35], randomized controlled trial | Rx1-10 Rx2-15 Rx3-12 Control1-14 non-exercising HD Control2-20 normal people | HD; age range 25–65 years; healthy matched controls | Rx1: endurance training during HD Rx2: strength training before HD Rx3: endurance + strength training before and during HD Control1: usual care HD Control2: non-exercising normal | 22 weeks | Significant changes within each group: Rx1: ↑ muscle mRNA in IGF-1 and IGFBP-2 Rx2: ↑ muscle mRNA in IGF-IEa and IGF-1 Rx3: In muscle, ↑ IGF-IEa mRNA, ↑ IGF-IEc mRNA, ↑ IGF-II mRNA Significant changes in Rx1, Rx2, and Rx3 combined: ↑ vastus lateralis muscle mRNA in IGF-IEa, IGF-IEc, IGF-IR, IGF-II, IGFBP-2, and IGFBP-3, ↑ muscle IGF-1, ↑ anthropometry derived fat-free mass; ↓ muscle mRNA of myostatin, ↓ skinfold thickness, ↓ anthropometry-derived percentage body fat and total body fat; no change in dietary protein or energy intake, c-reactive protein, tumor necrosis factor alpha, and IL-6 |
15 | Cheema et al., 2007 [36], randomized controlled trial | Rx-24 Control-25 | HD; older than 18 years | Rx: high-intensity resistance training during HD Control: usual care | 3 months | Rx vs. control: ↓ thigh muscle lipid infiltration, ↓ c-reactive protein; ↑ total strength, ↑ mid-arm circumference, ↑ mid-thigh circumference, ↑ body weight, ↑ BMI; no change in dietary energy or protein intake, total or subcutaneous fat of the mid-thigh, muscle CSA, 6MWT, and habitual physical activity |
16 | Storer et al., 2005 [37] † | Rx-12 HD Control1-12 non-exercising MHD Control2-12 normal people | HD; Normal matched controls | Rx: stationary-cycle endurance training during HD Control1: non-exercising HD patients Control2: non-exercising normal | 9 weeks | Significant changes within each group: Rx: ↑ quadriceps strength, ↑ leg-press fatigability, ↑ stair-climb time, ↑ 10 m walk, ↑ timed up-and-go, ↑ VO2 peak, ↑ endurance time Non-exercise HD and normal subjects: no changes. |
17 | Vilsteren et al., 2005 [38], randomized controlled trial | Rx-53 Control-43 | HD; older than 18 years | Rx: strength training (before HD) plus cycling (during HD) Control: usual care | 3 months | Rx vs. control: ↑ reaction time, ↑ lower extremity muscle strength; no change in VO2 peak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekramzadeh, M.; Santoro, D.; Kopple, J.D. The Effect of Nutrition and Exercise on Body Composition, Exercise Capacity, and Physical Functioning in Advanced CKD Patients. Nutrients 2022, 14, 2129. https://doi.org/10.3390/nu14102129
Ekramzadeh M, Santoro D, Kopple JD. The Effect of Nutrition and Exercise on Body Composition, Exercise Capacity, and Physical Functioning in Advanced CKD Patients. Nutrients. 2022; 14(10):2129. https://doi.org/10.3390/nu14102129
Chicago/Turabian StyleEkramzadeh, Maryam, Domenico Santoro, and Joel D. Kopple. 2022. "The Effect of Nutrition and Exercise on Body Composition, Exercise Capacity, and Physical Functioning in Advanced CKD Patients" Nutrients 14, no. 10: 2129. https://doi.org/10.3390/nu14102129
APA StyleEkramzadeh, M., Santoro, D., & Kopple, J. D. (2022). The Effect of Nutrition and Exercise on Body Composition, Exercise Capacity, and Physical Functioning in Advanced CKD Patients. Nutrients, 14(10), 2129. https://doi.org/10.3390/nu14102129