Bariatric Surgery Induced Changes in Blood Cholesterol Are Modulated by Vitamin D Status
Abstract
:1. Introduction
2. Methods
2.1. Patients
2.2. Biochemical Analyses
2.3. Statistical Analysis
3. Results
Biochemical Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tozzo, C.; Moreira, E.A.M.; de Freitas, M.B.; da Silva, A.F.; Portari, G.V.; Filho, D.W. Effect of RYGB on Oxidative Stress in Adults: A 6-Year Follow-up Study. Obes. Surg. 2020, 30, 3301–3308. [Google Scholar] [CrossRef] [PubMed]
- Frige, F.; Laneri, M.; Veronelli, A.; Folli, F.; Paganelli, M.; Vedani, P.; Marchi, M.; Noe, D.; Ventura, P.; Opocher, E.; et al. Bariatric surgery in obesity: Changes of glucose and lipid metabolism correlate with changes of fat mass. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Marirrodriga, I.; Amaya-Romero, C.; Ruiz-Diaz, G.P.; Fernandez, S.; Ballesta-Lopez, C.; Pou, J.M.; Romeo, J.H.; Vilahur, G.; Vilhur, G.; Badimon, L.; et al. Evolution of lipid profiles after bariatric surgery. Obes. Surg. 2012, 22, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Iannelli, A.; Anty, R.; Schneck, A.S.; Tran, A.; Hebuterne, X.; Gugenheim, J. Evolution of low-grade systemic inflammation, insulin resistance, anthropometrics, resting energy expenditure and metabolic syndrome after bariatric surgery: A comparative study between gastric bypass and sleeve gastrectomy. J. Visc. Surg. 2013, 150, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Kim, W.; Kwon, H.S.; Baek, K.H.; Kim, E.K.; Song, K.H. Effects of bariatric surgery on metabolic and nutritional parameters in severely obese Korean patients with type 2 diabetes: A prospective 2-year follow up. J. Diabetes Investig. 2014, 5, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaki, M.K.S.; Al-Jefri, O.H.; Kordi, R.E.; Aljohani, A.H.; Rizq, M.A.; Kasem, G.H.; Abuasidah, S.B. Correlation of Bariatric Surgery Effect on Lipid Profile Among Obese Patients. Cureus 2021, 13, e18118. [Google Scholar] [CrossRef] [PubMed]
- Jastrzebski, Z.; Kortas, J.; Kaczor, K.; Antosiewicz, J. Vitamin D Supplementation Causes a Decrease in Blood Cholesterol in Professional Rowers. J. Nutr. Sci. Vitaminol. 2016, 62, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prusik, K.; Kortas, J.; Prusik, K.; Mieszkowski, J.; Jaworska, J.; Skrobot, W.; Lipinski, M.; Ziemann, E.; Antosiewicz, J. Nordic Walking Training Causes a Decrease in Blood Cholesterol in Elderly Women Supplemented with Vitamin D. Front. Endocrinol. 2018, 9, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajpathak, S.N.; Xue, X.; Wassertheil-Smoller, S.; Van Horn, L.; Robinson, J.G.; Liu, S.; Allison, M.; Martin, L.W.; Ho, G.Y.; Rohan, T.E. Effect of 5 y of calcium plus vitamin D supplementation on change in circulating lipids: Results from the Women's Health Initiative. Am. J. Clin. Nutr. 2010, 91, 894–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pludowski, P.; Jaworski, M.; Niemirska, A.; Litwin, M.; Szalecki, M.; Karczmarewicz, E.; Michalkiewicz, J. Vitamin D status, body composition and hypertensive target organ damage in primary hypertension. J. Steroid Biochem. Mol. Biol. 2014, 144 Pt A, 180–184. [Google Scholar] [CrossRef]
- McQueen, M.J.; Hawken, S.; Wang, X.Y.; Ounpuu, S.; Sniderman, A.; Probstfield, J.; Steyn, K.; Sanderson, J.E.; Hasani, M.; Volkova, E.; et al. Lipids, lipoproteins, and apolipoproteins as risk markers of myocardial infarction in 52 countries (the INTERHEART study): A case-control study. Lancet 2008, 372, 224–233. [Google Scholar] [CrossRef]
- Auwerx, J.; Bouillon, R.; Kesteloot, H. Relation between 25-hydroxyvitamin D3, apolipoprotein A-I, and high density lipoprotein cholesterol. Arterioscler. Thromb. A J. Vasc. Biol./Am. Heart Assoc. 1992, 12, 671–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemere, I.; Wilson, C.; Jensen, W.; Steinbeck, M.; Rohe, B.; Farach-Carson, M.C. Mechanism of 24,25-dihydroxyvitamin D3-mediated inhibition of rapid, 1,25-dihydroxyvitamin D3-induced responses: Role of reactive oxygen species. J. Cell. Biochem. 2006, 99, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Eckfeldt, J.H.; Ogagarue, E.R.; Folsom, A.R.; Michos, E.D.; Gross, M. The 25-hydroxyvitamin D3 C-3 epimer: Distribution, correlates, and reclassification of 25-hydroxyvitamin D status in the population-based Atherosclerosis Risk in Communities Study (ARIC). Clin. Chim. Acta 2015, 442, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arterburn, D.E.; Courcoulas, A.P. Bariatric surgery for obesity and metabolic conditions in adults. BMJ 2014, 349, g3961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, A.; Bashir, A.; Fobi, M.; Higa, K.; Herrera, M.F.; Torres, A.J.; Himpens, J.; Shikora, S.; Ramos, A.C.; Kow, L.; et al. The IFSO Worldwide One Anastomosis Gastric Bypass Survey: Techniques and Outcomes? Obes. Surg. 2021, 31, 1411–1421. [Google Scholar] [CrossRef]
- Lv, Y.; Liang, T.; Wang, G.; Li, Z. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci. Rep. 2018, 38, BSR20181061. [Google Scholar] [CrossRef]
- Fried, M.; Yumuk, V.; Oppert, J.M.; Scopinaro, N.; Torres, A.; Weiner, R.; Yashkov, Y.; Fruhbeck, G. International Federation for Surgery of Obesity and Metabolic Disorders-European Chapter (IFSO-EC); Metabolic Disorders-European, C. ; et al. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes. Surg. 2014, 24, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Rola, R.; Kowalski, K.; Bienkowski, T.; Studzinska, S. Improved sample preparation method for fast LC-MS/MS analysis of vitamin D metabolites in serum. J. Pharm. Biomed. Anal. 2020, 190, 113529. [Google Scholar] [CrossRef]
- Mieszkowski, J.; Stankiewicz, B.; Kochanowicz, A.; Niespodzinski, B.; Kowalik, T.; Zmijewski, M.A.; Kowalski, K.; Rola, R.; Bienkowski, T.; Antosiewicz, J. Ultra-Marathon-Induced Increase in Serum Levels of Vitamin D Metabolites: A Double-Blind Randomized Controlled Trial. Nutrients 2020, 12, 3629. [Google Scholar] [CrossRef]
- Vickers, A.J.; Altman, D.G. Statistics notes: Analysing controlled trials with baseline and follow up measurements. BMJ 2001, 323, 1123–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Psychology Press: Hove, UK, 2014. [Google Scholar]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J. Clin. Endocrinol. Metab. 2012, 97, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, C.L.; Greer, F.R.; American Academy of Pediatrics Section on Breastfeeding; American Academy of Pediatrics Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008, 122, 1142–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hypponen, E.; Laara, E.; Reunanen, A.; Jarvelin, M.R.; Virtanen, S.M. Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet 2001, 358, 1500–1503. [Google Scholar] [CrossRef]
- von Hurst, P.R.; Stonehouse, W.; Coad, J. Vitamin D supplementation reduces insulin resistance in South Asian women living in New Zealand who are insulin resistant and vitamin D deficient-A randomised, placebo-controlled trial. Br. J. Nutr. 2010, 103, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yiu, Y.F.; Yiu, K.H.; Siu, C.W.; Chan, Y.H.; Li, S.W.; Wong, L.Y.; Lee, S.W.; Tam, S.; Wong, E.W.; Lau, C.P.; et al. Randomized controlled trial of vitamin D supplement on endothelial function in patients with type 2 diabetes. Atherosclerosis 2013, 227, 140–146. [Google Scholar] [CrossRef]
- Maki, K.C.; Rubin, M.R.; Wong, L.G.; McManus, J.F.; Jensen, C.D.; Lawless, A. Effects of vitamin D supplementation on 25-hydroxyvitamin D, high-density lipoprotein cholesterol, and other cardiovascular disease risk markers in subjects with elevated waist circumference. Int. J. Food Sci. Nutr. 2011, 62, 318–327. [Google Scholar] [CrossRef]
A | B | C | One-Way ANOVA | |
---|---|---|---|---|
25(OH)D3 [ng/mL] | 27.55 ± 10.89 | 29.88 ± 13.08 | 33.97 ± 11.43 | 0.08 |
25(OH)D2 [ng/mL] | 0.45 ± 0.32 | 0.31 ± 0.23 | 0.14 ± 0.12 * | 0.00 |
24,25(OH)2D3 [ng/mL] | 2.13 ± 1.32 | 2.48 ± 1.62 | 2.51 ± 1.41 | 0.21 |
epi-25(OH)D3 [ng/mL] | 1.14 ± 0.78 | 1.31 ± 0.91 | 1.57 ± 0.98 | 0.11 |
B | C | Δ (CI) | p | |
---|---|---|---|---|
hsCRP [mg/L] | 2.78 ± 1.24 | 1.73 ± 0.58 | −1.05 (−1.56;−0.55) | 0.00 |
LDL [mg/dL] | 116.33 ± 31.24 | 118.9 ± 29.31 | 2.57 (−15.24;20.38) | 0.77 |
HDLC [mg/dL] | 41.04 ± 8.14 | 50.01 ± 11.63 | 8.98 (4.14;13.81) | 0.00 |
CHOL [mg/dL] | 172.69 ± 35.56 | 198.2 ± 38.33 | 25.51 (3.46;47.56) | 0.09 |
TG [mg/dL] | 158.09 ± 75.71 | 115.36 ± 44.84 | −42.73 (−73.54;−11.92) | 0.01 |
GLU [mg/dL] | 131.4 ± 20.79 | 102.39 ± 20.37 | −29.01 (−41.52;−16.5) | 0.00 |
ALB [g/L] | 37.17 ± 2.26 | 41.45 ± 3.89 | 4.28 (2.57;5.99) | 0.00 |
PRO [g/L] | 61.29 ± 5.89 | 66.58 ± 5.53 | 5.29 (2.18;8.4) | 0.00 |
(A) 25(OH)D3 < 32 [ng/mL] (n = 15) | (A) 25(OH)D3 > 32 [ng/mL] (n = 9) | rANOVA | |||||
---|---|---|---|---|---|---|---|
B | C | Δ (CI) | B | C | Δ (CI) | Group × Time | |
hsCRP mg/L] | 3.06 ± 1.27 | 1.85 ± 0.63 | −1.21 (−1.97;−0.45) | 2.31 ± 1.1 | 1.52 ± 0.45 | −0.8 (−1.44;−0.15) | 0.42 |
LDL [mg/dL] | 115.8 ± 34.9 | 128.72 ± 31.78 | 12.92 (−12.96;38.79) | 117.21 ± 25.92 | 102.54 ± 14.84 | −14.68 (−35.84;6.49) | 0.12 |
HDLC [mg/dL] | 43.69 ± 8.05 | 53.34 ± 13.23 | 9.66 (2.48;16.83) | 36.62 ± 6.47 | 44.46 ± 5.25 | 7.84 (0.95;14.74) | 0.72 |
CHOL [mg/dL] | 169.9 ± 35.85 | 213.51 ± 39.6 * | 43.61 (13.78;73.45) | 177.34 ± 36.71 | 172.69 ± 17.54 | −4.65 (−30.41;21.1) | 0.02 |
TG [mg/dL] | 160.7 ± 86.49 | 124.44 ± 52.76 | −36.26 (−82.96;10.45) | 153.73 ± 57.93 | 100.21 ± 22.29 | −53.51 (−93.08;−13.94) | 0.59 |
GLU [mg/dL] | 126.81 ± 21.14 | 103.83 ± 22.71 | −22.99 (−38.85;−7.12) | 139.04 ± 18.85 | 99.99 ± 16.73 | −39.04 (−62.19;−15.9) | 0.21 |
ALB [g/L] | 37.11 ± 2.46 | 41.97 ± 4.56 | 4.86 (2.41;7.3) | 37.27 ± 2.03 | 40.58 ± 2.4 | 3.31 (0.72;5.89) | 0.37 |
PRO [g/L] | 61.58 ± 7.26 | 67.77 ± 5.35 | 6.19 (1.6;10.78) | 60.79 ± 2.66 | 64.58 ± 5.54 | 3.79 (−0.52;8.1) | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reczkowicz, J.; Mika, A.; Antosiewicz, J.; Kortas, J.; Proczko-Stepaniak, M.; Śledziński, T.; Kowalski, K.; Kaska, Ł. Bariatric Surgery Induced Changes in Blood Cholesterol Are Modulated by Vitamin D Status. Nutrients 2022, 14, 2000. https://doi.org/10.3390/nu14102000
Reczkowicz J, Mika A, Antosiewicz J, Kortas J, Proczko-Stepaniak M, Śledziński T, Kowalski K, Kaska Ł. Bariatric Surgery Induced Changes in Blood Cholesterol Are Modulated by Vitamin D Status. Nutrients. 2022; 14(10):2000. https://doi.org/10.3390/nu14102000
Chicago/Turabian StyleReczkowicz, Joanna, Adriana Mika, Jędrzej Antosiewicz, Jakub Kortas, Monika Proczko-Stepaniak, Tomasz Śledziński, Konrad Kowalski, and Łukasz Kaska. 2022. "Bariatric Surgery Induced Changes in Blood Cholesterol Are Modulated by Vitamin D Status" Nutrients 14, no. 10: 2000. https://doi.org/10.3390/nu14102000
APA StyleReczkowicz, J., Mika, A., Antosiewicz, J., Kortas, J., Proczko-Stepaniak, M., Śledziński, T., Kowalski, K., & Kaska, Ł. (2022). Bariatric Surgery Induced Changes in Blood Cholesterol Are Modulated by Vitamin D Status. Nutrients, 14(10), 2000. https://doi.org/10.3390/nu14102000