Diet-Related Phototoxic Reactions in Psoriatic Patients Undergoing Phototherapy: Results from a Multicenter Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion/Exclusion Criteria
2.3. MED Evaluation and Erythema Quantification
2.4. Phototherapy Protocol
2.5. Dietary Evaluation
- ▪
- Vegans where patients “ate only all kinds of fruits, vegetables, nuts, grains, seeds, beans and pulses” [29];
- ▪
- Vegetarians or “fully vegetarians” where patients “never ate meat, poultry and fish, or ate these foods less than once a month” [30];
- ▪
- Omnivores if they patients not represented by the previous classifications.
2.6. Statistical Analysis
3. Results
3.1. Clinical Data and Demographics
3.2. Erythema and MED
3.3. Diet Photoactives and Their Impact
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ben Abdallah, H.; Johansen, C.; Iversen, L. Key Signaling Pathways in Psoriasis: Recent Insights from Antipsoriatic Therapeutics. Psoriasis (Auckland) 2021, 11, 83–97. [Google Scholar]
- Marzano, A.V.; Damiani, G.; Genovese, G.; Gattorno, M. A dermatologic perspective on autoinflammatory diseases. Clin. Exp. Rheumatol. 2018, 36 (Suppl. 110), 32–38. [Google Scholar]
- Stober, C. Pathogenesis of psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 2021, 35, 101694. [Google Scholar] [CrossRef]
- Yan, D.; Blauvelt, A.; Dey, A.K.; Golpanian, R.S.; Hwang, S.T.; Mehta, N.N.; Myers, B.; Shi, Z.-R.; Yosipovitch, G.; Bell, S.; et al. New Frontiers in Psoriatic Disease Research, Part II: Comorbidities and Targeted Therapies. J. Investig. Dermatol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Santus, P.; Rizzi, M.; Radovanovic, D.; Airoldi, A.; Cristiano, A.; Conic, R.; Petrou, S.; Pigatto, P.D.M.; Bragazzi, N.; Colombo, D.; et al. Psoriasis and Respiratory Comorbidities: The Added Value of Fraction of Exhaled Nitric Oxide as a New Method to Detect, Evaluate, and Monitor Psoriatic Systemic Involvement and Therapeutic Efficacy. Biomed Res. Int. 2018, 2018, 3140682. [Google Scholar] [CrossRef] [PubMed]
- Damiani, G.; Pacifico, A.; Rizzi, M.; Santus, P.; Bridgewood, C.; Bragazzi, N.; Adawi, M.; Watad, A. Patients with psoriatic arthritis have higher levels of FeNO than those with only psoriasis, which may reflect a higher prevalence of a subclinical respiratory involvement. Clin. Rheumatol. 2020, 39, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Damiani, G.; Radaeli, A.; Olivini, A.; Calvara-Pinton, P.; Malerba, M. Increased airway inflammation in patients with psoriasis. Br. J. Dermatol. 2016, 175, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Damiani, G.; Radaeli, A.; Ragnoli, B.; Olivini, A.; Calzavara-Pinton, P. Narrowband ultraviolet B phototherapy in psoriasis reduces proinflammatory cytokine levels and improves vitiligo and neutrophilic asthma. Br. J. Dermatol. 2015, 173, 1544–1545. [Google Scholar] [CrossRef]
- Conic, R.R.; Damiani, G.; Schrom, K.P.; Ramser, A.E.; Zheng, C.; Xu, R.; McCormick, T.S.; Cooper, K.D. Psoriasis and Psoriatic Arthritis Cardiovascular Disease Endotypes Identified by Red Blood Cell Distribution Width and Mean Platelet Volume. J. Clin. Med. 2020, 9, 186. [Google Scholar] [CrossRef] [Green Version]
- Seth, D.; Ehlert, A.N.; Golden, J.B.; Damiani, G.; McCormick, T.S.; Cameron, M.J.; Cooper, K.D. Interaction of Resistin and Systolic Blood Pressure in Psoriasis Severity. J. Investig. Dermatol. 2020, 140, 1279–1282.e1. [Google Scholar] [CrossRef]
- Barrea, L.; Balato, N.; Di Somma, C.; Macchia, P.E.; Napolitano, M.; Savanelli, M.C.; Esposito, K.; Colao, A.; Savastano, S. Nutrition and psoriasis: Is there any association between the severity of the disease and adherence to the Mediterranean diet? J. Transl. Med. 2015, 13, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, A.R.; Siegel, M.; Bagel, J.; Cordoro, K.M.; Garg, A.; Gottlieb, A.; Green, L.J.; Gudjonsson, J.E.; Koo, J.; Lebwohl, M.; et al. Dietary Recommendations for Adults with Psoriasis or Psoriatic Arthritis from the Medical Board of the National Psoriasis Foundation: A Systematic Review. JAMA Dermatol. 2018, 154, 934–950. [Google Scholar] [CrossRef]
- Phan, C.; Touvier, M.; Kesse-Guyot, E.; Adjibade, M.; Hercberg, S.; Wolkenstein, P.; Chosidow, O.; Ezzedine, K.; Sbidian, E. Association between Mediterranean Anti-inflammatory Dietary Profile and Severity of Psoriasis: Results from the NutriNet-Santé Cohort. JAMA Dermatol. 2018, 154, 1017–1024. [Google Scholar] [CrossRef]
- Adawi, M.; Damiani, G.; Bragazzi, N.L.; Bridgewood, C.; Pacifico, A.; Conic, R.R.; Morrone, A.; Malagoli, P.; Pigatto, P.D.M.; Amital, H.; et al. The Impact of Intermittent Fasting (Ramadan Fasting) on Psoriatic Arthritis Disease Activity, Enthesitis, and Dactylitis: A Multicentre Study. Nutrients 2019, 11, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damiani, G.; Watad, A.; Bridgewood, C.; Pigatto, P.D.M.; Pacifico, A.; Malagoli, P.; Bragazzi, N.L.; Adawi, M. The Impact of Ramadan Fasting on the Reduction of PASI Score, in Moderate-To-Severe Psoriatic Patients: A Real-Life Multicenter Study. Nutrients 2019, 11, 277. [Google Scholar] [CrossRef] [Green Version]
- Kocic, H.; Damiani, G.; Stamenkovic, B.; Tirant, M.; Jovic, A.; Tiodorovic, D.; Peris, K. Dietary compounds as potential modulators of microRNA expression in psoriasis. Ther. Adv. Chronic Dis. 2019, 10, 2040622319864805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damiani, G.; Bragazzi, N.L.; McCormick, T.S.; Pigatto, P.D.M.; Leone, S.; Pacifico, A.; Tiodorovic, D.; Di Franco, S.; Alfieri, A.; Fiore, M. Gut microbiota and nutrient interactions with skin in psoriasis: A comprehensive review of animal and human studies. World J. Clin. Cases 2020, 8, 1002–1012. [Google Scholar] [CrossRef]
- Melough, M.M.; Chun, O.K. Dietary furocoumarins and skin cancer: A review of current biological evidence. Food Chem. Toxicol. 2018, 122, 163–171. [Google Scholar] [CrossRef]
- Melough, M.M.; Cho, E.; Chun, O.K. Furocoumarins: A review of biochemical activities, dietary sources and intake, and potential health risks. Food Chem. Toxicol. 2018, 113, 99–107. [Google Scholar] [CrossRef]
- Boffa, M.J.; Gilmour, E.; Ead, R.D. Celery soup causing severe phototoxicity during PUVAtherapy. Br. J. Dermatol. 1996, 135, 334. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, A.; Damiani, G.; Iacovelli, P.; Conic, R.R.; Scarabello, A.; Filoni, A.; Malagoli, P.; Bragazzi, N.; Pigatto, P.D.; Morrone, A. Photoadaptation to ultraviolet B TL01 in psoriatic patients. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1750–1754. [Google Scholar] [CrossRef]
- Addison, R.; Weatherhead, S.C.; Pawitri, A.; Smith, G.R.; Rider, A.; Grantham, H.J.; Cockell, S.J.; Reynolds, N.J. Therapeutic wavelengths of ultraviolet B radiation activate apoptotic, circadian rhythm, redox signalling and key canonical pathways in psoriatic epidermis. Redox Biol. 2021, 41, 101924. [Google Scholar] [CrossRef] [PubMed]
- Ando, N.; Nakamura, Y.; Aoki, R.; Ishimaru, K.; Ogawa, H.; Okumura, K.; Shibata, S.; Shimada, S.; Nakao, A. Circadian Gene Clock Regulates Psoriasis-Like Skin Inflammation in Mice. J. Investig. Dermatol. 2015, 135, 3001–3008. [Google Scholar] [CrossRef] [Green Version]
- Rezzani, R.; Rodella, L.F.; Favero, G.; Damiani, G.; Paganelli, C.; Reiter, R.J. Attenuation of ultraviolet A-induced alterations in NIH3T3 dermal fibroblasts by melatonin. Br. J. Dermatol. 2014, 170, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Damiani, G.; Bragazzi, N.L.; Garbarino, S.; Chattu, V.K.; Shapiro, C.M.; Pacifico, A.; Malagoli, P.; Pigatto, P.D.M.; Conic, R.R.Z.; Tiodorovic, D.; et al. Psoriatic and psoriatic arthritis patients with and without jet-lag: Does it matter for disease severity scores? Insights and implications from a pilot, prospective study. Chronobiol. Int. 2019, 36, 1733–1740. [Google Scholar] [CrossRef]
- Duszka, K.; Wahli, W. Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients 2020, 12, 3476. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lozano, N.; Tvarijonaviciute, A.; Ríos, R.; Barón, I.; Scheer, F.; Garaulet, M. Late Eating Is Associated with Obesity, Inflammatory Markers and Circadian-Related Disturbances in School-Aged Children. Nutrients 2020, 12, 2881. [Google Scholar] [CrossRef] [PubMed]
- Russo, F.; Vispi, M.; Sirna, R.; Mancini, V.; Bagnoni, G.; Bartoli, L.; Bellini, M.; Brandini, L.; Caproni, M.; Castelli, A.; et al. Tuscan consensus on the use of UVBnb phototherapy in the treatment of psoriasis. G. Ital. Dermatol. Venereol. 2019, 154, 99–105. [Google Scholar] [CrossRef]
- The Vegan Society. So What Do Vegans Eat? Available online: www.vegansociety.com/go-vegan/definition-veganism (accessed on 28 June 2021).
- Jaacks, L.M.; Kapoor, D.; Singh, K.; Narayan, K.V.; Ali, M.K.; Kadir, M.M.; Mohan, V.; Tandon, N.; Prabhakaran, D. Vegetarianism and cardio- metabolic disease risk factors: Differences between South Asian and US adults. Nutrition 2016, 32, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Phenol-Explorer. Database on Polyphenol Content in Foods. Available online: http://phenol-explorer.eu/foods (accessed on 18 August 2021).
- Food Science Graz. Available online: https://foodscience.tugraz.at (accessed on 18 August 2021).
- Fernández-García, E.; Carvajal-Lérida, I.; Jarén-Galán, M.; Garrido-Fernández, J.; Pérez-Gálvez, A.; Hornero-Méndez, D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res. Int. 2012, 46, 438–450. [Google Scholar] [CrossRef]
- Fernández-García, E.; Carvajal-Lérida, I.; Jarén-Galán, M.; Garrido-Fernández, J.; Pérez-Gálvez, A.; Hornero-Méndez, D. Identification and Quantitation of Furocoumarins in Popularly Consumed Foods in the U.S. Using QuEChERS Extraction Coupled with UPLC-MS/MS Analysis. J. Agric. Food Chem. 2017, 65, 5049–5055. [Google Scholar]
- Afifi, L.; Danesh, M.J.; Lee, K.M.; Beroukhim, K.; Farahnik, B.; Ahn, R.S.; Yan, D.; Singh, R.K.; Nakamura, M.; Koo, J.; et al. Dietary Behaviors in Psoriasis: Patient-Reported Outcomes from a U.S. National Survey. Dermatol. Ther. 2017, 7, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Fusano, M.; Fusano, I.; Galimberti, M.G.; Bencini, M.; Bencini, P.L. Comparison of Postsurgical Scars between Vegan and Omnivore Patients. Dermatol. Surg. 2020, 46, 1572–1576. [Google Scholar] [CrossRef] [PubMed]
- Fusano, M.; Zane, C.; Calzavara-Pinton, P.; Bencini, P.L. Photodynamic therapy for actinic keratosis in vegan and omnivore patients: The role of diet on skin healing. J. Dermatolog. Treat. 2019, 32, 78–83. [Google Scholar] [CrossRef]
- Puig, L.; de Moragas, J.M. Enhancement of PUVA phototoxic effects following celery ingestion: Cool broth also can burn. Arch. Dermatol. 1994, 130, 809–810. [Google Scholar] [CrossRef]
- Wolters, M. Die Bedeutung der Ernährung und begleitender Faktoren für die Psoriasis [The significance of diet and associated factors in psoriasis]. Hautarzt 2006, 57, 999–1004. [Google Scholar] [CrossRef]
- Wagstaff, D.J. Dietary exposure to furocumarins. Regul. Toxicol. Pharmacol. 1991, 14, 261–272. [Google Scholar] [CrossRef]
- Ortiz-Rodríguez, L.A.; Reichardt, C.; Hoehn, S.J.; Jockusch, S.; Crespo-Hernández, C.E. Detection of the thietane precursor in the UVA formation of the DNA 6-4 photoadduct. Nat. Commun. 2020, 11, 3599. [Google Scholar] [CrossRef]
- Beattie, P.E.; Wilkie, M.J.V.; Smith, G.; Ferguson, J.; Ibbottson, S.H. Can dietary furocumarin ingestion enhance the erythemal response during high dose UVA1 therapy? J. Am. Acad. Dermatol. 2007, 56, 84–87. [Google Scholar] [CrossRef]
- Souetre, E.; Salvati, E.; Belugou, J.L.; Krebs, B.; Darcourt, G. 5-Methoxypsoralen as a specific stimulating agent of melatonin secretion in humans. J. Clin. Endocrinol. Metab. 1990, 71, 670–674. [Google Scholar] [CrossRef]
- Mozzanica, N.; Tadini, G.; Radaelli, A.; Negri, M.; Pigatto, P.; Morelli, M.; Frigerio, U.; Finzi, A.; Esposti, G.; Rossi, D. Plasma melatonin levels in psoriasis. Acta Derm.-Venereol. 1988, 68, 312–316. [Google Scholar] [PubMed]
- Mackenzi, L.A.; Frainbel, W. Construction and Development of a Grating Monochromator and Its Application to Study of Reaction of Skin to Light. Br. J. Dermatol. 1973, 89, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Moseley, H.; Ferguson, J. Which light source should be used for the investigation of clinical phototoxicity: Monochromator or solar simulator? Photodermatol. Photoimmunol. Photomed. 2010, 26, 3–6. [Google Scholar] [CrossRef] [PubMed]
Population Characteristics | Omnivores (n = 40) | Vegans (n = 38) | Vegetarians (n = 41) | p |
---|---|---|---|---|
Male, n (%) | 19 (47.50) | 18 (47.37) | 16 (39.02) | 0.68 |
Skin Phototypes | 0.43 | |||
II | 4 (10.00) | 9 (23.68) | 8 (19.51) | |
III | 17 (42.50) | 16 (42.11) | 19 (46.34) | |
IV | 19 (47.50) | 12 (31.58) | 14 (34.15) | |
V | 0 (0.00) | 1 (2.63) | 0 (0.0)) | |
Age (average (SD), years) | 39.27 (9.24) | 40.66 (8.28) | 39.80 (8.96) | 0.79 |
PASI (average (SD)) | ||||
T0 | 12.78 (2.83) | 12.39 (2.95) | 13.15 (3.27) | 0.55 |
T1 | 1.95 (4.09) | 8.87 (4.31) | 4.59 (5.24) | <0.01 |
MED (average (SD), mJ/cm2) | 33.62 (4.53) | 21.18 (4.85) | 28.90 (6.66) | <0.01 |
Treatments (average (SD) | 15.07 (4.28) | 12.13 (6.41) | 14.61 (5.38) | 0.40 |
Erythema (%) | <0.001 | |||
Absent | 19 (47.50) | 0 (0.00) | 14 (34.15) | |
Mild | 17 (42.50) | 10 (26.32) | 14 (34.15) | |
Moderate | 0 (0.00) | 12 (31.58) | 6 (14.63) | |
Severe | 4 (10.00) | 16 (42.11) | 7 (17.07) | |
PsA, n (%) | 11 (27.50) | 11 (28.95) | 11 (26.83) | 0.98 |
DAPSA (average (SD)) | 14.75 (2.99) | 16.00 (2.05) | 12.82 (2.32) | 0.21 |
Level of Photoactives Ingested | Omnivores (N = 40) | Vegans (N = 38) | Vegetarians (N = 41) | p |
---|---|---|---|---|
Furocumarins, N (%) | <0.01 | |||
None | 29 (72.50) | 0 (0.00) | 14 (34.15) | |
Low | 11 (27.50) | 10 (26.32) | 16 (39.02) | |
Intermediate | 0 (0.00) | 7 (18.42) | 7(17.07) | |
High | 0 (0.00) | 21 (55.26) | 4 (9.76) | |
Carotenoids, N (%) | 0.31 | |||
None | 4 (10.00) | 9 (23.68) | 8 (19.51) | |
Low | 17 (42.50) | 16 (42.11) | 19 (46.34) | |
Intermediate | 19 (47.50) | 12 (31.58) | 14 (34.15) | |
High | 0 (0.00) | 1 (2.63) | 0 (0.0) | |
Astaxanthines, N (%) | <0.01 | |||
None | 15 (37.50) | 0 (0.00) | 0 (0.00) | |
Low | 16 (40.00) | 13 (34.21) | 17 (41.46) | |
Intermediate | 8 (20.00) | 14 (36.84) | 12 (29.27) | |
High | 1 (2.50) | 11 (28.95) | 12 (29.27) | |
Polyphenols, N (%) | <0.01 | |||
None | 17 (42.50) | 0 (0.00) | 0 (0.00) | |
Low | 18 (45.00) | 19 (50.00) | 16 (39.02) | |
Intermediate | 4 (10.00) | 5 (13.16) | 14 (34.15) | |
High | 1 (2.50) | 14 (36.84) | 11 (26.83) |
Specific Foods Intake | Omnivores (n = 40), g/week | Vegans (n = 38), g/week | Vegetarians (n = 41), g/week | p |
---|---|---|---|---|
Parsley (average (SD) | 1.0 (2.8) | 601.3 (467.4) | 35.3 (80.0) | <0.001 |
Grapefruit (average (SD) | 7.5 (26.7) | 1611.8 (1122.1) | 113.9 (223.6) | <0.001 |
Lime (average (SD) | 2.5 (11.0) | 277.6 (245.3) | 38.3 (60.9) | <0.001 |
Lemon (average (SD) | 5.6 (17.4) | 960.5 (495.0) | 34.1 (74.5) | <0.001 |
Celeriac (average (SD) | 0 (0) | 717.1 (948.3) | 67.1 (187.6) | <0.001 |
Parsnip (average (SD) | 0 (0) | 1063.2 (920.1) | 23.2 (65.3) | <0.001 |
Celery (average (SD) | 3.8 (13.3) | 1355.3 (553.3) | 169.5 (304.9) | <0.001 |
Orange (average (SD) | 13.8 (40.8) | 1726.3 (615.4) | 402.2 (458.8) | <0.001 |
Cilantro (aver-age (SD) | 0.3 (1.6) | 96.2 (145.4) | 6.7 (13.9) | <0.001 |
Carrots (average (SD) | 8.2 (33.6) | 1815.8 (711.1) | 525.6 (785.4) | <0.001 |
NB-UVB CLINICAL RECOMMENDATIONS BASED ON DIET | |
---|---|
Omnivores | The starting dose is established after MED evaluation and corresponds to 70% of the MED; then, the dose is increased by 20% (if no erythema) or by 10% (in case of erythema) up to a maximum dosage of 3 J/cm2 |
Vegetarians and Vegans | The starting dose is established after MED evaluation and, in case of a low MED (20–25 mJ/cm2), corresponds to 40% of the MED; then, the dose is increased by 10% (if no erythema) up to a maximum single dose of 2.5 J/cm2. In case of erythema the dose is maintained constant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacifico, A.; Conic, R.R.Z.; Cristaudo, A.; Garbarino, S.; Ardigò, M.; Morrone, A.; Iacovelli, P.; di Gregorio, S.; Pigatto, P.D.M.; Grada, A.; et al. Diet-Related Phototoxic Reactions in Psoriatic Patients Undergoing Phototherapy: Results from a Multicenter Prospective Study. Nutrients 2021, 13, 2934. https://doi.org/10.3390/nu13092934
Pacifico A, Conic RRZ, Cristaudo A, Garbarino S, Ardigò M, Morrone A, Iacovelli P, di Gregorio S, Pigatto PDM, Grada A, et al. Diet-Related Phototoxic Reactions in Psoriatic Patients Undergoing Phototherapy: Results from a Multicenter Prospective Study. Nutrients. 2021; 13(9):2934. https://doi.org/10.3390/nu13092934
Chicago/Turabian StylePacifico, Alessia, Rosalynn R. Z. Conic, Antonio Cristaudo, Sergio Garbarino, Marco Ardigò, Aldo Morrone, Paolo Iacovelli, Sara di Gregorio, Paolo Daniele Maria Pigatto, Ayman Grada, and et al. 2021. "Diet-Related Phototoxic Reactions in Psoriatic Patients Undergoing Phototherapy: Results from a Multicenter Prospective Study" Nutrients 13, no. 9: 2934. https://doi.org/10.3390/nu13092934
APA StylePacifico, A., Conic, R. R. Z., Cristaudo, A., Garbarino, S., Ardigò, M., Morrone, A., Iacovelli, P., di Gregorio, S., Pigatto, P. D. M., Grada, A., Feldman, S. R., Scoditti, E., Kridin, K., & Damiani, G. (2021). Diet-Related Phototoxic Reactions in Psoriatic Patients Undergoing Phototherapy: Results from a Multicenter Prospective Study. Nutrients, 13(9), 2934. https://doi.org/10.3390/nu13092934