Hydrolysed Formulas in the Management of Cow’s Milk Allergy: New Insights, Pitfalls and Tips
Abstract
:1. Introduction
2. Hydrolysed Formulas: New Regulations and Composition
3. Hydrolysed Cow’s Milk and Vegetable Protein-Based Formulas: Tolerance, Nutritional Value, and Palatability
4. Immune Modulation by Hydrolysed Formulas
5. Hydrolysed Formulas in CMA Treatment: Recommendations
5.1. Hydrolysed Formulas in IgE mediated CMA
5.2. Hydrolysed Formulas in Non-IgE CMA and Mixed Forms with Gastrointestinal Symptoms
5.2.1. Food Protein Induced Allergic Proctocolitis [FPIAP]
5.2.2. Food Protein Induced Enterocolitis [FPIES]
5.2.3. Eosinophilic Diseases
6. Hydrolysed Formulas in Gastrointestinal Motility Disorders
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CM | Cow’s milk |
FA | Food allergies |
CMA | Cow’s milk allergy |
FPIAP | Food protein-induced allergic proctocolitis |
FPIES | Food protein-induced enterocolitis syndrome |
EoE | Eosinophilic esophagitis |
HF | Hydrolysed formulas |
pHF | Partially hydrolysed formulas |
eHF | Extensively hydrolysed formulas |
AAF | Amino acid formulas |
RCTs | Randomised controlled trials |
GER | Gastroesophageal reflux |
GERD | Gastroesophageal reflux disease |
References
- Koletzko, S.; Niggemann, B.; Arato, A.; Dias, J.A.; Heuschkel, R.; Husby, S.; Mearin, M.L.; Papadopoulou, A.; Ruemmele, F.M.; Staiano, A.; et al. Diagnostic Approach and Management of Cow’s-Milk Protein Allergy in Infants and Children: ESPGHAN GI Committee Practical Guidelines. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 221–229. [Google Scholar] [CrossRef]
- Manuyakorn, W.; Tanpowpong, P. Cow Milk Protein Allergy and Other Common Food Allergies and Intolerances. Paediatr. Int. Child. Health 2019, 39, 32–40. [Google Scholar] [CrossRef]
- Prescott, S.L.; Pawankar, R.; Allen, K.J.; Campbell, D.E.; Sinn, J.K.; Fiocchi, A.; Ebisawa, M.; Sampson, H.A.; Beyer, K.; Lee, B.-W. A Global Survey of Changing Patterns of Food Allergy Burden in Children. World Allergy Organ. J. 2013, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Luyt, D.; Ball, H.; Makwana, N.; Green, M.R.; Bravin, K.; Nasser, S.M.; Clark, A.T. Standards of Care Committee (SOCC) of the British Society for Allergy and Clinical Immunology (BSACI) BSACI Guideline for the Diagnosis and Management of Cow’s Milk Allergy. Clin. Exp. Allergy 2014, 44, 642–672. [Google Scholar] [CrossRef]
- Dupont, C.; Chouraqui, J.-P.; Linglart, A.; Bocquet, A.; Darmaun, D.; Feillet, F.; Frelut, M.-L.; Girardet, J.-P.; Hankard, R.; Rozé, J.-C.; et al. Nutritional Management of Cow’s Milk Allergy in Children: An Update. Arch. Pediatr. 2018, 25, 236–243. [Google Scholar] [CrossRef]
- Calvani, M.; Anania, C.; Cuomo, B.; D’Auria, E.; Decimo, F.; Indirli, G.C.; Marseglia, G.; Mastrorilli, V.; Sartorio, M.U.A.; Santoro, A.; et al. Non–IgE- or Mixed IgE/Non–IgE-Mediated Gastrointestinal Food Allergies in the First Years of Life: Old and New Tools for Diagnosis. Nutrients 2021, 13, 226. [Google Scholar] [CrossRef]
- Pensabene, L.; Salvatore, S.; D’Auria, E.; Parisi, F.; Concolino, D.; Borrelli, O.; Thapar, N.; Staiano, A.; Vandenplas, Y.; Saps, M. Cow’s Milk Protein Allergy in Infancy: A Risk Factor for Functional Gastrointestinal Disorders in Children? Nutrients 2018, 10, 1716. [Google Scholar] [CrossRef] [Green Version]
- Labrosse, R.; Graham, F.; Caubet, J.-C. Non-IgE-Mediated Gastrointestinal Food Allergies in Children: An Update. Nutrients 2020, 12, 2086. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Sampson, H.A. Food Allergy: Epidemiology, Pathogenesis, Diagnosis, and Treatment. J. Allergy Clin. Immunol. 2014, 133, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Sicherer, S.H.; Sampson, H.A. Food Allergy: A Review and Update on Epidemiology, Pathogenesis, Diagnosis, Prevention, and Management. J. Allergy Clin. Immunol. 2018, 141, 41–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Academy of Pediatrics. Committee on Nutrition. Hypoallergenic Infant Formulas. Pediatrics 2000, 106, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Vandenplas, Y. Prevention and Management of Cow’s Milk Allergy in Non-Exclusively Breastfed Infants. Nutrients 2017, 9, 731. [Google Scholar] [CrossRef]
- European Union. Commission Delegated Regulation (EU) 2016/128 of 25 September 2015 Supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as Regards the Specific Compositional and Information Requirements for Food for Special Medical Purposes. Off. J. Eur. Union 2016, 128, 25–30. [Google Scholar]
- Nutten, S.; Schuh, S.; Dutter, T.; Heine, R.G.; Kuslys, M. Design, Quality, Safety and Efficacy of Extensively Hydrolyzed Formula for Management of Cow’s Milk Protein Allergy: What Are the Challenges? Adv. Food Nutr. Res. 2020, 93, 147–204. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, S.; Vandenplas, Y. Hydrolyzed Proteins in Allergy. Nestle. Nutr. Inst. Workshop Ser. 2016, 86, 11–27. [Google Scholar] [CrossRef] [Green Version]
- D’Auria, E.; Salvatore, S.; Pozzi, E.; Mantegazza, C.; Sartorio, M.U.A.; Pensabene, L.; Baldassarre, M.E.; Agosti, M.; Vandenplas, Y.; Zuccotti, G. Cow’s Milk Allergy: Immunomodulation by Dietary Intervention. Nutrients 2019, 11, 1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greer, F.R.; Sicherer, S.H.; Burks, A.W. Effects of Early Nutritional Interventions on the Development of Atopic Disease in Infants and Children: The Role of Maternal Dietary Restriction, Breastfeeding, Timing of Introduction of Complementary Foods, and Hydrolyzed Formulas. Pediatrics 2008, 121, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Lowe, A.J.; Dharmage, S.C.; Allen, K.J.; Tang, M.L.K.; Hill, D.J. The Role of Partially Hydrolyzed Whey Formula for the Prevention of Allergic Disease: Evidence and Gaps. Expert Rev. Clin. Immunol. 2013, 9, 31–41. [Google Scholar] [CrossRef]
- Muraro, A.; Werfel, T.; Hoffmann-Sommergruber, K.; Roberts, G.; Beyer, K.; Bindslev-Jensen, C.; Cardona, V.; Dubois, A.; duToit, G.; Eigenmann, P.; et al. EAACI Food Allergy and Anaphylaxis Guidelines: Diagnosis and Management of Food Allergy. Allergy 2014, 69, 1008–1025. [Google Scholar] [CrossRef]
- Opinion of the Scientific Panel on Contaminants in the Food Chain (CONTAM) Related to Hormone Residues in Bovine Meat and Meat Products|European Food Safety Authority. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/510 (accessed on 2 August 2021).
- Hojsak, I.; Braegger, C.; Bronsky, J.; Campoy, C.; Colomb, V.; Decsi, T.; Domellöf, M.; Fewtrell, M.; Mis, N.F.; Mihatsch, W.; et al. Arsenic in Rice: A Cause for Concern. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 142–145. [Google Scholar] [CrossRef]
- Klemola, T.; Vanto, T.; Juntunen-Backman, K.; Kalimo, K.; Korpela, R.; Varjonen, E. Allergy to Soy Formula and to Extensively Hydrolyzed Whey Formula in Infants with Cow’s Milk Allergy: A Prospective, Randomized Study with a Follow-up to the Age of 2 Years. J. Pediatr. 2002, 140, 219–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connors, L.; O’Keefe, A.; Rosenfield, L.; Kim, H. Non-IgE-Mediated Food Hypersensitivity. Allergy Asthma Clin. Immunol. 2018, 14, 56. [Google Scholar] [CrossRef]
- Meyer, R.; Chebar Lozinsky, A.; Fleischer, D.M.; Vieira, M.C.; Du Toit, G.; Vandenplas, Y.; Dupont, C.; Knibb, R.; Uysal, P.; Cavkaytar, O.; et al. Diagnosis and Management of Non-IgE Gastrointestinal Allergies in Breastfed Infants-An EAACI Position Paper. Allergy 2020, 75, 14–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabe, S. Analysis of Food Allergen Structures and Development of Foods for Allergic Patients. Biosci. Biotechnol. Biochem. 2008, 72, 649–659. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Bhatia, J.; Shamir, R.; Agostoni, C.; Turck, D.; Staiano, A.; Szajewska, H. Hydrolyzed Formulas for Allergy Prevention. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 549–552. [Google Scholar] [CrossRef]
- Niggemann, B.; Binder, C.; Klettke, U.; Wahn, U. In Vivo and in Vitro Studies on the Residual Allergenicity of Partially Hydrolysed Infant Formulae. Acta Paediatr. 1999, 88, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, A.; Brozek, J.; Schünemann, H.; Bahna, S.L.; von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. Pediatr. Allergy Immunol. 2010, 21 (Suppl. 21), 1–125. [Google Scholar] [CrossRef] [Green Version]
- Bocquet, A.; Dupont, C.; Chouraqui, J.-P.; Darmaun, D.; Feillet, F.; Frelut, M.-L.; Girardet, J.-P.; Hankard, R.; Lapillonne, A.; Rozé, J.-C.; et al. Efficacy and Safety of Hydrolyzed Rice-Protein Formulas for the Treatment of Cow’s Milk Protein Allergy. Arch. Pediatr. 2019, 26, 238–246. [Google Scholar] [CrossRef]
- Dupont, C.; Bocquet, A.; Tomé, D.; Bernard, M.; Campeotto, F.; Dumond, P.; Essex, A.; Frelut, M.-L.; Guénard-Bilbault, L.; Lack, G.; et al. Hydrolyzed Rice Protein-Based Formulas, a Vegetal Alternative in Cow’s Milk Allergy. Nutrients 2020, 12, 2654. [Google Scholar] [CrossRef]
- Reche, M.; Pascual, C.; Fiandor, A.; Polanco, I.; Rivero-Urgell, M.; Chifre, R.; Johnston, S.; Martín-Esteban, M. The Effect of a Partially Hydrolysed Formula Based on Rice Protein in the Treatment of Infants with Cow’s Milk Protein Allergy. Pediatr. Allergy Immunol. 2010, 21, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Agostoni, C.; Fiocchi, A.; Riva, E.; Terracciano, L.; Sarratud, T.; Martelli, A.; Lodi, F.; D’Auria, E.; Zuccotti, G.; Giovannini, M. Growth of Infants with IgE-Mediated Cow’s Milk Allergy Fed Different Formulas in the Complementary Feeding Period. Pediatr. Allergy Immunol. 2007, 18, 599–606. [Google Scholar] [CrossRef]
- Berni Canani, R.; Nocerino, R.; Terrin, G.; Frediani, T.; Lucarelli, S.; Cosenza, L.; Passariello, A.; Leone, L.; Granata, V.; Di Costanzo, M.; et al. Formula Selection for Management of Children with Cow’s Milk Allergy Influences the Rate of Acquisition of Tolerance: A Prospective Multicenter Study. J. Pediatr. 2013, 163, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Baker, S.; Cleghorn, G.; Neto, U.F.; Gopalan, S.; Hernell, O.; Hock, Q.S.; Jirapinyo, P.; Lonnerdal, B.; Pencharz, P.; et al. Global Standard for the Composition of Infant Formula: Recommendations of an ESPGHAN Coordinated International Expert Group. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 584–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaafsma, G. Safety of Protein Hydrolysates, Fractions Thereof and Bioactive Peptides in Human Nutrition. Eur. J. Clin. Nutr. 2009, 63, 1161–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostoni, C.; Terracciano, L.; Varin, E.; Fiocchi, A. The Nutritional Value of Protein-Hydrolyzed Formulae. Crit. Rev. Food Sci. Nutr. 2016, 56, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.K.; Beauchamp, G.K.; Mennella, J.A. Infant Regulation of Intake: The Effect of Free Glutamate Content in Infant Formulas. Am. J. Clin. Nutr. 2012, 95, 875–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, M.; Truby, H.; Boneh, A. The Relationship between Dietary Intake, Growth and Body Composition in Phenylketonuria. Mol. Genet. Metab. 2017, 122, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients 2019, 11, 1739. [Google Scholar] [CrossRef] [Green Version]
- Verduci, E.; Di Profio, E.; Cerrato, L.; Nuzzi, G.; Riva, L.; Vizzari, G.; D’Auria, E.; Giannì, M.L.; Zuccotti, G.; Peroni, D.G. Use of Soy-Based Formulas and Cow’s Milk Allergy: Lights and Shadows. Front. Pediatr. 2020, 8, 591988. [Google Scholar] [CrossRef]
- Stróżyk, A.; Horvath, A.; Meyer, R.; Szajewska, H. Efficacy and Safety of Hydrolyzed Formulas for Cow’s Milk Allergy Management: A Systematic Review of Randomized Controlled Trials. Clin. Exp. Allergy 2020, 50, 766–779. [Google Scholar] [CrossRef]
- Sorensen, K.; Cawood, A.L.; Gibson, G.R.; Cooke, L.H.; Stratton, R.J. Amino Acid Formula Containing Synbiotics in Infants with Cow’s Milk Protein Allergy: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 935. [Google Scholar] [CrossRef] [PubMed]
- Rzehak, P.; Sausenthaler, S.; Koletzko, S.; Reinhardt, D.; von Berg, A.; Krämer, U.; Berdel, D.; Bollrath, C.; Grübl, A.; Bauer, C.P.; et al. Long-Term Effects of Hydrolyzed Protein Infant Formulas on Growth--Extended Follow-up to 10 y of Age: Results from the German Infant Nutritional Intervention (GINI) Study. Am. J. Clin. Nutr. 2011, 94, 1803–1807. [Google Scholar] [CrossRef] [Green Version]
- Høst, A. Cow’s Milk Protein Allergy and Intolerance in Infancy. Some Clinical, Epidemiological and Immunological Aspects. Pediatr. Allergy Immunol. 1994, 5, 1–36. [Google Scholar] [CrossRef]
- Maehashi, K.; Matsuzaki, M.; Yamamoto, Y.; Udaka, S. Isolation of Peptides from an Enzymatic Hydrolysate of Food Proteins and Characterization of Their Taste Properties. Biosci. Biotechnol. Biochem. 1999, 63, 555–559. [Google Scholar] [CrossRef]
- Miraglia Del Giudice, M.; D’Auria, E.; Peroni, D.; Palazzo, S.; Radaelli, G.; Comberiati, P.; Galdo, F.; Maiello, N.; Riva, E. Flavor, Relative Palatability and Components of Cow’s Milk Hydrolysed Formulas and Amino Acid-Based Formula. Ital. J. Pediatr. 2015, 41, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mennella, J.A.; Beauchamp, G.K. Understanding the Origin of Flavor Preferences. Chem. Senses 2005, 30 (Suppl. 1), 242–243. [Google Scholar] [CrossRef] [PubMed]
- Spill, M.K.; Johns, K.; Callahan, E.H.; Shapiro, M.J.; Wong, Y.P.; Benjamin-Neelon, S.E.; Birch, L.; Black, M.M.; Cook, J.T.; Faith, M.S.; et al. Repeated Exposure to Food and Food Acceptability in Infants and Toddlers: A Systematic Review. Am. J. Clin. Nutr. 2019, 109, 978–989. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Food-Derived Bioactive Peptides--Opportunities for Designing Future Foods. Curr. Pharm. Des. 2003, 9, 1297–1308. [Google Scholar] [CrossRef] [Green Version]
- Kiewiet, M.B.G.; Gros, M.; van Neerven, R.J.J.; Faas, M.M.; de Vos, P. Immunomodulating Properties of Protein Hydrolysates for Application in Cow’s Milk Allergy. Pediatr. Allergy Immunol. 2015, 26, 206–217. [Google Scholar] [CrossRef]
- Kiewiet, M.B.G.; van Esch, B.C.A.M.; Garssen, J.; Faas, M.M.; de Vos, P. Partially Hydrolyzed Whey Proteins Prevent Clinical Symptoms in a Cow’s Milk Allergy Mouse Model and Enhance Regulatory T and B Cell Frequencies. Mol. Nutr. Food Res. 2017, 72, 366. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.-R.; Kim, H.S.; Kim, D.K.; Nam, S.T.; Kim, H.W.; Park, Y.H.; Lee, D.; Lee, M.B.; Lee, J.H.; Kim, B.; et al. Mesenteric IL-10-Producing CD5+ Regulatory B Cells Suppress Cow’s Milk Casein-Induced Allergic Responses in Mice. Sci. Rep. 2016, 6, 19685. [Google Scholar] [CrossRef] [Green Version]
- Ortega-González, M.; Capitán-Cañadas, F.; Requena, P.; Ocón, B.; Romero-Calvo, I.; Aranda, C.; Suárez, M.D.; Zarzuelo, A.; Sánchez de Medina, F.; Martínez-Augustin, O. Validation of Bovine Glycomacropeptide as an Intestinal Anti-Inflammatory Nutraceutical in the Lymphocyte-Transfer Model of Colitis. Br. J. Nutr. 2014, 111, 1202–1212. [Google Scholar] [CrossRef]
- Espeche Turbay, M.B.; de Moreno de LeBlanc, A.; Perdigón, G.; Savoy de Giori, G.; Hebert, E.M. β-Casein Hydrolysate Generated by the Cell Envelope-Associated Proteinase of Lactobacillus Delbrueckii Ssp. Lactis CRL 581 Protects against Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice. J. Dairy Sci. 2012, 95, 1108–1118. [Google Scholar] [CrossRef]
- Requena, P.; Daddaoua, A.; Guadix, E.; Zarzuelo, A.; Suárez, M.D.; Sánchez de Medina, F.; Martínez-Augustin, O. Bovine Glycomacropeptide Induces Cytokine Production in Human Monocytes through the Stimulation of the MAPK and the NF-KappaB Signal Transduction Pathways. Br. J. Pharmacol. 2009, 157, 1232–1240. [Google Scholar] [CrossRef] [Green Version]
- Paparo, L.; Picariello, G.; Bruno, C.; Pisapia, L.; Canale, V.; Sarracino, A.; Nocerino, R.; Carucci, L.; Cosenza, L.; Cozzolino, T.; et al. Tolerogenic Effect Elicited by Protein Fraction Derived From Different Formulas for Dietary Treatment of Cow’s Milk Allergy in Human Cells. Front. Immunol. 2020, 11, 604075. [Google Scholar] [CrossRef] [PubMed]
- Kiewiet, M.B.G.; Dekkers, R.; Ulfman, L.H.; Groeneveld, A.; de Vos, P.; Faas, M.M. Immunomodulating Protein Aggregates in Soy and Whey Hydrolysates and Their Resistance to Digestion in an in Vitro Infant Gastrointestinal Model: New Insights in the Mechanism of Immunomodulatory Hydrolysates. Food Funct. 2018, 9, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Berni Canani, R.; Nocerino, R.; Leone, L.; Di Costanzo, M.; Terrin, G.; Passariello, A.; Cosenza, L.; Troncone, R. Tolerance to a New Free Amino Acid-Based Formula in Children with IgE or Non-IgE-Mediated Cow’s Milk Allergy: A Randomized Controlled Clinical Trial. BMC Pediatr. 2013, 13, 24. [Google Scholar] [CrossRef]
- Terracciano, L.; Bouygue, G.R.; Sarratud, T.; Veglia, F.; Martelli, A.; Fiocchi, A. Impact of Dietary Regimen on the Duration of Cow’s Milk Allergy: A Random Allocation Study. Clin. Exp. Allergy 2010, 40, 637–642. [Google Scholar] [CrossRef]
- Di Caro, S.; Tao, H.; Grillo, A.; Elia, C.; Gasbarrini, G.; Sepulveda, A.R.; Gasbarrini, A. Effects of Lactobacillus GG on Genes Expression Pattern in Small Bowel Mucosa. Dig. Liver Dis. 2005, 37, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Mileti, E.; Matteoli, G.; Iliev, I.D.; Rescigno, M. Comparison of the Immunomodulatory Properties of Three Probiotic Strains of Lactobacilli Using Complex Culture Systems: Prediction for in Vivo Efficacy. PLoS ONE 2009, 4, 7056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berni Canani, R.; Di Costanzo, M.; Bedogni, G.; Amoroso, A.; Cosenza, L.; Di Scala, C.; Granata, V.; Nocerino, R. Extensively Hydrolyzed Casein Formula Containing Lactobacillus Rhamnosus GG Reduces the Occurrence of Other Allergic Manifestations in Children with Cow’s Milk Allergy: 3-Year Randomized Controlled Trial. J. Allergy Clin. Immunol. 2017, 139, 1906–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berni Canani, R.; Sangwan, N.; Stefka, A.T.; Nocerino, R.; Paparo, L.; Aitoro, R.; Calignano, A.; Khan, A.A.; Gilbert, J.A.; Nagler, C.R. Lactobacillus Rhamnosus GG-Supplemented Formula Expands Butyrate-Producing Bacterial Strains in Food Allergic Infants. ISME J. 2016, 10, 742–750. [Google Scholar] [CrossRef]
- Nocerino, R.; Di Costanzo, M.; Bedogni, G.; Cosenza, L.; Maddalena, Y.; Di Scala, C.; Della Gatta, G.; Carucci, L.; Voto, L.; Coppola, S.; et al. Dietary Treatment with Extensively Hydrolyzed Casein Formula Containing the Probiotic Lactobacillus Rhamnosus GG Prevents the Occurrence of Functional Gastrointestinal Disorders in Children with Cow’s Milk Allergy. J. Pediatr. 2019, 213, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paparo, L.; Nocerino, R.; Bruno, C.; Di Scala, C.; Cosenza, L.; Bedogni, G.; Di Costanzo, M.; Mennini, M.; D’Argenio, V.; Salvatore, F.; et al. Randomized Controlled Trial on the Influence of Dietary Intervention on Epigenetic Mechanisms in Children with Cow’s Milk Allergy: The EPICMA Study. Sci. Rep. 2019, 9, 2828. [Google Scholar] [CrossRef] [PubMed]
- Berni Canani, R.; Nocerino, R.; Terrin, G.; Coruzzo, A.; Cosenza, L.; Leone, L.; Troncone, R. Effect of Lactobacillus GG on Tolerance Acquisition in Infants with Cow’s Milk Allergy: A Randomized Trial. J. Allergy Clin. Immunol. 2012, 129, 580–582. [Google Scholar] [CrossRef] [PubMed]
- Hol, J.; van Leer, E.H.G.; Elink Schuurman, B.E.E.; de Ruiter, L.F.; Samsom, J.N.; Hop, W.; Neijens, H.J.; de Jongste, J.C.; Nieuwenhuis, E.E.S.; Cow’s Milk Allergy Modified by Elimination and Lactobacilli Study Group. The Acquisition of Tolerance toward Cow’s Milk through Probiotic Supplementation: A Randomized, Controlled Trial. J. Allergy Clin. Immunol. 2008, 121, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Majamaa, H.; Isolauri, E. Probiotics: A Novel Approach in the Management of Food Allergy. J. Allergy Clin. Immunol. 1997, 99, 179–185. [Google Scholar] [CrossRef]
- Vandenplas, Y.; Meyer, R.; Chouraqui, J.-P.; Dupont, C.; Fiocchi, A.; Salvatore, S.; Shamir, R.; Szajewska, H.; Thapar, N.; Venter, C.; et al. The Role of Milk Feeds and Other Dietary Supplementary Interventions in Preventing Allergic Disease in Infants: Fact or Fiction? Clin. Nutr. 2021, 40, 358–371. [Google Scholar] [CrossRef]
- D’Auria, E.; Venter, C. Precision Medicine in Cow’s Milk Allergy. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 233–241. [Google Scholar] [CrossRef]
- D’Auria, E.; Mameli, C.; Piras, C.; Cococcioni, L.; Urbani, A.; Zuccotti, G.V.; Roncada, P. Precision Medicine in Cow’s Milk Allergy: Proteomics Perspectives from Allergens to Patients. J. Proteomics 2018, 188, 173–180. [Google Scholar] [CrossRef]
- Nowak-Węgrzyn, A.; Katz, Y.; Mehr, S.S.; Koletzko, S. Non-IgE-Mediated Gastrointestinal Food Allergy. J. Allergy Clin. Immunol. 2015, 135, 1114–1124. [Google Scholar] [CrossRef]
- Nowak-Węgrzyn, A.; Chehade, M.; Groetch, M.E.; Spergel, J.M.; Wood, R.A.; Allen, K.; Atkins, D.; Bahna, S.; Barad, A.V.; Berin, C.; et al. International Consensus Guidelines for the Diagnosis and Management of Food Protein-Induced Enterocolitis Syndrome: Executive Summary-Workgroup Report of the Adverse Reactions to Foods Committee, American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 2017, 139, 1111–1126. [Google Scholar] [CrossRef] [Green Version]
- Baldassarre, M.E.; Laforgia, N.; Fanelli, M.; Laneve, A.; Grosso, R.; Lifschitz, C. Lactobacillus GG Improves Recovery in Infants with Blood in the Stools and Presumptive Allergic Colitis Compared with Extensively Hydrolyzed Formula Alone. J. Pediatr. 2010, 156, 397–401. [Google Scholar] [CrossRef]
- Kapel, N.; Campeotto, F.; Kalach, N.; Baldassare, M.; Butel, M.-J.; Dupont, C. Faecal Calprotectin in Term and Preterm Neonates. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 542–547. [Google Scholar] [CrossRef]
- Boyce, J.A.; Assa’ad, A.; Burks, A.W.; Jones, S.M.; Sampson, H.A.; Wood, R.A.; Plaut, M.; Cooper, S.F.; Fenton, M.J.; Arshad, S.H.; et al. Guidelines for the Diagnosis and Management of Food Allergy in the United States: Summary of the NIAID-Sponsored Expert Panel Report. J. Allergy Clin. Immunol. 2010, 126, 1105–1118. [Google Scholar] [CrossRef]
- Michelet, M.; Schluckebier, D.; Petit, L.-M.; Caubet, J.-C. Food Protein-Induced Enterocolitis Syndrome—A Review of the Literature with Focus on Clinical Management. J. Asthma Allergy 2017, 10, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Niggemann, B.; von Berg, A.; Bollrath, C.; Berdel, D.; Schauer, U.; Rieger, C.; Haschke-Becher, E.; Wahn, U. Safety and Efficacy of a New Extensively Hydrolyzed Formula for Infants with Cow’s Milk Protein Allergy. Pediatr. Allergy Immunol. 2008, 19, 348–354. [Google Scholar] [CrossRef]
- Venter, C.; Groetch, M. Nutritional Management of Food Protein-Induced Enterocolitis Syndrome. Curr. Opin. Allergy Clin. Immunol. 2014, 14, 255–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuta, G.T.; Forbes, D.; Boey, C.; Dupont, C.; Putnam, P.; Roy, S.; Sabrá, A.; Salvatierra, A.; Yamashiro, Y.; Husby, S.; et al. Eosinophilic Gastrointestinal Diseases (EGIDs). J. Pediatr. Gastroenterol. Nutr. 2008, 47, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Lucendo, A.J.; Serrano-Montalbán, B.; Arias, Á.; Redondo, O.; Tenias, J.M. Efficacy of Dietary Treatment for Inducing Disease Remission in Eosinophilic Gastroenteritis. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Reed, C.; Woosley, J.T.; Dellon, E.S. Clinical Characteristics, Treatment Outcomes, and Resource Utilization in Children and Adults with Eosinophilic Gastroenteritis. Dig. Liver Dis 2015, 47, 197–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noel, R.J.; Putnam, P.E.; Rothenberg, M.E. Eosinophilic Esophagitis. N. Engl. J. Med. 2004, 351, 940–941. [Google Scholar] [CrossRef] [PubMed]
- Hirano, I.; Moy, N.; Heckman, M.G.; Thomas, C.S.; Gonsalves, N.; Achem, S.R. Endoscopic Assessment of the Oesophageal Features of Eosinophilic Oesophagitis: Validation of a Novel Classification and Grading System. Gut 2013, 62, 489–495. [Google Scholar] [CrossRef]
- Spergel, J.; Aceves, S.S. Allergic Components of Eosinophilic Esophagitis. J. Allergy Clin. Immunol. 2018, 142, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Spergel, J.M.; Brown-Whitehorn, T.F.; Beausoleil, J.L.; Franciosi, J.; Shuker, M.; Verma, R.; Liacouras, C.A. 14 Years of Eosinophilic Esophagitis: Clinical Features and Prognosis. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 30–36. [Google Scholar] [CrossRef]
- Arias, A.; González-Cervera, J.; Tenias, J.M.; Lucendo, A.J. Efficacy of Dietary Interventions for Inducing Histologic Remission in Patients with Eosinophilic Esophagitis: A Systematic Review and Meta-Analysis. Gastroenterology 2014, 146, 1639–1648. [Google Scholar] [CrossRef]
- Lucendo, A.J.; Arias, Á.; González-Cervera, J.; Mota-Huertas, T.; Yagüe-Compadre, J.L. Tolerance of a Cow’s Milk-Based Hydrolyzed Formula in Patients with Eosinophilic Esophagitis Triggered by Milk. Allergy 2013, 68, 1065–1072. [Google Scholar] [CrossRef]
- Fritscher-Ravens, A.; Pflaum, T.; Mösinger, M.; Ruchay, Z.; Röcken, C.; Milla, P.J.; Das, M.; Böttner, M.; Wedel, T.; Schuppan, D. Many Patients With Irritable Bowel Syndrome Have Atypical Food Allergies Not Associated With Immunoglobulin E. Gastroenterology 2019, 157, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Semeniuk, J.; Wasilewska, J.; Kaczmarski, M. Serum Interleukin--4 and Tumor Necrosis Factor Alpha Concentrations in Children with Primary Acid Gastroesophageal Reflux and Acid Gastroesophageal Reflux Secondary to Cow’s Milk Allergy. Adv. Med. Sci. 2012, 57, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Murch, S. Allergy and Intestinal Dysmotility--Evidence of Genuine Causal Linkage? Curr. Opin. Gastroenterol. 2006, 22, 664–668. [Google Scholar] [CrossRef]
- Schäppi, M.G.; Borrelli, O.; Knafelz, D.; Williams, S.; Smith, V.V.; Milla, P.J.; Lindley, K.J. Mast Cell-Nerve Interactions in Children with Functional Dyspepsia. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Omari, T.; Tobin, J.M.; McCall, L.; Savage, K.; Ferris, L.; Hammond, P.; Kritas, S.; Quinn, P.; Abu-Assi, R.; Moore, D.; et al. Characterization of Upper Gastrointestinal Motility in Infants With Persistent Distress and Non-IgE-Mediated Cow’s Milk Protein Allergy. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 489–496. [Google Scholar] [CrossRef]
- Salvatore, S.; Agosti, M.; Baldassarre, M.E.; D’Auria, E.; Pensabene, L.; Nosetti, L.; Vandenplas, Y. Cow’s Milk Allergy or Gastroesophageal Reflux Disease-Can We Solve the Dilemma in Infants? Nutrients 2021, 13, 297. [Google Scholar] [CrossRef] [PubMed]
- Iacono, G.; Carroccio, A.; Cavataio, F.; Montalto, G.; Kazmierska, I.; Lorello, D.; Soresi, M.; Notarbartolo, A. Gastroesophageal Reflux and Cow’s Milk Allergy in Infants: A Prospective Study. J. Allergy Clin. Immunol. 1996, 97, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Garzi, A.; Messina, M.; Frati, F.; Carfagna, L.; Zagordo, L.; Belcastro, M.; Parmiani, S.; Sensi, L.; Marcucci, F. An Extensively Hydrolysed Cow’s Milk Formula Improves Clinical Symptoms of Gastroesophageal Reflux and Reduces the Gastric Emptying Time in Infants. Allergol. Et Immunopathol. 2002, 30, 36–41. [Google Scholar] [CrossRef]
- Vandenplas, Y.; De Greef, E.; Hauser, B.; Paradice Study Group. Safety and Tolerance of a New Extensively Hydrolyzed Rice Protein-Based Formula in the Management of Infants with Cow’s Milk Protein Allergy. Eur. J. Pediatr. 2014, 173, 1209–1216. [Google Scholar] [CrossRef] [Green Version]
- Vandenplas, Y.; Dupont, C.; Eigenmann, P.; Host, A.; Kuitunen, M.; Ribes-Koninckx, C.; Shah, N.; Shamir, R.; Staiano, A.; Szajewska, H.; et al. A Workshop Report on the Development of the Cow’s Milk-Related Symptom Score Awareness Tool for Young Children. Acta Paediatr. 2015, 104, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Salvatore, S. Infant Formula with Partially Hydrolyzed Proteins in Functional Gastrointestinal Disorders. Protein Neonatal Infant Nutr. Recent Updates 2016, 86, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Dupont, C.; Bradatan, E.; Soulaines, P.; Nocerino, R.; Berni-Canani, R. Tolerance and Growth in Children with Cow’s Milk Allergy Fed a Thickened Extensively Hydrolyzed Casein-Based Formula. BMC Pediatr. 2016, 16, 96. [Google Scholar] [CrossRef] [Green Version]
- Drossman, D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology 2016, 150, 1262–1279. [Google Scholar] [CrossRef] [Green Version]
- Savino, F. Focus on Infantile Colic. Acta Paediatr. 2007, 96, 1259–1264. [Google Scholar] [CrossRef]
- Shamir, R.; St James-Roberts, I.; Di Lorenzo, C.; Burns, A.J.; Thapar, N.; Indrio, F.; Riezzo, G.; Raimondi, F.; Di Mauro, A.; Francavilla, R.; et al. Infant Crying, Colic, and Gastrointestinal Discomfort in Early Childhood: A Review of the Evidence and Most Plausible Mechanisms. J. Pediatr. Gastroenterol. Nutr. 2013, 57 (Suppl. 1), S1–S45. [Google Scholar] [CrossRef]
- Nocerino, R.; Pezzella, V.; Cosenza, L.; Amoroso, A.; Di Scala, C.; Amato, F.; Iacono, G.; Canani, R.B. The Controversial Role of Food Allergy in Infantile Colic: Evidence and Clinical Management. Nutrients 2015, 7, 2015–2025. [Google Scholar] [CrossRef] [Green Version]
- Taubman, B. Parental Counseling Compared with Elimination of Cow’s Milk or Soy Milk Protein for the Treatment of Infant Colic Syndrome: A Randomized Trial. Pediatrics 1988, 81, 756–761. [Google Scholar] [PubMed]
- Lucassen, P. Colic in Infants. BMJ Clin. Evid. 2010, 2010, 309. [Google Scholar]
- Iacovou, M.; Ralston, R.A.; Muir, J.; Walker, K.Z.; Truby, H. Dietary Management of Infantile Colic: A Systematic Review. Matern. Child. Health J. 2012, 16, 1319–1331. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.; Biagioli, E.; Sorrenti, M.; Lingua, C.; Moja, L.; Banks, S.S.; Ceratto, S.; Savino, F. Dietary Modifications for Infantile Colic. Cochrane Database Syst Rev. 2018, 10, CD011029. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, S.; Bertoni, E.; Bogni, F.; Bonaita, V.; Armano, C.; Moretti, A.; Baù, M.; Luini, C.; D’Auria, E.; Marinoni, M.; et al. Testing the Cow’s Milk-Related Symptom Score (CoMiSSTM) for the Response to a Cow’s Milk-Free Diet in Infants: A Prospective Study. Nutrients 2019, 11, 2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravelli, A.M.; Tobanelli, P.; Volpi, S.; Ugazio, A.G. Vomiting and Gastric Motility in Infants with Cow’s Milk Allergy. J. Pediatr. Gastroenterol. Nutr. 2001, 32, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Palumeri, E.; Castagno, E.; Cresi, F.; Dalmasso, P.; Cavallo, F.; Oggero, R. Reduction of Crying Episodes Owing to Infantile Colic: A Randomized Controlled Study on the Efficacy of a New Infant Formula. Eur. J. Clin. Nutr. 2006, 60, 1304–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenplas, Y.; Cruchet, S.; Faure, C.; Lee, H.; Di Lorenzo, C.; Staiano, A.; Chundi, X.; Aw, M.; Gutiérrez-Castrellón, P.; Asery, A.; et al. When Should We Use Partially Hydrolysed Formulae for Frequent Gastrointestinal Symptoms and Allergy Prevention? Acta Paediatr. 2014, 103, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; Alarcon, P.; Alliet, P.; De Greef, E.; De Ronne, N.; Hoffman, I.; Van Winckel, M.; Hauser, B. Algorithms for Managing Infant Constipation, Colic, Regurgitation and Cow’s Milk Allergy in Formula-Fed Infants. Acta Paediatr. 2015, 104, 449–457. [Google Scholar] [CrossRef] [PubMed]
Infant Formula | Follow-On Formula | |||
---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | |
Energy content | 60 kcal/100 mL (250 kJ/100 mL) | 70 kcal/100 mL (293 kJ/100 mL) | 60 kcal/100 mL (250 kJ/100 mL) | 70 kcal/100 mL (293 kJ/100 mL) |
PROTEIN | ||||
hydrolysed formulas | 1.86 g/100 kcal | 2.8 g/100 kcal | 1.86 g/100 kcal | 2.8 g/100 kcal |
soy formulas | 2.25 g/100 kcal | 2.8 g/100 kcal | 2.25 g/100 kcal | 2.8 g/100 kcal |
Taurin | 12 mg/100 kcal | 12 mg/100 kcal | ||
L-carnitin | 1.2 mg/100 kcal | - | - | - |
LIPIDS | 4.4 g/100 kcal | 6.0 g/100 kcal | 4.4 g/100 kcal | 6.0 g/100 kcal |
Linoleic acid | 500 mg/100 kcal | 1200 mg/100 kcal | 500 mg/100 kcal | 1200 mg/100 kcal |
Alfa-linolenic acid | 50 mg/100 kcal | 100 mg/100 kcal | 50 mg/100 kcal | 100 mg/100 kcal |
DHA | 20 mg/100 kcal | 50 mg/100 kcal | 20 mg/100 kcal | 50 mg/100 kcal |
TRANS fats | - | 3% of total lipid content | - | 3% of total lipid content |
erucic acids | - | 1% of total lipid content | - | 1% of total lipid content |
Choline | 25 mg/100 kcal | 50 mg/100 kcal | - | - |
Inositol | 4 mg/100 kcal | 40 mg/100 kcal | - | - |
Phospholipids | 2 g/L | 2 g/L | ||
Carbohydrates | 9 g/100 kcal | 14 g/100 kcal | 9 g/100 kcal | 14 g/100 kcal |
Pre-cooked or gelatinised starch | - | 2 g/100 mL and 30% of total CHO content | - | |
Sucrose (only for hydrolysed formulas) | - | 20% of total CHO content | - | 20% of total CHO content |
Glucose (only for hydrolysed formulas) | - | 2 g/100 kcal | - | 2 g/100 kcal |
Fructo/galacto-oligosaccharides | - | 0.8 g/100 mL | - | 0.8 g/100 mL |
MINERALS (for 100 kcal) | ||||
Sodium (mg) | 25 | 60 | 25 | 60 |
Potassium (mg) | 80 | 160 | 80 | 160 |
chloride (mg) | 60 | 160 | 60 | 160 |
Calcium (mg) | 50 | 140 | 50 | 140 |
Phosphorous (mg) | ||||
hydrolysed formulas | 25 | 90 | 25 | 90 |
soy formulas | 30 | 100 | 30 | 100 |
Magnesium (mg) | 5 | 15 | 5 | 15 |
Iron (mg) | ||||
hydrolysed formulas | 0.3 | 1.3 | 0.6 | 2 |
soy formulas | 0.45 | 2 | 0.9 | 2.5 |
Zinc (mg) | ||||
hydrolysed formulas | 0.5 | 1 | 0.5 | 1 |
soy formulas | 0.75 | 1.25 | 0.75 | 1.25 |
Copper (μg) | 60 | 100 | 60 | 100 |
Iodine (μg) | 15 | 29 | 15 | 29 |
Selenium (μg) | 3 | 8.6 | 3 | 8.6 |
Manganese (μg) | 1 | 100 | 1 | 100 |
Molybdenum (μg) | - | 14 | - | 14 |
Fluoride (μg) | - | 100 | - | 100 |
VITAMINS (for 100 kcal) | ||||
Vitamin A (μg -RE) | 70 | 114 | 70 | 114 |
Vitamin D (μg) | 2 | 3 | 2 | 3 |
Thiamine (μg) | 40 | 300 | 40 | 300 |
Riboflavin (μg) | 60 | 400 | 60 | 400 |
Niacin (mg) | 0.4 | 1.5 | 0.4 | 1.5 |
Pantothenic acid (mg) | 0.4 | 2 | 0.4 | 2 |
Vitamin B6 (μg) | 20 | 175 | 20 | 175 |
Biotin (μg) | 1 | 7.5 | 1 | 7.5 |
Folate (μg-DFE) | 15 | 47.6 | 15 | 47.6 |
Vitamin B12 (μg) | 0.1 | 0.5 | 0.1 | 0.5 |
Vitamin c (mg) | 4 | 30 | 4 | 30 |
Vitamin k (μg) | 1 | 25 | 1 | 25 |
Vitamin e (mg α-tocoferolo) | 0.6 | 5 | 0.6 | 5 |
References | Type of Study | Subjects | Type of Formula | Intervention/ Follow-Up Duration | Outcomes | Results |
---|---|---|---|---|---|---|
Niggemann 2001 [33] | Multicentric RCT | N = 73 infants (median age, 5.7 months) with atopic dermatitis and CMA | EHWF vs. AAF | 6 months | Severity of eczema (SCORAD) and growth (length, weight-for-length) measured as median at 3 and 6 months in each group | Both AAF and eHF resulted in a significant clinical improvement; AAF resulted in improved growth compared with eHF |
Niggemann 2008 [34] | Multicentric RCT | N = 77 infants aged <12 months with suspected CMA | EHWF vs. AAF | 6 months | Severity of eczema (SCORAD), allergic manifestation, growth (z-score for length, body weight, and head circumference at 28, 60, 90, and 180 days), adverse effects | No significant differences in growth measurements or allergy symptoms; SCORAD decrease in AAF group |
Berni Canani 2017 [35] | Multicentric RCT | N = 65 infants aged 5–12 months, with strongly suspected CMA, or healthy controls | EHWF vs. AAF vs. healthy controls | 12 months | Growth (z-score for body weight, length/height and head circumference at 3, 6 and 12 months | At 12 months, no significant difference in weight z-scores |
Isolauri 1995 [36] | RCT | N = 45 infants (mean age: 6 months) with atopic dermatitis and CMA | EHWF vs. AAF | 9 months | Growth (body weight and length), severity of eczema (mean SCORAD) | In both groups, atopic eczema improved significantly. Growth was adequate in both groups, though promoted only in AAF infants |
Lasekan 2006 [31] | Randomized, blinded, prospective trial | N = 65 healthy infants | Partially hydrolysed rice protein-based formula fortified with lysine and threonine vs. standard intact cow’s milk protein-based formula | 16 weeks | Growth, tolerance and plasma biochemistries | The two study groups had comparable growth, tolerance, and plasma biochemistry, despite some differences in amino acid profiles |
Agostoni 2007 [32] | Randomized, prospective, comparative, unblinded trial | N = 160 infants fully breast- fed during the first 4 months of life and diagnosed with CMA within 6 months of age | Soy formula, eHF, hydrolysed rice-based formula vs. breastfed infants | 6–12 months of age | growth indices | Infants fed hydrolysed products showed a trend toward higher weight-for-age z-score increments in the 6- to 12-month period |
Reche 2010 [43] | Prospective open, randomized clinical study | N = 92 infants with IgE-mediated CMA | hydrolysed rice-based formula vs. EHF | 24 months | Clinical tolerance | Both formulas were well tolerated. Growth parameters were similar between the two study groups |
Vandenplas 2014 [44] | Prospective trial | N = 40 infants with CMA | Extensively hydrolysed rice-based formula | 6 months | hypoallergenicity and safety | Symptoms significantly decreased in the first month of intervention; catch-up to normal weight gain as of the first month as well as a normalization of the weight-for-age, weight-for length, and BMI z-scores within the 6-month study period |
Vandenplas 2014 [45] | Prospective trial | N = 39 infants with a confirmed CMA | Extensively hydrolysed rice-based formula | One month | Tolerance and growth | Extensively hydrolysed rice-based formula was tolerated by more than 90% of children with proven CMPA; and weight and length gains were normal |
Rzehak 2011 [46] | Prospective, randomized, double-blind trial | N = 1840 full-term neonates with atopic heredity | pHF-W, eHF-W, eHF-C, CMF, breastfed | 16 weeks and 10 years | differences in body mass index (BMI) over the first 10 years of life | No significant differences in BMI trajectories were shown between the study groups at 10 years of age |
DRACMA—2010 | ESPGHAN—2012 | EAACI—2014 | BSACI—2014 | |
---|---|---|---|---|
Partially hydrolysed formula | Not recommended for infants with CMA | Not regarded as safe for patients with CMA | They are not hypoallergenic and therefore should not be used for the treatment of suspected or proven CMA or diagnostic exclusion diets | |
Amino acid formula | -Anaphylaxis -FPIES -Allergic eosinophilic oesophagitis -Heiner’s syndrome -eHF non-responder patients | -Breast-fed with severe symptoms (not evidence based) -Formula-fed with severe or life-threatening symptoms both IgE- and non-IgE-mediated -In atopic children >2 years with multiple food allergies or in cases of eosinophilic disorders of the digestive tract -If there is no improvement within 2 weeks with eHF | -Severe growth faltering -Severe symptoms -Non-IgE-mediated syndromes, such as food protein-induced enterocolitis and eosinophilic gastro-enteropathies | -Multiple food allergies-Severe cow’s milk allergy -Allergic symptoms or severe atopic eczema when exclusively breastfed -Severe forms of non IgE-mediated cow’s milk allergy (EoE, enteropathies, and FPIES) -Faltering growth -Reacting to or refusing to take eHF |
Cow’s milk protein based eHF | -Immediate GI allergy -Asthma and rhinitis -Acute urticaria or angioedema -Atopic dermatitis -GERD -Cow’s milk protein-induced enteropathy -functional gastrointestinal disorders (constipation and colic) -CM protein induced gastroenteritis and proctocolitis | First choice in formula-fed infants with proven CMA | First choice in formula-fed infants with proven CMA | Forms of milk protein allergies not included in the indications for AAF |
Soy formula Soy hydrolysed formula | CM eHF, rather than soy formula (SF), are well tolerated in infants with IgE-mediated CMA, but to a lesser extent in those with non-IgE-mediated CMA; SF should not be considered in infants <6 months of age | Once tolerance to soy protein is established in: -Infants >6 months who do not accept the bitter taste of a CM eHF, if high cost is a limiting factor, or if there are strong parental preferences (e.g., a vegan diet). | Soy formulas may be useful provided that nutritional evaluation regarding the phytate and phytoestrogens content is considered, and they cannot be recommended before 6 months of age | Soy protein formula could be considered in children >6 months of age once tolerance to soy protein is established |
Rice hydrolysed formula | Equivalent to CM eHF in countries where they are available | -Infants refusing or not tolerating a CM eHF or in vegan families | Further research is needed to compare these formulas with CM eHF | Rice milk should not be used under 4.5 years of age due to its natural inorganic arsenic content |
Prebiotics and probiotics | More RCTs need to be conducted to elucidate whether probiotics are useful | No evidence that they have a role in treatment of CMA | Currently, probiotic supplements cannot be recommended for the management of food allergies | Evidence of preventative or therapeutic activity for food allergy is lacking |
Type of Formula | Results | Pros | Cons |
---|---|---|---|
CM-based pHF | May improve symptoms of FGIDs Conflicting efficacy in prevention of allergy and eczema Improved gastric emptying vs. standard formulas | Often combined with pro/prebiotic components, reduced lactose and modified fat Better palatability compared to eHF and AAF | Not suitable to treat CMA Absence of long-term follow-up data Limited controlled trials Higher cost vs. standard formulas |
CM based eHF | Efficacy in 90% of patients with CMA Accelerates gastric emptying vs. pHF and vs. standard formulas | first choice for CMA treatment, except for anaphylaxis, EoE, and severe CMA May improve symptoms of FGIDs Better absorption of peptides vs. amino-acids | Much higher cost vs. standard formulas Absence of lactose in most eHF Poor palatability and possible effect on taste development |
Amino-acid formula | Efficacy in 100% of infants with CMA Efficacy in 75–90% of patients with EoE | First choice treatment for severe CMA, anaphylaxis, and EoE in infants | Much higher cost vs. eHF and vs. standard formulas Absence of lactose Poor palatability and possible effect on taste development |
Rice-based eHF | Reported efficacy in the treatment of CMA in selected subjects | Second choice treatment for CMA, except for anaphylaxis, EoE, and severe CMA | Arsenic content should be limited and labelled Different amino-acid profile compared to CM based formulas Limited number of studies (mostly on IgE-mediated CMA) |
Soy-based infant formulas | Possible efficacy in selected subjects with CMA | Low cost | Not recommended in the first 6 months of life and in infants with gastrointestinal symptoms Possible allergy to soy Concerns related to phytoestrogens and transgenic modified soybean |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Auria, E.; Salvatore, S.; Acunzo, M.; Peroni, D.; Pendezza, E.; Di Profio, E.; Fiore, G.; Zuccotti, G.V.; Verduci, E. Hydrolysed Formulas in the Management of Cow’s Milk Allergy: New Insights, Pitfalls and Tips. Nutrients 2021, 13, 2762. https://doi.org/10.3390/nu13082762
D’Auria E, Salvatore S, Acunzo M, Peroni D, Pendezza E, Di Profio E, Fiore G, Zuccotti GV, Verduci E. Hydrolysed Formulas in the Management of Cow’s Milk Allergy: New Insights, Pitfalls and Tips. Nutrients. 2021; 13(8):2762. https://doi.org/10.3390/nu13082762
Chicago/Turabian StyleD’Auria, Enza, Silvia Salvatore, Miriam Acunzo, Diego Peroni, Erica Pendezza, Elisabetta Di Profio, Giulia Fiore, Gian Vincenzo Zuccotti, and Elvira Verduci. 2021. "Hydrolysed Formulas in the Management of Cow’s Milk Allergy: New Insights, Pitfalls and Tips" Nutrients 13, no. 8: 2762. https://doi.org/10.3390/nu13082762