Acute Hypertriglyceridemia in Patients with COVID-19 Receiving Parenteral Nutrition
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, J.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pnuemonia in Wuhan, China. JAMA Intern. Med. 2020, 13, e200994. [Google Scholar]
- Huang, G.; Wang, Y.; Li, X.; Ren, L.; Xu, J.; Gu, X.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; et al. Clinical feature of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed]
- Martindale, R.; Patel, J.J.; Taylor, B.; Arabi, Y.M.; Rd, M.W.; McClave, S.A. Nutrition Therapy in Critically Ill Patients with Coronavirus Disease 2019. J. Parenter. Enter. Nutr. 2020, 44, 1174–1184. [Google Scholar] [CrossRef]
- Manzanares, W.; Langlois, P.L.; Hardy, G. Intravenous lipid emulsions in the critically ill: On update. Curr. Opin. Crit. Care 2016, 22, 308–315. [Google Scholar] [CrossRef]
- Calder, P.C.; Waitzberg, D.L.; Klek, S.; Martindale, R.G. Lipids in Parenteral Nutrition: Biological Aspects. J. Parenter. Enter. Nutr. 2020, 44, S21–S27. [Google Scholar] [CrossRef]
- Ocón, M.J.; Ilundain, A.I.; Altemir, J.; Agudo, A.; Gimeno, J.A. Predictive Factors of Hypertriglyceridemia in Inhospital Patients during Total Parenteral Nutrition. Nutr. Hosp. 2017, 34, 505–511. [Google Scholar] [CrossRef][Green Version]
- Biesboer, A.N.; Stoehr, N.A. A Product Review of Alternative Oil-Based Intravenous Fat Emulsions. Nutr. Clin. Pr. 2016, 31, 610–618. [Google Scholar] [CrossRef]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome—The Berlin definition. JAMA 2012, 307, 1–8. [Google Scholar]
- Arkin, N.; Krishnan, K.; Chang, M.G.; Bittner, E.A. Nutrition in critically ill patients with COVID-19: Challenges and special considerations. Clin. Nutr. 2020, 39, 2327–2328. [Google Scholar] [CrossRef]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enter. Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef]
- Boullata, J.I.; Berlana, D.; Pietka, M.; Klek, S.; Martindale, R. Use of Intravenous Lipid Emulsions with Parenteral Nutrition: Practical Handling Aspects. J. Parenter. Enter. Nutr. 2020, 44, S74–S81. [Google Scholar] [CrossRef]
- Gramlich, L.; Ireton-Jones, C.; Miles, J.M.; Morrison, M.; Pontes-Arruda, A. Essential Fatty Acid Requirements and Intravenous Lipid Emulsions. J. Parenter. Enter. Nutr. 2019, 43, 697–707. [Google Scholar] [CrossRef]
- Bosó, V.; Vázquez, A.; Dumitrescu, A.; López, E.; Font, I.; Poveda, J. Incidence of hypertriglyceridemia in patients with total parenteral nutrition in a university hospital. Clin. Nutr. 2011, 30 (Suppl. 1), S154. [Google Scholar] [CrossRef]
- Mirtallo, J.M.; Dasta, J.F.; Kleinschmidt, K.C.; Varon, J. State of the Art Review: Intravenous Fat Emulsions: Current Applications, Safety Profile, and Clinical Implications. Ann. Pharmacother. 2010, 44, 688–700. [Google Scholar] [CrossRef]
- Muller, C. The ASPEN Adult Nutrition Support Core Curriculum, 2nd ed.; Tiezra Inc.: Providence, RI, USA, 2012. [Google Scholar]
- Visschers, R.G.; Damink, S.W.O.; Schreurs, M.; Winkens, B.; Soeters, P.B.; van Gemert, W.G. Development of hypertriglyceridemia in patients with enterocutaneous fistulas. Clin. Nutr. 2009, 28, 313–317. [Google Scholar] [CrossRef]
- Frazee, E.N.; Nystrom, E.M.; McMahon, M.M.; Williamson, E.E.; Miles, J.M. Relationship Between Triglyceride Tolerance, Body Mass Index, and Fat Depots in Hospitalized Patients Receiving Parenteral Nutrition. J. Parenter. Enter. Nutr. 2014, 39, 922–928. [Google Scholar] [CrossRef]
- Raman, M.; Almutairdi, A.; Mulesa, L.; Alberda, C.; Beattie, C.; Gramlich, L. Parenteral Nutrition and Lipids. Nutrients 2017, 9, 388. [Google Scholar] [CrossRef]
- Meguid, M.M.; Kurzer, M.; Hayashi, R.J.; Akahoshi, M.P. Short-Term Effects of Fat Emulsion on Serum Lipids in Postoperative Patients. J. Parenter. Enter. Nutr. 1989, 13, 77–80. [Google Scholar] [CrossRef]
- Anez-Bustillos, L.; Dao, D.T.; Baker, M.A.; Fell, G.L.; Puder, M.; Gura, K.M. Review: Lipid formulations for the adult and pediatric patient: Understanding the differences. Nutr. Clin. Pract. 2016, 31, 596–609. [Google Scholar] [CrossRef]
- Driscoll, D.F. Pharmaceutical and Clinical Aspects of Lipid Injectable Emulsions. J. Parenter. Enter. Nutr. 2016, 41, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Ton, H.N.; Chang, C.; Carpentier, Y.A.; Decelbaum, R.J. In vivo and in vitro properties of an intravenous lipid emulsion containing only medium chain and fish oil triglycerides. Clin. Nutr. 2005, 24, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, C.B.; De Bruin, T.W.A.; Jansen, H.; Erkelens, D.W. Different clearance of intravenously administered olive oil and soybean-oil emulsions: Role of hepatic lipase. Am. J. Clin. Nutr. 1993, 57, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Gura, K.M.; Puder, M. Rapid infusion of fish oil-based emulsion in infants does not appear to be associated with fat overlap syndrome. Nutr. Clin. Pract. 2010, 25, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Lutz, O.; Meraihi, Z.; Mura, J.L.; Frey, A.; Riess, G.H.; Bach, A.C. Fat emulsion particle size: Influence on the clearance rate and the tissue lipolytic activity. Am. J. Clin. Nutr. 1989, 50, 1370–1381. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Adolph, M.; Deutz, N.E.; Grau, T.; Innes, J.K.; Klek, S.; Lev, S.; Mayer, K.; Michael-Titus, A.T.; Pradelli, L.; et al. Lipids in the intensive care unit: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2018, 37, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hojsak, I.; Kolacek, S. Fat syndrome after the rapid infusion of SMOF lipid emulsion. J. Parenter. Enter. Nutr. 2014, 38, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Devaud, J.-C.; Berger, M.M.; Pannatier, A.; Marques-Vidal, P.; Tappy, L.; Rodondi, N.; Chiolero, R.L.; Voirol, P. Hypertriglyceridemia: A potential side effect of propofol sedation in critical illness. Intensiv. Care Med. 2012, 38, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Morrison, A.R.; Johnson, J.M.; Ramesh, M.; Bradley, P.; Jennings, J.; Smith, Z.R. Letter to the Editor: Acute hypertriglyceridemia in patients with COVID-19 receiving tocilizumab. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Matoga, M.M.; Hosseinipour, M.C.; Aga, E.; Ribaudo, H.J.; Kumarasamy, N.; Bartlett, J.; Hughes, M.D.; The ACTG A5230 Study Team. Hyperlipidaemia in HIV-infected patients on lopinavir/ritonavir monotherapy in resource-limited settings. Antivir. Ther. 2016, 22, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Grucz, T.; Crow, J.; Davis, S.; Gager, E.; Beattie, J.; Shermock, K.; Sugrue, D.; Jarrell, A. 572: Levocarnitine Supplementation for Hypertriglyceridemia in Patients Receiving Parenteral Nutrition. Crit. Care Med. 2021, 49, 279. [Google Scholar] [CrossRef]
- Hayes, B.D.; Gosselin, S.; Calello, D.; Nacca, N.; Rollins, C.J.; Abourbih, D.; Morris, M.; Nesbitt-Miller, A.; Morais, J.A.; Lavergne, V.; et al. Systematic review of clinical adverse events reported after acute intravenous lipid emulsion administration. Clin. Toxicol. 2016, 54, 365–404. [Google Scholar] [CrossRef]
- Huang, W.; Li, C.; Wang, Z.; Wang, H.; Zhou, N.; Jiang, J.; Ni, L.; Zhang, X.A.; Wang, D.-W. Decreased serum albumin level indicates poor prognosis of COVID-19 patients: Hepatic injury analysis from 2,623 hospitalized cases. Sci. China Life Sci. 2020, 63, 1–10. [Google Scholar] [CrossRef]
Total (n = 87) | Non-HyperTG (n = 55) | HyperTG (n = 32) | p-Value | |
---|---|---|---|---|
Age (years) | 60.1 ± 10.8 | 63.5 ± 10.0 | 54.2 ± 9.7 | 0.000 |
Women, n (%) | 29 (33.3%) | 20 (36.3%) | 9 (28.1%) | 0.224 |
Men, n (%) | 58 (66.6%) | 35 (63.3%) | 23 (71.9%) | 0.224 |
BMI (kg/m2) | 29.1 ± 5.6 | 28.7 ± 4.0 | 31.3 ± 7.2 | 0.016 |
Obesity, n (%) | 25 (28.7%) | 12 (21.8%) | 13 (40.6%) | 0.051 |
Dyslipidemia, n (%) | 29 (33.3%) | 17 (30.9%) | 12 (37.5%) | 0.308 |
Type 2 diabetes, n (%) | 21 (24.1%) | 13 (23.6%) | 8 (25.0%) | 0.509 |
Tocilizumab, n (%) | 48 (55.2%) | 28 (50.9%) | 20 (62.5%) | 0.446 |
Lopinavir/ritonavir, n (%) | 62 (71.2%) | 33 (60.0%) | 29 (90.6%) | 0.009 |
Remdesivir, n (%) | 5 (5.7%) | 4 (7.3%) | 1 (3.1%) | 0.321 |
Propofol, n (%) | 49 (56.3%) | 26 (47.3%) | 23 (71.9%) | 0.048 |
Total (n = 87) | Non-HyperTG (n = 55) | HyperTG (n = 32) | p-Value | |
---|---|---|---|---|
Calories (kcal/kg/day) | 26.9 ± 4.0 | 26.3 ± 4.0 | 28.1 ± 3.8 | 0.591 |
Amino acids (g/kg/day) | 1.3 ± 0.2 | 1.3 ± 0.2 | 1.4 ± 0.1 | 0.099 |
Glucose (g/kg/day) | 3.2 ± 0.7 | 3.0 ± 07 | 3.4± 0.6 | 0.311 |
Lipids (g/kg/day) | 0.9 ± 0.2 | 0.9 ± 0.1 | 0.9 ± 0.2 | 0.808 |
Insulin dose (iu/day) | 34.1 ± 15.6 | 32.6 ± 13.2 | 36.3 ± 18.9 | 0.346 |
Duration PN (days) | 8.5 ± 4.6 | 7.2 ± 4.2 | 10.7 ± 4.6 | 0.001 |
Non-HyperTG (n = 55) | HyperTG (n = 32) | p-Value | |
---|---|---|---|
Lipids PN (g/day) | 55.0 ± 12.7 | 56.6 ± 21.1 | 0.670 |
Lipids PN (g/kg/day) | 0.8 ± 0.2 | 0.8 ± 0.3 | 0.636 |
Lipids PN + Propofol (g/day) | 63.2 ± 16.2 | 78.9 ± 27.8 | 0.004 |
Lipids PN + Propofol (g/kg/day) | 0.9 ± 0.2 | 1.1 ± 0.4 | 0.000 |
LCT (g/day) | 43.6 ± 15.1 | 57.4 ± 25.7 | 0.007 |
LCT (g/kg/day) | 0.6 ± 0.2 | 0.8 ± 0.4 | 0.016 |
OR | CI (95%) | |
---|---|---|
Age (≥65 years/<65 years) | 2.52 | 1.16–5.46 |
Sex (male/female) | 1.64 | 0.98–2.30 |
Obesity (IMC ≥ 30 kg/m2/<30 kg/m2) | 3.34 | 2.35–4.33 |
Dyslipidemia (yes/no) | 1.41 | 0.69–2.13 |
Type 2 diabetes (yes/no) | 0.88 | 0.06–1.80 |
Type of lipids PN (SMOFlipid®/Lipoplus®) | 1.10 | 0.44–1.76 |
Tocilizumab (yes/no) | 1.19 | 0.31–2.07 |
Lopinavir/ritonavir (yes/no) | 4.98 | 3.60–6.29 |
Remdesivir (yes/no) | 0.54 | 0.01–2.54 |
Propofol (yes/no) | 2.45 | 1.55–3.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa López, G.; Valero Zanuy, M.A.; González Barrios, I.; Maíz Jiménez, M.; Gomis Muñóz, P.; León Sanz, M. Acute Hypertriglyceridemia in Patients with COVID-19 Receiving Parenteral Nutrition. Nutrients 2021, 13, 2287. https://doi.org/10.3390/nu13072287
Villa López G, Valero Zanuy MA, González Barrios I, Maíz Jiménez M, Gomis Muñóz P, León Sanz M. Acute Hypertriglyceridemia in Patients with COVID-19 Receiving Parenteral Nutrition. Nutrients. 2021; 13(7):2287. https://doi.org/10.3390/nu13072287
Chicago/Turabian StyleVilla López, Gema, Maria Angeles Valero Zanuy, Ivan González Barrios, Maria Maíz Jiménez, Pilar Gomis Muñóz, and Miguel León Sanz. 2021. "Acute Hypertriglyceridemia in Patients with COVID-19 Receiving Parenteral Nutrition" Nutrients 13, no. 7: 2287. https://doi.org/10.3390/nu13072287
APA StyleVilla López, G., Valero Zanuy, M. A., González Barrios, I., Maíz Jiménez, M., Gomis Muñóz, P., & León Sanz, M. (2021). Acute Hypertriglyceridemia in Patients with COVID-19 Receiving Parenteral Nutrition. Nutrients, 13(7), 2287. https://doi.org/10.3390/nu13072287