Serum and Dietary Vitamin D in Individuals with Class II and III Obesity: Prevalence and Association with Metabolic Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Sociodemographic Data, Lifestyle, and Anthropometry
2.3. Clinical Variables and Vitamin D Intake
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Obes. Lipotoxicity 2017, 1–17. [Google Scholar] [CrossRef]
- Malta, D.C.; Da Silva, A.G.; Tonaco, L.A.B.; de Freitas, M.I.F.; Velasquez-Melendez, G. Time trends in morbid obesity prevalence in the Brazilian adult population from 2006 to 2017. Rep. Public Health 2019, 35, e00223518. [Google Scholar]
- Ward, Z.J.; Bleich, S.N.; Cradock, A.L.; Barrett, J.L.; Giles, C.M.; Flax, C.; Long, M.W.; Gortmaker, S.L. Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N. Engl. J. Med. 2019, 381, 2440–2450. [Google Scholar] [CrossRef]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Hales, C.; Carroll, M.; Fryar, C.; Ogden, C. Prevalence of Obesity and Severe Obesity among Adults: United States, 2017–2018; NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2020; p. 360. [Google Scholar]
- Purnell, J.Q. Definitions, Classification, and Epidemiology of Obesity. 12 April 2018. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., et al., Eds.; South Dartmouth, MA, USA, 2000; Available online: MDText.com (accessed on 7 May 2021). [PubMed]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Cuschieri, S.; Grech, S. Obesity population at risk of COVID-19 complications. Glob. Health Epidemiol. Genom. 2020, 5. [Google Scholar] [CrossRef]
- Migliaccio, S.; Di Nisio, A.; Mele, C.; Scappaticcio, L.; Savastano, S.; Colao, A. Obesity and hypovitaminosis D: Causality or casualty? Int. J. Obes. Suppl. 2019, 9, 20–31. [Google Scholar] [CrossRef]
- Calton, E.K.; Pathak, K.A.; Soares, M.J.; Alfonso, H.; Keane, K.N.; Newsholme, P.; Cummings, N.K.; Ping-Delfos, W.C.S.; Hamidi, A. Vitamin D status and insulin sensitivity are novel predictors of resting metabolic rate: A cross-sectional analysis in Australian adults. Eur. J. Nutr. 2015, 55, 2075–2080. [Google Scholar] [CrossRef]
- Hyppönen, E.; Boucher, B.J. Adiposity, vitamin D requirements, and clinical implications for obesity-related metabolic abnormalities. Nutr. Rev. 2018, 76, 678–692. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef]
- Silveira, E.A.; Kliemann, N.; Noll, M.; Sarrafzadegan, N.; de Oliveira, C. Visceral obesity and incident cancer and cardiovascular disease: An integrative review of the epidemiological evidence. Obes. Rev. 2021, 22. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Klöting, N.; Blüher, M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 2014, 15, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Pelczyńska, M.; Grzelak, T.; Walczak, M.; Czyżewska, K. Hypovitaminosis D and adipose tissue—Cause and effect relationships in obesity. Ann. Agric. Environ. Med. 2016, 23, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.; Abasi, R.; Nasiri, M.; Sharifi, F.; Vesaly, S.; Sadeghi, O.; Rahimi, N.; Sharif, N.A. Association of vitamin D status with metabolic syndrome and its components: A cross-sectional study in a population of high educated Iranian adults. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 393–398. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Tofano, R.J.; de Campos, A.L.; Rodrigues, A.S.; Quesada, K.; Bechara, M.D.; Goulart, R.D.A.; Oshiiwa, M. Association between vitamin D status and metabolic syndrome risk factors. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Oruc, C.U.; Akpinar, Y.; Amikishiyev, S.; Uzum, A.K.; Salmaslıoglu, A.; Gürdöl, F.; Ömer, B.; Salmaslioglu, A. Hypovitaminosis D is Associated with Endothelial Dysfunction in Patients with Metabolic Syndrome. Curr. Vasc. Pharmacol. 2017, 15, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Fassula, A.S.; Gonzalez-Chica, D.; Giehl, M.C.; Silva, D.A.S.; Cembranel, F.; Moreno, Y.M.F. Moderator role of vitamin D concentrations on the association between metabolic syndrome and C-reactive protein among adults. Arch. Endocrinol. Metab. 2020, 64, 695–703. [Google Scholar] [CrossRef]
- Liu, L.; Cao, Z.; Lu, F.; Liu, Y.; Lv, Y.; Qu, Y.; Gu, H.; Li, C.; Cai, J.; Ji, S.; et al. Vitamin D deficiency and metabolic syndrome in elderly Chinese individuals: Evidence from CLHLS. Nutr. Metab. 2020, 17, 1–11. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chang, H.-H.; Lu, C.-W.; Tseng, F.-Y.; Lee, L.-T.; Huang, K.-C. Vitamin D status and risk of metabolic syndrome among non-diabetic young adults. Clin. Nutr. 2015, 34, 484–489. [Google Scholar] [CrossRef]
- Ahmadi, F.; Damghani, S.; Lessan-Pezeshki, M.; Razeghi, E.; Maziar, S.; Mahdavi-Mazdeh, M. Association of low vitamin D levels with metabolic syndrome in hemodialysis patients. Hemodial. Int. 2015, 20, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Xu, C.; Shu, Y.; Xie, Z.; Lu, C.; Mo, X. Serum 25-hydroxyvitamin D is associated with obesity and metabolic parameters in US children. Public Health Nutr. 2019, 23, 1214–1222. [Google Scholar] [CrossRef]
- Mutt, S.J.; Jokelainen, J.; Sebert, S.; Auvinen, J.; Järvelin, M.-R.; Keinänen-Kiukaanniemi, S.; Herzig, K.-H. Vitamin D Status and Components of Metabolic Syndrome in Older Subjects from Northern Finland (Latitude 65° N). Nutrients 2019, 11, 1229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, J.; Campos, A.B.F.; Cordeiro, A.; Pereira, S.E.; Saboya, C.J.; Ramalho, A. Vitamin D nutritional status and its relationship with metabolic changes in adolescents and adults with severe obesity. Nutrición Hospitalaria 2018, 35, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Entrenas, A.O.; Tubio, D.L.; Navarro, F.L.; Carvajal, F.M.; Adan, N.G.; Bautista, M.R.; Osinaga, J.A. Relationship Between Vitamin D Deficiency and the Components of Metabolic Syndrome in Patients with Morbid Obesity, Before and 1 Year After Laparoscopic Roux-en-Y Gastric Bypass or Sleeve Gastrectomy. Obes. Surg. 2016, 27, 1222–1228. [Google Scholar] [CrossRef]
- Botella-Carretero, J.I.; Alvarez-Blasco, F.; Villafruela, J.J.; Balsa, J.A.; Vázquez, C.; Escobar-Morreale, H.F. Vitamin D deficiency is associated with the metabolic syndrome in morbid obesity. Clin. Nutr. 2007, 26, 573–580. [Google Scholar] [CrossRef]
- Rueda, S.; Fernández-Fernández, C.; Romero, F.; De Osaba, M.J.M.; Vidal, J. Vitamin D, PTH, and the Metabolic Syndrome in Severely Obese Subjects. Obes. Surg. 2008, 18, 151–154. [Google Scholar] [CrossRef]
- Canheta, A.B.D.S.; Santos, A.S.e.A.d.C.; De Souza, J.D.; Silveira, E.A. Traditional Brazilian diet and extra virgin olive oil reduce symptoms of anxiety and depression in individuals with severe obesity: Randomized clinical trial. Clin. Nutr. 2021, 40, 404–411. [Google Scholar] [CrossRef]
- Silveira, E.A.; Rosa, L.P.D.S.; Santos, A.S.E.A.D.C.; Cardoso, C.K.D.S.; Noll, M. Type 2 Diabetes Mellitus in Class II and III Obesity: Prevalence, Associated Factors, and Correlation between Glycemic Parameters and Body Mass Index. Int. J. Environ. Res. Public Health 2020, 17, 3930. [Google Scholar] [CrossRef]
- Silveira, E.A.; De Souza, J.D.; Rodrigues, A.P.D.S.; Lima, R.M.; Cardoso, C.K.D.S.; De Oliveira, C. Effects of Extra Virgin Olive Oil (EVOO) and the Traditional Brazilian Diet on Sarcopenia in Severe Obesity: A Randomized Clinical Trial. Nutrients 2020, 12, 1498. [Google Scholar] [CrossRef]
- Cardoso, C.K.D.S.; Santos, A.S.E.A.D.C.; Rosa, L.P.D.S.; Mendonça, C.R.; Vitorino, P.V.D.O.; Peixoto, M.D.R.G.; Silveira, É.A. Effect of Extra Virgin Olive Oil and Traditional Brazilian Diet on the Bone Health Parameters of Severely Obese Adults: A Randomized Controlled Trial. Nutrients 2020, 12, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, A.S.E.A.D.C.; Rodrigues, A.P.D.S.; Rosa, L.P.D.S.; Noll, M.; Silveira, E.A. Traditional Brazilian Diet and Olive Oil Reduce Cardiometabolic Risk Factors in Severely Obese Individuals: A Randomized Trial. Nutrients 2020, 12, 1413. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.S.; Rodrigues, A.P.S.; Rosa, L.P.; Sarrafzadegan, N.; Silveira, E.A. Cardiometabolic risk factors and Framingham Risk Score in severely obese patients: Baseline data from DieTBra trial. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Silveira, E.A.; Santos, A.S.E.A.D.C.; Ribeiro, J.N.; Noll, M.; Rodrigues, A.P.D.S.; de Oliveira, C. Prevalence of constipation in adults with obesity class II and III and associated factors. BMC Gastroenterol. 2021, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- (ABEP) Associação Brasileira de Empresas de Pesquisa. [Critério de Classificação conômica Brasil 2018] 2008. Available online: http://www.abep.org/criterio-brasil (accessed on 7 May 2021).
- Pan American Health Organization. [Guias para el Control y Monitoreo de la Epidemia Tabaquica] 1995. Available online: https://iris.paho.org/handle/10665.2/46211 (accessed on 7 May 2021).
- Bloomfield, K.; Wilsnack, S.; Gmel, G. Introduction to special issue ‘gender, culture and alcohol problems: A multi-national study’. Alcohol Alcohol. 2006, 41, i3–i7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1998. [Google Scholar]
- Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care 2017, 41, S13–S27. [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. Diagnosis and Management of the Metabolic Syndrome. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Barroso, W.K.S.; Rodrigues, C.I.S.; Bortolotto, L.A.; Mota-Gomes, M.A.; Brandão, A.A.; Feitosa, A.D.D.M.; Machado, C.A.; Poli-De-Figueiredo, C.E.; Amodeo, C.; Mion, D.; et al. Diretrizes Brasileiras de Hipertensão Arterial—2020. Arq. Bras. Cardiol. 2021, 116, 516–658. [Google Scholar] [CrossRef]
- Schroder, H.; Covas, M.; Marrugat, J.; Vila-Domènech, J.S.; Pena, A.; Alcántara, M.; Masiá, R. Use of a three-day estimated food record, a 72-hour recall and a food-frequency questionnaire for dietary assessment in a Mediterranean Spanish population. Clin. Nutr. 2001, 20, 429–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castell, G.S.; Serra-Majem, L.; Ribas-Barba, L. What and how much do we eat? 24-hour dietary recall method. Nutr. Hosp. 2015, 31, 46–48. [Google Scholar]
- Walsh, J.S.; Bowles, S.; Evans, A.L. Vitamin D in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Miñambres, I.; Sánchez-Hernández, J.; Sánchez-Quesada, J.L.; Rodríguez, J.; De Leiva, A.; Perez, A.M. The Association of Hypovitaminosis D with the Metabolic Syndrome Is Independent of the Degree of Obesity. ISRN Endocrinol. 2012, 2012, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, E.A.; Lenzi, A.; Migliaccio, S. Role of Hypovitaminosis D in the Pathogenesis of Obesity-Induced Insulin Resistance. Nutrients 2019, 11, 1506. [Google Scholar] [CrossRef] [Green Version]
- Chatelaine, H.; Dey, P.; Mo, X.; Mah, E.; Bruno, R.S.; Kopec, R.E. Vitamin A and D Absorption in Adults with Metabolic Syndrome versus Healthy Controls: A Pilot Study Utilizing Targeted and Untargeted LC–MS Lipidomics. Mol. Nutr. Food Res. 2021, 65, e2000413. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; FulgoniIII, V.L.; Keast, D.R.; Rains, T.M.; Park, K.M.; Rubin, M.R. Vitamin D Intake and Status Are Associated with Lower Prevalence of Metabolic Syndrome in U.S. Adults: National Health and Nutrition Examination Surveys 2003–2006. Metab. Syndr. Relat. Disord. 2012, 10, 363–372. [Google Scholar] [CrossRef]
- Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Dell Vale, H.B. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Dietary Reference Intakes for Calcium and Vitamin D; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Hansen, K.E. High-Dose Vitamin D: Helpful or Harmful? Curr. Rheumatol. Rep. 2011, 13, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pludowski, P.; Holick, M.F.; Grant, W.B.; Konstantynowicz, J.; Mascarenhas, M.R.; Haq, A.; Povoroznyuk, V.; Balatska, N.; Barbosa, A.P.; Karonova, T.; et al. Vitamin D supplementation guidelines. J. Steroid Biochem. Mol. Biol. 2018, 175, 125–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, S.-Y.; Lee, J.-Y.; Kim, D.-H. Association of metabolic syndrome and its components with all-cause and cardiovascular mortality in the elderly. Medicine 2017, 96, e8491. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.K.; Toth, P.P. Trends in Lipids, Obesity, Metabolic Syndrome, and Diabetes Mellitus in the United States: An Nhanes Analysis (2003–2004 to 2013–2014). Obesity 2019, 27, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Amirbaigloo, A.; Hosseinpanah, F.; Sarvghadi, F.; Tohidi, M.; Eskandary, P.S.; Azizi, F. Absence of Association Between Vitamin D Deficiency and Incident Metabolic Syndrome: Tehran Lipid and Glucose Study. Metab. Syndr. Relat. Disord. 2013, 11, 236–242. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, S.; Ma, R.; Zheng, H.; Zhu, Y. Low vitamin D status is associated with obesity but no other cardiovascular risk factors in Chinese children and adolescents. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Faridi, K.F.; Zhao, D.; Martin, S.S.; Lupton, J.R.; Jones, S.R.; Guallar, E.; Ballantyne, C.M.; Lutsey, P.L.; Michos, E.D. Serum vitamin D and change in lipid levels over 5 y: The Atherosclerosis Risk in Communities study. Nutrients 2017, 38, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Si, S.; Liu, J.; Wang, Z.; Jia, H.; Feng, K.; Sun, L.; Song, S.J. The Associations of Serum Lipids with Vitamin D Status. PLoS ONE 2016, 11, e0165157. [Google Scholar] [CrossRef]
- Dibaba, D.T. Effect of vitamin D supplementation on serum lipid profiles: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 890–902. [Google Scholar] [CrossRef] [PubMed]
- Karnchanasorn, R.; Ou, H.-Y.; Chiu, K.C. Plasma 25-Hydroxyvitamin D Levels Are Favorably Associated With β-Cell Function. Pancreas 2012, 41, 863–868. [Google Scholar] [CrossRef]
- Mitri, J.; Pittas, A.G. Vitamin D and Diabetes. Endocrinol. Metab. Clin. N. Am. 2014, 43, 205–232. [Google Scholar] [CrossRef] [Green Version]
- Kazlauskaite, R.; Powell, L.H.; Mandapakala, C.; Cursio, J.F.; Avery, E.F.; Calvin, J. Vitamin D is associated with atheroprotective high-density lipoprotein profile in postmenopausal women. J. Clin. Lipidol. 2010, 4, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, J.C. Vitamin D and Aging. Endocrinol. Metab. Clin. N. Am. 2013, 42, 319–332. [Google Scholar] [CrossRef] [Green Version]
- Veldurthy, V.; Wei, R.; Oz, L.; Dhawan, P.; Jeon, Y.H.; Christakos, S. Vitamin D, calcium homeostasis and aging. Bone Res. 2016, 4, 16041. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, S.I.; Subar, A.F.; Douglass, D.; Zimmerman, T.P.; E Thompson, F.; Kahle, L.L.; George, S.M.; Dodd, K.W.; Potischman, N. Performance of the Automated Self-Administered 24-hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. Am. J. Clin. Nutr. 2014, 100, 233–240. [Google Scholar] [CrossRef] [PubMed]
Variables | n (%) | Vitamin D Serum | Vitamin D Dietary | ||
---|---|---|---|---|---|
<20 ng/mL | p | <70.4 IU/Day (p50) | p-Value | ||
Sex | |||||
Men | 22 (14.7) | 2 (10.0) | 0.739 * | 8 (10.7) | 0.166 ** |
Women | 128 (85.3) | 18 (90.0) | 67 (89.3) | ||
Age groups (years) | |||||
18–29 | 19 (12.7) | 1 (5.0) | 0.051 * | 11 (14.7) | 0.708 ** |
30–39 | 57 (38.0) | 4 (20.0) | 28 (37.3) | ||
40–49 | 53 (35.3) | 9 (45.0) | 24 (32.0) | ||
≥ 50 | 21 (14.0) | 6 (30.0) | 12 (16.0) | ||
Skin colour | |||||
White | 46 (30.7) | 5 (25.0) | 0.367 * | 20 (26.7) | 0.491 ** |
Brown | 83 (55.3) | 14 (70.0) | 45 (60.0) | ||
Black | 21 (14.0) | 1 (5.0) | 10 (13.3) | ||
Schooling years | |||||
≤4 | 15 (10.0) | 3 (15.0) | 0.521 * | 6 (8.0) | 0.619 ** |
5–11 | 110 (73.3) | 13 (65.0) | 55 (73.3) | ||
≥ 12 | 25 (16.7) | 4 (20.0) | 25 (18.7) | ||
Social Class | |||||
A–B | 34 (22.7) | 3 (15.0) | 0.543 * | 19 (25.3) | 0.400 ** |
C | 92 (61.3) | 15 (75.0) | 42 (56.0) | ||
D–E | 24 (16.0) | 2 (10.0) | 14 (18.7) | ||
Smoking | |||||
Never | 101 (67.3) | 13 (65.0) | 0.811 ** | 53 (70.7) | 0.384 ** |
Ex-smoker/smoker | 49 (32.7) | 7 (35.0) | 22 (29.3) | ||
Binge drinking | |||||
Yes | 43 (54.4) | 3 (30.0) | 0.093 * | 27 (61.4) | 0.165 ** |
No | 36 (45.6) | 7 (701.0) | 17 (38.6) | ||
BMI (kg/m2) | |||||
35–39.9 | 25 (16.7) | 4 (20.0) | 0.212 * | 17 (22.7) | 0.141 ** |
40–49.9 | 85 (56.7) | 8 (40.0) | 39 (52.0) | ||
≥ 50 | 40 (26.6) | 8 (40.0) | 19 (25.3) |
Variables | n (%) | Vitamin D Serum | Vitamin D Dietary | ||
---|---|---|---|---|---|
<20 ng/mL n = 20 (13.3%) | p Value * | <70.4 IU/Day (p50) n = 75 (50%) | p Value * | ||
Glycaemia | |||||
≥100 mg/dL or medication | 69 (46.0) | 9 (45.0) | 0.923 | 34 (45.3) | 0.870 |
<100 mg/dL | 81 (54.0) | 11 (55.0) | 41 (54.7) | ||
HDL-cholesterol | |||||
<40 mg/dL or <50 mg/L or medication | 82 (54.7) | 11 (55.0) | 0.974 | 42 (56.0) | 0.743 |
≥40 mg/dL or ≥50 mg/L | 68 (45.3) | 9 (45.0) | 33 (44.0) | ||
Triacylglycerol | |||||
≥150 mg/dL or medication | 72 (48.0) | 9 (45.0) | 0.773 | 36 (48.0) | 1.000 |
<150 mg/dL | 78 (52.0) | 11 (50.0) | 39 (52.0) | ||
Abdominal circumference | |||||
≥129.9 or ≥124.6 cm | 37 (25.5) | 7 (35.0) | 0.295 | 19 (27.1) | 0.664 |
<129.9 cm or 124.6 cm | 108 (74.5) | 13 (65.0) | 51 (72.9) | ||
Elevated blood pressure | |||||
≥130/85 mmHg or medication | 94 (62.7) | 15 (75.0) | 0.321 | 45 (60.0) | 0.500 |
<130/85 mmHg | 56 (37.3) | 5 (25.0) | 30 (40.0) | ||
Metabolic Syndrome | |||||
Yes | 104 (69.3) | 15 (75.0) | 0.615 | 52 (69.3) | 1.000 |
No | 46 (30.7) | 5 (25.0) | 23 (30.7) |
Variables | Model 1 Vitamin D Serum (<20 ng/mL) | Model 2 Vitamin D Serum (<20 ng/mL) | Model 3 Vitamin D Serum (<20 ng/mL) | ||||||
---|---|---|---|---|---|---|---|---|---|
PR | CI 95% | p * | PR | CI 95% | p * | PR | CI 95% | p * | |
Glycaemia | |||||||||
<100 mg/dL | 1 | 1 | 1 | ||||||
≥100 mg/dL or medicament | 1.055 | 0.734–1.515 | 0.773 | 0.991 | 0.556–1.781 | 0.976 | 0.945 | 0.521–1.712 | 0.852 |
HDL-cholesterol | |||||||||
≥40 mg/dL or ≥50 mg/L | 1 | 1 | |||||||
<40 mg/dL or <50 mg/L or medicament | 0.713 | 0.526–0.966 | 0.029 | 0.775 | 0.522–1.149 | 0.205 | 0.732 | 0.488–1.097 | 0.131 |
Triacylglycerol | |||||||||
<150 mg/dL | 1 | 1 | 1 | ||||||
≥150 mg/dL or medicament | 0.962 | 0.699–1.324 | 0.814 | 1.125 | 0.693–1.827 | 0.632 | 0.991 | 0.589–1.668 | 0.973 |
Abdominal circumference | |||||||||
<129.9 cm or 124.6 cm | 1 | 1 | 1 | - | - | - | |||
≥129.9 or ≥124.6m | 1.050 | 0.939–1.174 | 0.388 | 1.086 | 0.926–1.274 | 0.308 | - | - | - |
Blood pressure | |||||||||
<130/85 mmHg | 1 | 1 | 1 | ||||||
≥130/85 mmHg or medicament | 0.983 | 0.768–1.258 | 0.891 | 1.109 | 0.765–1.607 | 0.586 | 1.202 | 0.799–1.807 | 0.376 |
Metabolic syndrome | |||||||||
No | 1 | 1 | 1 | ||||||
yes | 0.954 | 0.7649–1.189 | 0.674 | 1.091 | 0.784–1.517 | 0.606 | 1.025154 | 0.727–1.444 | 0.887 |
Variables | Model 1 Vitamin D Dietary p50 (<70.4 IU/Day) | Model 2 Vitamin D Dietary p50 (<70.4 IU/Day) | Model 3 Vitamin D Dietary p50 (<70.4 IU/Day) | ||||||
---|---|---|---|---|---|---|---|---|---|
PR | CI 95% | p * | PR | CI 95% | p * | PR | CI 95% | p * | |
Glycaemia | |||||||||
<100 mg/dL | 1 | 1 | 1 | ||||||
≥100 mg/dL or medicament | 0.976 | 0.693–1.375 | 0.891 | 0.906 | 0.504–1.630 | 0.743 | 0.868 | 0.474–1.588 | 0.645 |
HDL–cholesterol lower | |||||||||
≥40 mg/dL or ≥50 mg/L | 1 | 1 | 1 | ||||||
<40 mg/dL or <50 mg/L or medicament | 0.972 | 0.742–1.274 | 0.840 | 0.912 | 0.644–1.291 | 0.603 | 0.930 | 0.654–1.325 | 0.690 |
Triacylglycerol | |||||||||
<150 mg/dL | 1 | 1 | 1 | ||||||
≥150 mg/dL or medicament | 1.032 | 0.735–1.451 | 0.854 | 1.219 | 0.736–2.019 | 0.440 | 1.2240 | 0.729–2.057 | 0.444 |
Abdominal circumference | |||||||||
<129.9 cm or 124.6 cm | 1 | 1 | – | – | – | ||||
≥129.9 or ≥124.6 m | 0.969 | 0.863–1.088 | 0.596 | 1.020 | 0.879–1.184 | 0.792 | – | – | – |
Blood pressure | |||||||||
<130/85 mmHg | 1 | 1 | 1 | ||||||
≥130/85 mmHg or medicament | 1.043 | 0.821–1.324 | 0.729 | 0.830 | 0.566–1.218 | 0.342 | 0.825 | 0.558–1.222 | 0.338 |
Metabolic syndrome | |||||||||
No | 1 | 1 | 1 | ||||||
yes | 0.968 | 0.784–1.194 | 0.760 | 0.837 | 0.589–1.1882 | 0.319 | 0.797 | 0.564–1.125 | 0.196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, E.A.; Cardoso, C.K.d.S.; Moura, L.d.A.N.e.; dos Santos Rodrigues, A.P.; de Oliveira, C. Serum and Dietary Vitamin D in Individuals with Class II and III Obesity: Prevalence and Association with Metabolic Syndrome. Nutrients 2021, 13, 2138. https://doi.org/10.3390/nu13072138
Silveira EA, Cardoso CKdS, Moura LdANe, dos Santos Rodrigues AP, de Oliveira C. Serum and Dietary Vitamin D in Individuals with Class II and III Obesity: Prevalence and Association with Metabolic Syndrome. Nutrients. 2021; 13(7):2138. https://doi.org/10.3390/nu13072138
Chicago/Turabian StyleSilveira, Erika Aparecida, Camila Kellen de Souza Cardoso, Letícia de Almeida Nogueira e Moura, Ana Paula dos Santos Rodrigues, and Cesar de Oliveira. 2021. "Serum and Dietary Vitamin D in Individuals with Class II and III Obesity: Prevalence and Association with Metabolic Syndrome" Nutrients 13, no. 7: 2138. https://doi.org/10.3390/nu13072138
APA StyleSilveira, E. A., Cardoso, C. K. d. S., Moura, L. d. A. N. e., dos Santos Rodrigues, A. P., & de Oliveira, C. (2021). Serum and Dietary Vitamin D in Individuals with Class II and III Obesity: Prevalence and Association with Metabolic Syndrome. Nutrients, 13(7), 2138. https://doi.org/10.3390/nu13072138