Association of the Chronotype Score with Circulating Trimethylamine N-Oxide (TMAO) Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Population Study
- Impaired renal function (estimated glomerular filtration rate calculated by chronic kidney disease epidemiology collaboration equation <90 mL/min/1.73 m2);
- A confirmed diagnosis of type 2 diabetes (in accordance with the American Diabetes Association criteria: two confirmations of fasting glucose ≥126 mg/dL or glycated hemoglobin (HbA1c) ≥6.5% (≥48 mmol/mol)). Subjects taking hypoglycemic drugs were considered to have type 2 diabetes [23];
- Cardiovascular disease, including: previous cardiovascular events, atherosclerosis, coronary artery or peripheral vascular disease;
- Current use of hypolipidemic or anti-inflammatory drugs;
- Current therapy or in the two months prior to enrollment with antibiotics or probiotics;
- Specific diets such as vegetarian or vegan regimes;
- Current supplementation with vitamins, minerals, or antioxidants;
- Alcohol abuse was diagnosed according to the criteria of DSM-V [24];
- Shift working.
2.3. Lifestyle Information
2.4. Anthropometric Measurements and Blood Pressure
2.5. Determination of Circulating TMAO Concentrations
2.6. Assay Methods
2.7. Adherence to MD
2.8. Evaluation of Chronotype
2.9. Statistical Analysis
3. Results
Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frank, J.; Gupta, A.; Osadchiy, V.; Mayer, E.A. Brain-Gut-Microbiome Interactions and Intermittent Fasting in Obesity. Nutrients 2021, 13, 584. [Google Scholar] [CrossRef] [PubMed]
- Parkar, S.G.; Kalsbeek, A.; Cheeseman, J.F. Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms 2019, 7, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongrain, V.; Lavoie, S.; Selmaoui, B.; Paquet, J.; Dumont, M. Phase relationships between sleep-wake cycle and underlying circadian rhythms in morningness-eveningness. J. Biol. Rhythm. 2004, 19, 248–257. [Google Scholar] [CrossRef]
- Adan, A.; Natale, V. Gender differences in morningness-eveningness preference. Chronobiol. Int. 2002, 19, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Allebrandt, K.V.; Merrow, M.; Vetter, C. Social jetlag and obesity. Curr. Biol. 2012, 22, 939–943. [Google Scholar] [CrossRef] [Green Version]
- Horne, J.A.; Ostberg, O. A self assessment questionnaire to determine Morningness Eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar]
- Makarem, N.; Paul, J.; Giardina, E.G.V.; Liao, M.; Aggarwal, B. Evening chronotype is associated with poor cardiovascular health and adverse health behaviors in a diverse population of women. Chronobiol. Int. 2020, 37, 673–685. [Google Scholar] [CrossRef]
- Aguilar-Galarza, A.; García-Gasca, T.; Mejía, C.; Díaz-Muñoz, M.; Pérez-Mendoza, M.; Anaya-Loyola, M.A.; Garaulet, M. Evening chronotype associates with increased triglyceride levels in young adults in two independent populations. Clin. Nutr. 2020, 40, 2373–2380. [Google Scholar] [CrossRef]
- Henry, C.J.; Kaur, B.; Quek, R.Y.C. Chrononutrition in the management of diabetes. Nutr. Diabetes 2020, 10, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Mazri, F.H.; Manaf, Z.A.; Shahar, S.; Ludin, A.F.M. The association between chronotype and dietary pattern among adults: A scoping review. Int. J. Environ. Res. Public Health 2019, 17, 68. [Google Scholar] [CrossRef] [Green Version]
- Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. Circadian rhythms: A regulator of gastrointestinal health and dysfunction. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Fabbian, F.; Zucchi, B.; De Giorgi, A.; Tiseo, R.; Boari, B.; Salmi, R.; Cappadona, R.; Gianesini, G.; Bassi, E.; Signani, F.; et al. Chronotype, gender and general health. Chronobiol. Int. 2016, 33, 863–882. [Google Scholar] [CrossRef]
- Basnet, S.; Merikanto, I.; Lahti, T.; Männistö, S.; Laatikainen, T.; Vartiainen, E.; Partonen, T. Associations of common noncommunicable medical conditions and chronic diseases with chronotype in a population-based health examination study. Chronobiol. Int. 2017, 34, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Redondo-Useros, N.; Nova, E.; González-Zancada, N.; Díaz, L.E.; Gómez-Martínez, S.; Marcos, A. Microbiota and lifestyle: A special focus on diet. Nutrients 2020, 12, 1776. [Google Scholar] [CrossRef]
- Coutinho-Wolino, K.S.; Ludmila, L.F.M.; de Oliveira Leal, V.; Mafra, D.; Stockler-Pinto, M.B. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? Eur. J. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H.; Warrier, M. Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease. Annu. Rev. Nutr. 2017, 37, 157–181. [Google Scholar] [CrossRef]
- Rüb, A.M.; Tsakmaklis, A.; Gräfe, S.K.; Simon, M.-C.; Vehreschild, M.J.; Wuethrich, I. Biomarkers of human gut microbiota diversity and dysbiosis. Biomark. Med. 2021, 15, 137–148. [Google Scholar] [CrossRef]
- Caprara, G. Mediterranean-type dietary pattern and physical activity: The winning combination to counteract the rising burden of non-communicable diseases (NCDS). Nutrients 2021, 13, 429. [Google Scholar] [CrossRef]
- García-Montero, C.; Fraile-Martínez, O.; Gómez-Lahoz, A.M.; Pekarek, L.; Castellanos, A.J.; Noguerales-Fraguas, F.; Coca, S.; Guijarro, L.G.; García-Honduvilla, N.; Asúnsolo, A.; et al. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021, 13, 699. [Google Scholar] [CrossRef]
- Leeming, E.R.; Louca, P.; Gibson, R.; Menni, C.; Spector, T.D.; Le Roy, C.I. The complexities of the diet-microbiome relationship: Advances and perspectives. Genome. Med. 2021, 13, 10–24. [Google Scholar] [CrossRef]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Di Somma, C.; Maisto, M.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine N-oxide, Mediterranean diet, and nutrition in healthy, normal-weight adults: Also a matter of sex? Nutrition 2019, 62, 7–17. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Pugliese, G.; Aprano, S.; Framondi, L.; Di Matteo, R.; Riccio, P.A.; Savastano, S.; Colao, A. The opera prevention project. Int. J. Food Sci. Nutr. 2021, 72, 1–3. [Google Scholar] [CrossRef]
- American Diabetes Association. Summary of Revisions: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43 (Suppl. 1), S4–S6. [Google Scholar] [CrossRef] [Green Version]
- Grant, B.F.; Goldstein, R.B.; Saha, T.D.; Patricia Chou, S.; Jung, J.; Zhang, H.; Pickering, R.P.; June Ruan, W.; Smith, S.M.; Huang, B.; et al. Epidemiology of DSM-5 alcohol use disorder results from the national epidemiologic survey on alcohol and related conditions III. JAMA Psychiatry 2015, 72, 757–766. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Altieri, B.; Muscogiuri, G.; Laudisio, D.; Annunziata, G.; Colao, A.; Faggiano, A.; Savastano, S. Impact of nutritional status on gastroenteropancreatic neuroendocrine tumors (GEP-NET) aggressiveness. Nutrients 2018, 10, 1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Muscogiuri, G.; Di Somma, C.; Annunziata, G.; Megna, M.; Falco, A.; Balato, A.; Colao, A.; Savastano, S. Coffee consumption, metabolic syndrome and clinical severity of psoriasis: Good or bad stuff? Arch. Toxicol. 2018, 92, 1831–1845. [Google Scholar] [CrossRef]
- Barrea, L.; Di Somma, C.; Macchia, P.E.; Falco, A.; Savanelli, M.C.; Orio, F.; Colao, A.; Savastano, S. Influence of nutrition on somatotropic axis: Milk consumption in adult individuals with moderate-severe obesity. Clin. Nutr. 2017, 36, 293–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savanelli, M.C.; Scarano, E.; Muscogiuri, G.; Barrea, L.; Vuolo, L.; Rubino, M.; Savastano, S.; Colao, A.; Di Somma, C. Cardiovascular risk in adult hypopituitaric patients with growth hormone deficiency: Is there a role for vitamin D? Endocrine 2016, 52, 111–119. [Google Scholar] [CrossRef]
- Savastano, S.; Di Somma, C.; Colao, A.; Barrea, L.; Orio, F.; Finelli, C.; Pasanisi, F.; Contaldo, F.; Tarantino, G. Preliminary data on the relationship between circulating levels of Sirtuin 4, anthropometric and metabolic parameters in obese subjects according to growth hormone/insulin-like growth factor-1 status. Growth Horm. IGF Res. 2015, 25, 28–33. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Di Somma, C.; Laudisio, D.; Salzano, C.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Sex differences of vitamin D status across BMI classes: An observational prospective cohort study. Nutrients 2019, 11, 3034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO|World Health Organization. Body Mass Index—BMI. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 15 March 2021).
- Nishida, C.; Ko, G.T.; Kumanyika, S. Body fat distribution and noncommunicable diseases in populations: Overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist-Hip Ratio. Eur. J. Clin. Nutr. 2010, 64, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Levison, B.S.; Hazen, J.E.; Donahue, L.; Li, X.M.; Hazen, S.L. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal. Biochem. 2014, 455, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beale, R.; Airs, R. Quantification of glycine betaine, choline and trimethylamine N-oxide in seawater particulates: Minimisation of seawater associated ion suppression. Anal. Chim. Acta 2016, 938, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Muscogiuri, G.; Annunziata, G.; Laudisio, D.; Tenore, G.C.; Colao, A.; Savastano, S. A new light on vitamin d in obesity: A novel association with trimethylamine-n-oxide (tmao). Nutrients 2019, 11, 1310. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Di Somma, C.; Laudisio, D.; Maisto, M.; de Alteriis, G.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients 2018, 10, 1971. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Xu, C.; Li, G.; Hong, W.; Zhou, Z.; Xiao, C.; Zhao, Y.; Cai, Y.; Huang, M.; Jin, J. Simultaneous determination of trimethylamine N-oxide, choline, betaine by UPLC-MS/MS in human plasma: An application in acute stroke patients. J. Pharm. Biomed. Anal. 2018, 152, 179–187. [Google Scholar] [CrossRef]
- Barrea, L.; Tarantino, G.; Somma, C.D.; Muscogiuri, G.; Macchia, P.E.; Falco, A.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet and Circulating Levels of Sirtuin 4 in Obese Patients: A Novel Association. Oxid. Med. Cell. Longev. 2017, 2017, 6101254–6101268. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Di Somma, C.; Pugliese, G.; Salzano, C.; Colao, A.; Savastano, S. Somatotropic axis and obesity: Is there any role for the Mediterranean diet? Nutrients 2019, 11, 2228. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Fabbrocini, G.; Annunziata, G.; Muscogiuri, G.; Donnarumma, M.; Marasca, C.; Colao, A.; Savastano, S. Role of nutrition and adherence to the mediterranean diet in the multidisciplinary approach of hidradenitis suppurativa: Evaluation of nutritional status and its association with severity of disease. Nutrients 2019, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-item mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE 2012, 7, e43134–e43144. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Muscogiuri, G.; Di Somma, C.; Tramontano, G.; De Luca, V.; Illario, M.; Colao, A.; Savastano, S. Association between Mediterranean diet and hand grip strength in older adult women. Clin. Nutr. 2019, 38, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Macchia, P.E.; Di Somma, C.; Falco, A.; Savanelli, M.C.; Colao, A.; Savastano, S. Mediterranean diet and phase angle in a sample of adult population: Results of a pilot study. Nutrients 2017, 9, 151. [Google Scholar] [CrossRef]
- Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the mediterranean diet, dietary patterns and body composition in women with polycystic ovary syndrome (PCOS). Nutrients 2019, 11, 2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscogiuri, G.; Barrea, L.; Aprano, S.; Framondi, L.; Di Matteo, R.; Laudisio, D.; Pugliese, G.; Savastano, S.; Colao, A. Chronotype and adherence to the mediterranean diet in obesity: Results from the opera prevention project. Nutrients 2020, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Almoosawi, S.; Vingeliene, S.; Gachon, F.; Voortman, T.; Palla, L.; Johnston, J.D.; Van Dam, R.M.; Darimont, C.; Karagounis, L.G. Chronotype: Implications for Epidemiologic Studies on Chrono-Nutrition and Cardiometabolic Health. Adv. Nutr. 2019, 10, 30–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobs, S.P.; Tuganbaev, T.; Elinav, E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep. 2019, 20, e47129–e47144. [Google Scholar] [CrossRef]
- Carasso, S.; Fishman, B.; Lask, L.S.; Shochat, T.; Geva-Zatorsky, N.; Tauber, E. Metagenomic analysis reveals the signature of gut microbiota associated with human chronotypes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Juda, M.; Vetter, C.; Roenneberg, T. Chronotype modulates sleep duration, sleep quality, and social jet lag in shift-workers. J. Biol. Rhythms 2013, 28, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxton, O.M.; Cain, S.W.; O’Connor, S.P.; Porter, J.H.; Duffy, J.F.; Wang, W.; Czeisler, C.A.; Shea, S.A. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 2012, 11, 129ra43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hittle, B.M.; Gillespie, G.L. Identifying shift worker chronotype: Implications for health. Ind. Health 2018, 56, 512–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merikanto, I.; Kronholm, E.; Peltonen, M.; Laatikainen, T.; Vartiainen, E.; Partonen, T. Circadian preference links to depression in general adult population. J. Affect. Disord. 2015, 188, 143–148. [Google Scholar] [CrossRef]
- Sobolewska-Włodarczyk, A.; Włodarczyk, M.; Szemraj, J.; Stec-Michalska, K.; Fichna, J.; Wiśniewska-Jarosińska, M. Circadian rhythm abnormalities—Association with the course of inflammatory bowel disease. Pharmacol. Rep. 2016, 68, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Nojkov, B.; Rubenstein, J.H.; Chey, W.D.; Hoogerwerf, W.A. The impact of rotating shift work on the prevalence of irritable bowel syndrome in nurses. Am. J. Gastroenterol. 2010, 105, 842–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanepoel, I.; Roberts, A.; Brauns, C.; Chaliha, D.R.; Papa, V.; Palmer, R.D.; Vaccarezza, M. Trimethylamine N-oxide (TMAO): A new attractive target to decrease cardiovascular risk. Postgrad Med. J. 2021, 139839. [Google Scholar] [CrossRef]
- Hulsegge, G.; Picavet, H.S.J.; Van Der Beek, A.J.; Verschuren, W.M.M.; Twisk, J.W.; Proper, K.I. Shift work, chronotype and the risk of cardiometabolic risk factors. Eur. J. Public Health 2019, 29, 128–134. [Google Scholar] [CrossRef]
- Yang, Y.; Sauve, A.A. NAD+ metabolism: Bioenergetics, signaling and manipulation for therapy. Biochim. Biophys. Acta 2016, 1864, 1787–1800. [Google Scholar] [CrossRef] [Green Version]
- Janeiro, M.H.; Ramírez, M.J.; Milagro, F.I.; Martínez, J.A.; Solas, M. Implication of trimethylamine n-oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef] [Green Version]
- Schiattarella, G.G.; Sannino, A.; Toscano, E.; Giugliano, G.; Gargiulo, G.; Franzone, A.; Trimarco, B.; Esposito, G.; Perrino, C. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: A systematic review and dose-response meta-analysis. Eur. Heart J. 2017, 38, 2948–2956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühn, T.; Rohrmann, S.; Sookthai, D.; Johnson, T.; Katzke, V.; Kaaks, R.; Von Eckardstein, A.; Müller, D. Intra-individual variation of plasma trimethylamine-N-oxide (TMAO), betaine and choline over 1 year. Clin. Chem. Lab. Med. 2017, 55, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Rohrmann, S.; Linseisen, J.; Allenspach, M.; Von Eckardstein, A.; Müller, D. Plasma concentrations of trimethylamine- n-oxide are directly associated with dairy food consumption and low-grade inflammation in a german adult population. J. Nutr. 2016, 146, 283–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, C.E.; Caudill, M.A. Trimethylamine-N-Oxide: Friend, Foe, or Simply Caught in the Cross-Fire? Trends Endocrinol. Metab. 2017, 28, 121–130. [Google Scholar] [CrossRef]
- Senthong, V.; Li, X.S.; Hudec, T.; Coughlin, J.; Wu, Y.; Levison, B.; Wang, Z.; Hazen, S.L.; Tang, W.H.W. Plasma Trimethylamine N-Oxide, a Gut Microbe–Generated Phosphatidylcholine Metabolite, Is Associated With Atherosclerotic Burden. J. Am. Coll. Cardiol. 2016, 67, 2620–2628. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Wang, Z.; Fan, Y.; Levison, B.; Hazen, J.E.; Donahue, L.M.; Wu, Y.; Hazen, S.L. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol. 2014, 64, 1908–1914. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Tang, W.H.W.; Buffa, J.A.; Fu, X.; Britt, E.B.; Koeth, R.A.; Levison, B.S.; Fan, Y.; Wu, Y.; Hazen, S.L. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 2014, 35, 904–910. [Google Scholar] [CrossRef]
- García-Conesa, M.T.; Philippou, E.; Pafilas, C.; Massaro, M.; Quarta, S.; Andrade, V.; Jorge, R.; Chervenkov, M.; Ivanova, T.; Dimitrova, D.; et al. Exploring the validity of the 14-item mediterranean diet adherence screener (Medas): A cross-national study in seven european countries around the mediterranean region. Nutrients 2020, 12, 2960. [Google Scholar] [CrossRef]
- Wu, W.K.; Chen, C.C.; Liu, P.Y.; Panyod, S.; Liao, B.Y.; Chen, P.C.; Kao, H.L.; Kuo, H.C.; Kuo, C.H.; Chiu, T.H.T.; et al. Identification of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice. Gut 2019, 68, 1439–1449. [Google Scholar] [CrossRef] [Green Version]
- Krüger, R.; Merz, B.; Rist, M.J.; Ferrario, P.G.; Bub, A.; Kulling, S.E.; Watzl, B. Associations of current diet with plasma and urine TMAO in the KarMeN study: Direct and indirect contributions. Mol. Nutr. Food Res. 2017, 61, 1–12. [Google Scholar] [CrossRef]
Parameters | Mean ± SD or n. (%) n. 247 |
---|---|
Lifestyle Habits | |
Age (years) | 36.6 ± 11.0 |
Smoking (yes) | 86 (34.8%) |
Physical activity (yes) | 97 (39.3%) |
Anthropometric measurement | |
BMI (kg/m2) | 28.8 ± 9.1 |
Normal weight | 145 (58.7%) |
Overweight | 28 (11.3%) |
Grade I obesity | 21 (8.5%) |
Grade II obesity | 15 (6.1%) |
Grade III obesity | 38 (15.4%) |
WC (cm) | 98.6 ± 23.1 |
WC (cm) males | 109.7 ± 22.3 |
WC (cm) females | 91.1 ± 20.5 |
Blood pressure | |
SBP (mmHg) | 128.4 ± 12.8 |
DBP (mmHg) | 80.6 ± 9.1 |
Metabolic profile | |
Circulating TMAO concentrations (µM) | 6.2 ± 3.6 |
Fasting glucose (mg/dL) | 91.3 ± 14.5 |
Triglycerides (mg/dL) | 117.5 ± 42.6 |
Total cholesterol (mg/dL) | 160.6 ± 36.1 |
LDL cholesterol (mg/dL) | 85.7 ± 40.6 |
HDL cholesterol (mg/dL) | 51.4 ± 11.3 |
AST (U/L) | 27.4 ± 13.9 |
ALT (U/L) | 26.9 ± 14.0 |
γGT (U/L) | 30.2 ± 16.5 |
Nutritional parameter | |
MEDAS-derived MD score | 8.1 ± 2.7 |
Low adherence to the MD | 56 (22.7%) |
Average adherence to the MD | 101 (40.9%) |
High adherence to the MD | 90 (36.4%) |
Chronotype | |
Chronotype score | 57.5 ± 19.3 |
Morning Type | 154 (62.3%) |
Neither Type | 30 (12.2%) |
Evening Type | 63 (25.5%) |
Parameters | Circulating TMAO Concentrations (µM) | p-Value | Chronotype Score | p-Value | |
---|---|---|---|---|---|
Sex | Males (n 100, 40.5%) | 8.4 ± 3.1 | <0.001 | 46.7 ± 19.2 | <0.001 |
Females (n 147, 49.5%) | 4.8 ± 3.3 | 64.8 ± 15.7 | |||
Smoking | Yes (n 86, 34.8%) | 7.6 ± 3.4 | <0.001 | 49.9 ± 19.8 | <0.001 |
No (n 161, 65.2%) | 5.5 ± 3.6 | 61.5 ± 17.9 | |||
Physical activity | Yes (n 97, 39.3%) | 4.7 ± 3.2 | <0.001 | 63.9 ± 16.8 | <0.001 |
No (n 150, 60.7%) | 7.3 ± 3.7 | 53.3 ± 19.7 | |||
BMI | Normal weight (n 145, 58.7%) | 3.7 ± 2.3 | <0.001 | 69.8 ± 10.4 | <0.001 |
Overweight (n 28, 11.3%) | 8.2 ± 0.7 | 48.4 ± 14.4 | |||
Grade I obesity (n 21, 8.5%) | 9.0 ± 0.9 | 39.7 ± 12.7 | |||
Grade II obesity (n 15, 6.1%) | 9.9 ± 0.8 | 40.6 ± 14.0 | |||
Grade III obesity (n 38, 15.4%) | 11.5 ± 0.9 | 33.5 ± 14.3 | |||
MEDAS-derived MD score | Low adherence to the MD (n 56, 22.7%) | 9.5 ± 2.9 | <0.001 | 41.9 ± 18.7 | <0.001 |
Average adherence to the MD (n 101, 40.9%) | 6.7 ± 3.1 | 56.4 ± 17.6 | |||
High adherence to the MD (n 90, 36.4%) | 3.8 ± 2.7 | 68.4 ± 13.8 |
Parameters | Morning Type n = 154, 62.3% | Neither Type n = 30, 12.2% | Evening Type n = 63, 25.5% | p-Value |
---|---|---|---|---|
Gender | ||||
Males (n, %) | 41, 26.6% | 12, 40.0% | 47, 74.6% | χ2 = 42.7 p < 0.001 |
Females (n, %) | 113, 73.4% | 18, 60.0% | 16, 25.4% | |
Age (years) | 38.5 ± 11.0 | 40.0 ± 11.5 | 30.3 ± 8.2 | <0.001 |
Smoking | ||||
Yes | 42, 27.3% | 12, 40.0% | 32, 49.2% | χ2 = 11.3 p = 0.004 |
No | 112, 72.7% | 18, 60.0% | 31, 50.8% | |
Physical activity | ||||
Yes | 72, 46.8% | 10, 33.3% | 15, 23.8% | χ2 = 10.4 p = 0.006 |
No | 82, 53.2% | 20, 66.7% | 48, 76.2% | |
Anthropometric measurements | ||||
BMI (kg/m2) | 23.8 ± 4.0 | 32.9 ± 7.5 | 39.1 ± 9.3 | <0.001 |
WC (cm) | 87.4 ± 14.4 | 109.0 ± 21.3 | 121.1 ± 22.5 | <0.001 |
Blood pressure | ||||
SBP (mmHg) | 120.6 ± 10.9 | 127.3 ± 12.5 | 130.9 ± 12.6 | 0.013 |
DBP (mmHg) | 78.8 ± 7.9 | 80.9 ± 9.1 | 80.9 ± 9.5 | 0.692 |
Metabolic profile | ||||
Fasting glucose (mg/dL) | 86.1 ± 12.4 | 96.5 ± 13.3 | 101.4 ± 13.8 | <0.001 |
Triglycerides (mg/dL) | 111.4 ± 41.1 | 124.7 ± 33.0 | 129.2 ± 47.4 | 0.012 |
Total cholesterol (mg/dL) | 151.7 ± 30.5 | 184.7 ± 29.8 | 170.5 ± 43.4 | <0.001 |
LDL cholesterol (mg/dL) | 75.6 ± 35.3 | 113.9 ± 33.9 | 96.8 ± 46.7 | <0.001 |
HDL cholesterol (mg/dL) | 53.8 ± 11.2 | 45.9 ± 9.9 | 47.5 ± 10.3 | <0.001 |
AST (U/L) | 24.4 ± 10.8 | 33.3 ± 17.5 | 30.2 ± 17.3 | 0.001 |
ALT (U/L) | 24.0 ± 13.2 | 34.9 ± 16.2 | 31.9 ± 12.1 | <0.001 |
γGT (U/L) | 26.1 ± 10.5 | 35.1 ± 19.6 | 37.7 ± 22.9 | <0.001 |
Nutritional parameter | ||||
MEDAS-derived MD score | 9.0 ± 2.4 | 7.1 ± 2.5 | 6.2 ± 2.4 | <0.001 |
Low adherence to the MD | 15, 9.7% | 9, 30.0% | 32, 50.8% | χ2 = 44.0, p < 0.001 |
Average adherence to the MD | 61, 39.6% | 16, 53.3% | 24, 38.1% | χ2 = 2.2, p = 0.328 |
High adherence to the MD | 78, 50.6% | 5, 16.7% | 7, 11.1% | χ2= 35.9, p < 0.001 |
Parameters | Circulating TMAO Concentrations (µM) | Chronotype Score | ||
---|---|---|---|---|
r | p-Value | r | p-Value | |
Age (years) | −0.277 | <0.001 | 0.361 | <0.001 |
Anthropometric measurements | ||||
BMI (kg/m2) | 0.842 | <0.001 | −0.746 | <0.001 |
WC (cm) | 0.785 | <0.001 | −0.670 | <0.001 |
Blood pressure | ||||
SBP (mmHg) | 0.357 | <0.001 | −0.286 | 0.003 |
DBP (mmHg) | 0.245 | 0.013 | −0.042 | 0.672 |
Metabolic profile | ||||
Fasting glucose (mg/dL) | 0.519 | <0.001 | −0.439 | <0.001 |
Triglycerides (mg/dL) | 0.253 | <0.001 | −0.175 | 0.006 |
Total cholesterol (mg/dL) | 0.264 | <0.001 | −0.133 | 0.037 |
LDL cholesterol (mg/dL) | 0.255 | <0.001 | −0.121 | 0.050 |
HDL cholesterol (mg/dL) | −0.261 | <0.001 | 0.140 | 0.028 |
AST (U/L) | 0.261 | <0.001 | −0.194 | 0.002 |
ALT (U/L) | 0.195 | 0.002 | −0.137 | 0.031 |
γGT (U/L) | 0.320 | <0.001 | −0.297 | <0.001 |
Nutritional parameter | ||||
MEDAS-derived MD score | −0.632 | <0.001 | 0.525 | <0.001 |
Parameters | Circulating TMAO Concentrations (µM) | Chronotype Score | ||||||
---|---|---|---|---|---|---|---|---|
OR | p-Value | 95% IC | R2 | OR | p-Value | 95% IC | R2 | |
Sex | 1.37 | <0.001 | 1.25–1.50 | 0.22 | 0.95 | <0.001 | 0.93–0.96 | 0.20 |
Smoking | 1.18 | <0.001 | 1.09–1.28 | 0.07 | 0.97 | <0.001 | 0.96–0.98 | 0.08 |
Physical activity | 0.08 | <0.001 | 0.75–0.87 | 0.12 | 1.03 | <0.001 | 1.02–1.05 | 0.07 |
MEDAS categories | ||||||||
Low adherence to the MD | 1.53 | <0.001 | 1.34–1.74 | 0.23 | 0.95 | <0.001 | 0.93–0.96 | 0.17 |
Average adherence to the MD | 1.06 | 0.007 | 0.98–1.13 | 0.01 | 0.69 | 0.004 | 0.98–1.00 | 0.01 |
High adherence to the MD | 0.69 | <0.001 | 0.63–0.76 | 0.26 | 1.07 | <0.001 | 1.04–1.09 | 0.19 |
Chronotype | ||||||||
Morning Type | 0.27 | <0.001 | 0.18–0.40 | 0.59 | - | - | - | - |
Neither Type | 1.34 | <0.001 | 1.17–1.53 | 0.09 | - | - | - | - |
Evening Type | 2.31 | <0.001 | 1.82–2.92 | 0.43 | - | - | - | - |
Parameters | Linear Regression Model | |||||||
---|---|---|---|---|---|---|---|---|
Non-Standardized Coefficients | Standardized Coefficients | Collinearity Statistics | ||||||
T | SE | β | t | p-Value | 95% IC | Tolerance | VIF | |
Chronotype score | −0.090 | 0.007 | −0.479 | −12.08 | <0.001 | −0.11 to −0.08 | 0.393 | 2.54 |
MEDAS-derived MD score | −0.192 | 0.043 | −0.141 | −4.50 | <0.001 | −0.28 to −0.11 | 0.627 | 1.60 |
BMI (kg/m2) | 0.098 | 0.025 | 0.247 | 3.86 | <0.001 | 0.05 to 0.15 | 0.151 | 6.60 |
Waist circumference (cm) | 0.025 | 0.009 | 0.156 | 2.75 | 0.006 | 0.01 to 0.04 | 0.194 | 5.16 |
Smoking | 0.457 | 0.202 | 0.060 | 2.26 | 0.025 | 0.06 to 0.86 | 0.883 | 1.13 |
Physical activity | −0.399 | 0.198 | −0.053 | −2.01 | 0.045 | −0.79 to 0.01 | 0.877 | 1.14 |
Age (years) | 0.015 | 0.009 | 0.045 | 1.68 | 0.094 | −0.01 to 0.03 | 0.849 | 1.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrea, L.; Muscogiuri, G.; Pugliese, G.; Graziadio, C.; Maisto, M.; Pivari, F.; Falco, A.; Tenore, G.C.; Colao, A.; Savastano, S. Association of the Chronotype Score with Circulating Trimethylamine N-Oxide (TMAO) Concentrations. Nutrients 2021, 13, 1671. https://doi.org/10.3390/nu13051671
Barrea L, Muscogiuri G, Pugliese G, Graziadio C, Maisto M, Pivari F, Falco A, Tenore GC, Colao A, Savastano S. Association of the Chronotype Score with Circulating Trimethylamine N-Oxide (TMAO) Concentrations. Nutrients. 2021; 13(5):1671. https://doi.org/10.3390/nu13051671
Chicago/Turabian StyleBarrea, Luigi, Giovanna Muscogiuri, Gabriella Pugliese, Chiara Graziadio, Maria Maisto, Francesca Pivari, Andrea Falco, Gian Carlo Tenore, Annamaria Colao, and Silvia Savastano. 2021. "Association of the Chronotype Score with Circulating Trimethylamine N-Oxide (TMAO) Concentrations" Nutrients 13, no. 5: 1671. https://doi.org/10.3390/nu13051671
APA StyleBarrea, L., Muscogiuri, G., Pugliese, G., Graziadio, C., Maisto, M., Pivari, F., Falco, A., Tenore, G. C., Colao, A., & Savastano, S. (2021). Association of the Chronotype Score with Circulating Trimethylamine N-Oxide (TMAO) Concentrations. Nutrients, 13(5), 1671. https://doi.org/10.3390/nu13051671