Association of Trimethylamine N-Oxide (TMAO) with the Clinical Severity of Hidradenitis Suppurativa (Acne Inversa)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting
2.2. Population Study
- Treatment-naive adult patients;
- HS diagnosed ≥6 months before the study initiation and without medical therapy for at least 3 months;
- All three diagnostic criteria for HS had to be met: presence of typical lesions, anatomical sites involved in typical areas, and an evolving disease course with relapse and chronicity;
- Clinical severity: mild to moderate HS (Hurley stage I or II);
- Symptoms or signs of androgen excess or endocrine disorders;
- Menopausal females or current continued use of hormonal contraceptives, pregnancy, or lactation in the past 6 months;
- Occasional or current use of systemic treatments (including biologics, cyclosporine A, rifampicin–moxifloxacin–metronidazole, clindamycin–rifampicin, dapsone, ertapenem, tetracycline, acitretin, and isotretinoin) or other drugs for HS, including topical antibiotics;
- Hypocaloric diet, other specific dietary patterns, including vegetarian diet or ketogenic diet, or subjects who supplemented their diet with antioxidants, vitamins, minerals, or probiotics in the last three months;
- Clinical conditions or use of drugs that could influence fluid balance, including liver or renal failure (estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73 m2), cancer, and other chronic or acute diseases, were based on a complete medical examination and laboratory tests;
- Patients with any other active skin disease (e.g., psoriasis and acne) that could interfere with the assessment of HS;
- Patients with type 2 diabetes (glycated haemoglobin (HbA1c) ≥ 6.5% (≥48 mmol/mol) or two confirmations of fasting glucose ≥ 126 mg/dL, in according with the American Diabetes Association criteria);
- Current use of hypoglycemic, anti-inflammatory, or hypolipidemic drugs;
- Individuals with implanted pacemakers or defibrillators (for the theoretical possibility of interference with the BIA-device activity);
- History of any clinical condition that, in the opinion of the nutritionist, endocrinologist or dermatologist, could put the patient at risk if they participated in this study.
2.3. Sample Size Justification
2.4. Lifestyle Informations
2.5. Anthropometric Measurements
2.6. Determination of Circulating TMAO Levels
2.7. Nutritional Assessments: Adherence to the MD and Total Energy Intake
2.8. Phase Angle
2.9. Classification and Severity Assessment of HS
2.10. Statistical Analysis
3. Results
Correlation Analysis
4. Discussion
5. Conclusions
- (i)
- Provide the first evidence that circulating TMAO levels were increased in HS patients and were associated with the clinical severity of the disease;
- (ii)
- Improve the understanding of the association among diet, gut dysbiosis and inflammatory status in HS pathogenesis;
- (iii)
- Support the detection of the circulating TMAO levels as an auxiliary assessment contributing to identifying HS patients who could get additional benefit from careful dietary interventions;
- (iv)
- Suggest that the reduction of the circulating TMAO levels, through the indirect modulation of the gut microbiota and the enhancement of the intestinal barrier, could represent a potential important target in reducing the clinical severity of HS and the associated cardiovascular risk.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Swanepoel, I.; Roberts, A.; Brauns, C.; Chaliha, D.R.; Papa, V.; Palmer, R.D.; Vaccarezza, M. Trimethylamine N-oxide (TMAO): A new attractive target to decrease cardiovascular risk. Postgrad. Med. J. 2021. [Google Scholar] [CrossRef]
- Coutinho-Wolino, K.S.; Ludmila, L.F.M.; de Oliveira Leal, V.; Mafra, D.; Stockler-Pinto, M.B. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? Eur. J. Nutr. 2021. [Google Scholar] [CrossRef] [PubMed]
- Golonka, R.M.; Xiao, X.; Abokor, A.A.; Joe, B.; Vijay-Kumar, M. Altered nutrient status reprograms host inflammation and metabolic health via gut microbiota. J. Nutr. Biochem. 2020. [Google Scholar] [CrossRef] [PubMed]
- Arias, N.; Arboleya, S.; Allison, J.; Kaliszewska, A.; Higarza, S.G.; Gueimonde, M.; Arias, J.L. The relationship between choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases. Nutrients 2020, 12, 2340. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, K.; Bielinska, K.; Gawrys-Kopczynska, M.; Ufnal, M. TMA (trimethylamine), but not its oxide TMAO (trimethylamine-oxide), exerts haemodynamic effects: Implications for interpretation of cardiovascular actions of gut microbiome. Cardiovasc. Res. 2019. [Google Scholar] [CrossRef]
- Jaworska, K.; Hering, D.; Mosieniak, G.; Bielak-Zmijewska, A.; Pilz, M.; Konwerski, M.; Gasecka, A.; Kaplon-Cieślicka, A.; Filipiak, K.; Sikora, E.; et al. TMA, a forgotten uremic toxin, but not TMAO, is involved in cardiovascular pathology. Toxins 2019, 11, 490. [Google Scholar] [CrossRef] [Green Version]
- Wolk, K.; Join-Lambert, O.; Sabat, R. Aetiology and pathogenesis of hidradenitis suppurativa. Br. J. Dermatol. 2020. [Google Scholar] [CrossRef]
- Malara, A.; Hughes, R.; Jennings, L.; Sweeney, C.M.; Lynch, M.; Awdeh, F.; Timoney, I.; Tobin, A.M.; Lynam-Loane, K.; Tobin, L.; et al. Adipokines are dysregulated in patients with hidradenitis suppurativa. Br. J. Dermatol. 2018. [Google Scholar] [CrossRef]
- Revuz, J.E.; Canoui-Poitrine, F.; Wolkenstein, P.; Viallette, C.; Gabison, G.; Pouget, F.; Poli, F.; Faye, O.; Roujeau, J.C.; Bonnelye, G.; et al. Prevalence and factors associated with hidradenitis suppurativa: Results from two case-control studies. J. Am. Acad. Dermatol. 2008. [Google Scholar] [CrossRef]
- Ingram, J.R. The epidemiology of hidradenitis suppurativa. Br. J. Dermatol. 2020. [Google Scholar] [CrossRef]
- Jemec, G.B.E. The symptomatology of hidradenitis suppurativa in women. Br. J. Dermatol. 1988. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, B.G.; Alikhan, A.; Weaver, A.L.; Wetter, D.A.; Davis, M.D. Incidence of hidradenitis suppurativa and associated factors: A population-based study of Olmsted County, Minnesota. J. Investig. Dermatol. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosmatos, I.; Matcho, A.; Weinstein, R.; Montgomery, M.O.; Stang, P. Analysis of patient claims data to determine the prevalence of hidradenitis suppurativa in the United States. J. Am. Acad. Dermatol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, M.; Megna, M.; Timoshchuk, E.A.; Patruno, C.; Balato, N.; Fabbrocini, G.; Monfrecola, G. Hidradenitis suppurativa: From pathogenesis to diagnosis and treatment. Clin. Cosmet. Investig. Dermatol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Skroza, N.; Mambrin, A.; Proietti, I.; Balduzzi, V.; Bernardini, N.; Marchesiello, A.; Michelini, S.; Tolino, E.; Volpe, S.; Maddalena, P.; et al. Evaluation of Cardiovascular Risk in Hidradenitis Suppurativa Patients Using Heart Rate Variability (HRV) Analysis. Cardiovasc. Ther. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhu, Y.; Lian, N.; Chen, M.; Bartke, A.; Yuan, R. Metabolic Syndrome and Skin Diseases. Front. Endocrinol. 2019. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Damiani, G.; Orenstein, L.A.V.; Hamzavi, I.; Jemec, G.B. Hidradenitis suppurativa: An update on epidemiology, phenotypes, diagnosis, pathogenesis, comorbidities and quality of life. J. Eur. Acad. Dermatol. Venereol. 2021. [Google Scholar] [CrossRef]
- Nikolakis, G.; Karagiannidis, I.; Vaiopoulos, A.G.; Becker, M.; Zouboulis, C.C. Endocrinological mechanisms in the pathophysiology of hidradenitis suppurativa. Hautarzt 2020. [Google Scholar] [CrossRef]
- Wark, K.J.L.; Cains, G.D. The Microbiome in Hidradenitis Suppurativa: A Review. Dermatol. Ther. 2021. [Google Scholar] [CrossRef]
- Balato, A.; Cacciapuoti, S.; Di Caprio, R.; Marasca, C.; Masarà, A.; Raimondo, A.; Fabbrocini, G. Human Microbiome: Composition and Role in Inflammatory Skin Diseases. Arch. Immunol. Ther. Exp. 2019. [Google Scholar] [CrossRef]
- Deckers, I.E.; Benhadou, F.; Koldijk, M.J.; del Marmol, V.; Horváth, B.; Boer, J.; van der Zee, H.H.; Prens, E.P. Inflammatory bowel disease is associated with hidradenitis suppurativa: Results from a multicenter cross-sectional study. J. Am. Acad. Dermatol. 2017. [Google Scholar] [CrossRef]
- Uzuncakmak, T.K.; Akdeniz, N.; Karadag, A.S. Cutaneous manifestations of obesity and themetabolic syndrome. Clin. Dermatol. 2018. [Google Scholar] [CrossRef]
- Arck, P.; Handjiski, B.; Hagen, E.; Pincus, M.; Bruenahl, C.; Bienenstock, J.; Paus, R. Is there a “gut-brain-skin axis”? Exp. Dermatol. 2010. [Google Scholar] [CrossRef]
- Lam, S.Y.; Radjabzadeh, D.; Eppinga, H.; Nossent, Y.R.A.; van der Zee, H.H.; Kraaij, R.; Konstantinov, S.R.; Fuhler, G.M.; Prens, E.P.; Thio, H.B.; et al. A microbiome study to explore the gut-skin axis in hidradenitis suppurativa. J. Dermatol. Sci. 2021. [Google Scholar] [CrossRef] [PubMed]
- Maarouf, M.; Platto, J.F.; Shi, V.Y. The role of nutrition in inflammatory pilosebaceous disorders: Implication of the skin-gut axis. Australas. J. Dermatol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Fabbrocini, G.; Annunziata, G.; Muscogiuri, G.; Donnarumma, M.; Marasca, C.; Colao, A.; Savastano, S. Role of nutrition and adherence to the mediterranean diet in the multidisciplinary approach of hidradenitis suppurativa: Evaluation of nutritional status and its association with severity of disease. Nutrients 2019, 11, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frame, L.A.; Costa, E.; Jackson, S.A. Current explorations of nutrition and the gut microbiome: A comprehensive evaluation of the review literature. Nutr. Rev. 2020. [Google Scholar] [CrossRef]
- Kohorst, J.J.; Kimball, A.B.; Davis, M.D.P. Systemic associations of hidradenitis suppurativa. J. Am. Acad. Dermatol. 2015. [Google Scholar] [CrossRef]
- Vossen, A.R.J.V.; van der Zee, H.H.; Onderdijk, A.J.; Boer, J.; Prens, E.P. Hidradenitis suppurativa is not associated with the metabolic syndrome based on body type: A cross-sectional study. J. Dermatol. 2017. [Google Scholar] [CrossRef]
- Stefanadi, E.C.; Dimitrakakis, G.; Antoniou, C.K.; Challoumas, D.; Punjabi, N.; Dimitrakaki, I.A.; Punjabi, S.; Stefanadis, C.I. Metabolic syndrome and the skin: A more than superficial association. Reviewing the association between skin diseases and metabolic syndrome and a clinical decision algorithm for high risk patients. Diabetol. Metab. Syndr. 2018. [Google Scholar] [CrossRef] [Green Version]
- Romaní, J.; Agut-Busquet, E.; Corbacho, M.; Herrerías-Moreno, J.; Luelmo, J. Body fat composition in hidradenitis suppurativa: A hospital-based cross-sectional study. Int. J. Dermatol. 2017. [Google Scholar] [CrossRef]
- Miller, I.M.; Rytgaard, H.; Mogensen, U.B.; Miller, E.; Ring, H.C.; Ellervik, C.; Jemec, G.B. Body composition and basal metabolic rate in Hidradenitis Suppurativa: A Danish population-based and hospital-based cross-sectional study. J. Eur. Acad. Dermatol. Venereol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Laudisio, D.; Di Somma, C.; Salzano, C.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Phase angle: A possible biomarker to quantify inflammation in subjects with obesity and 25(OH)D deficiency. Nutrients 2019, 11, 1747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S.; Muscogiuri, G. Phase angle: Could be an easy tool to detect low-grade systemic inflammation in adults affected by prader–willi syndrome? Nutrients 2020, 12, 2065. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012. [Google Scholar] [CrossRef]
- Barrea, L.; Macchia, P.E.; Di Somma, C.; Napolitano, M.; Balato, A.; Falco, A.; Savanelli, M.C.; Balato, N.; Colao, A.; Savastano, S. Bioelectrical phase angle and psoriasis: A novel association with psoriasis severity, quality of life and metabolic syndrome. J. Transl. Med. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Donnarumma, M.; Cacciapuoti, S.; Muscogiuri, G.; De Gregorio, L.; Blasio, C.; Savastano, S.; Colao, A.; Fabbrocini, G. Phase angle and Mediterranean diet in patients with acne: Two easy tools for assessing the clinical severity of disease. J. Transl. Med. 2021, 19, 171. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Pugliese, G.; Aprano, S.; Framondi, L.; Di Matteo, R.; Riccio, P.A.; Savastano, S.; Colao, A. The opera prevention project. Int. J. Food Sci. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Pugliese, G.; Framondi, L.; Di Matteo, R.; Laudisio, D.; Savastano, S.; Colao, A.; Muscogiuri, G. Does Sars-Cov-2 threaten our dreams? Effect of quarantine on sleep quality and body mass index. J. Transl. Med. 2020. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Laudisio, D.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Influence of the mediterranean diet on 25-hydroxyvitamin D levels in adults. Nutrients 2020, 12, 1439. [Google Scholar] [CrossRef]
- Barrea, L.; Altieri, B.; Muscogiuri, G.; Laudisio, D.; Annunziata, G.; Colao, A.; Faggiano, A.; Savastano, S. Impact of nutritional status on gastroenteropancreatic neuroendocrine tumors (GEP-NET) aggressiveness. Nutrients 2018, 10, 1854. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Muscogiuri, G.; Di Somma, C.; Annunziata, G.; Megna, M.; Falco, A.; Balato, A.; Colao, A.; Savastano, S. Coffee consumption, metabolic syndrome and clinical severity of psoriasis: Good or bad stuff? Arch. Toxicol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Di Somma, C.; Macchia, P.E.; Falco, A.; Savanelli, M.C.; Orio, F.; Colao, A.; Savastano, S. Influence of nutrition on somatotropic axis: Milk consumption in adult individuals with moderate-severe obesity. Clin. Nutr. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muscogiuri, G.; Barrea, L.; Aprano, S.; Framondi, L.; Di Matteo, R.; Laudisio, D.; Pugliese, G.; Savastano, S.; Colao, A. Chronotype and adherence to the mediterranean diet in obesity: Results from the opera prevention project. Nutrients 2020, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Savanelli, M.C.; Scarano, E.; Muscogiuri, G.; Barrea, L.; Vuolo, L.; Rubino, M.; Savastano, S.; Colao, A.; Di Somma, C. Cardiovascular risk in adult hypopituitaric patients with growth hormone deficiency: Is there a role for vitamin D? Endocrine 2016. [Google Scholar] [CrossRef]
- Savastano, S.; Di Somma, C.; Colao, A.; Barrea, L.; Orio, F.; Finelli, C.; Pasanisi, F.; Contaldo, F.; Tarantino, G. Preliminary data on the relationship between circulating levels of Sirtuin 4, anthropometric and metabolic parameters in obese subjects according to growth hormone/insulin-like growth factor-1 status. Growth Horm. IGF Res. 2015. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Di Somma, C.; Laudisio, D.; Salzano, C.; Pugliese, G.; de Alteriis, G.; Colao, A.; Savastano, S. Sex differences of vitamin D status across BMI classes: An observational prospective cohort study. Nutrients 2019, 11, 3034. [Google Scholar] [CrossRef] [Green Version]
- Nishida, C.; Ko, G.T.; Kumanyika, S. Body fat distribution and noncommunicable diseases in populations: Overview of the 2008 WHO Expert Consultation on Waist Circumference and Waist-Hip Ratio. Eur. J. Clin. Nutr. 2010. [Google Scholar] [CrossRef] [Green Version]
- National Center for Health Statistics. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_11_12/Anthropometry_Procedures_Manual.pdf (accessed on 21 May 2020).
- Wang, Z.; Levison, B.S.; Hazen, J.E.; Donahue, L.; Li, X.M.; Hazen, S.L. Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal. Biochem. 2014. [Google Scholar] [CrossRef] [Green Version]
- Beale, R.; Airs, R. Quantification of glycine betaine, choline and trimethylamine N-oxide in seawater particulates: Minimisation of seawater associated ion suppression. Anal. Chim. Acta 2016. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Di Somma, C.; Laudisio, D.; Maisto, M.; de Alteriis, G.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients 2018, 10, 1971. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Muscogiuri, G.; Annunziata, G.; Laudisio, D.; Tenore, G.C.; Colao, A.; Savastano, S. A new light on vitamin d in obesity: A novel association with trimethylamine-n-oxide (tmao). Nutrients 2019, 11, 1310. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Di Somma, C.; Maisto, M.; Tenore, G.C.; Colao, A.; Savastano, S. Trimethylamine N-oxide, Mediterranean diet, and nutrition in healthy, normal-weight adults: Also a matter of sex? Nutrition 2019, 62. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-item mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrea, L.; Muscogiuri, G.; Di Somma, C.; Tramontano, G.; De Luca, V.; Illario, M.; Colao, A.; Savastano, S. Association between Mediterranean diet and hand grip strength in older adult women. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- Barrea, L.; Tarantino, G.; Di Somma, C.; Muscogiuri, G.; Macchia, P.E.; Falco, A.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet and Circulating Levels of Sirtuin 4 in Obese Patients: A Novel Association. Oxidative Med. Cell. Longev. 2017, 2017, 6101254. [Google Scholar] [CrossRef] [PubMed]
- Muscogiuri, G.; Barrea, L.; Di Somma, C.; Altieri, B.; Vecchiarini, M.; Orio, F.; Spinosa, T.; Colao, A.; Savastano, S. Patient empowerment and the Mediterranean diet as a possible tool to tackle prediabetes associated with overweight or obesity: A pilot study. Hormones 2019. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Di Somma, C.; Pugliese, G.; Salzano, C.; Colao, A.; Savastano, S. Somatotropic axis and obesity: Is there any role for the Mediterranean diet? Nutrients 2019, 11, 2228. [Google Scholar] [CrossRef] [Green Version]
- Turconi, G.; Guarcello, M.; Berzolari, F.G.; Carolei, A.; Bazzano, R.; Roggi, C. An evaluation of a colour food photography atlas as a tool for quantifying food portion size in epidemiological dietary surveys. Eur. J. Clin. Nutr. 2005. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004. [Google Scholar] [CrossRef]
- Anonymous. Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference statement. Am. J. Clin. Nutr. 1996. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Macchia, P.E.; Di Somma, C.; Falco, A.; Savanelli, M.C.; Colao, A.; Savastano, S. Mediterranean diet and phase angle in a sample of adult population: Results of a pilot study. Nutrients 2017, 9, 151. [Google Scholar] [CrossRef]
- Kushner, R.F. Bioelectrical impedance analysis: A review of principles and applications. J. Am. Coll. Nutr. 1992. [Google Scholar] [CrossRef] [PubMed]
- Sartorius, K.; Emtestam, L.; Jemec, G.B.E.; Lapins, J. Objective scoring of hidradenitis suppurativa reflecting the role of tobacco smoking and obesity. Br. J. Dermatol. 2009. [Google Scholar] [CrossRef] [PubMed]
- Isak, V.; Feldman, S.; Pichardo, R. Hidradenitis suppurativa: A comparison of guidelines. J. Dermatol. Dermatol. Surg. 2018. [Google Scholar] [CrossRef]
- Zouboulis, C.C.; Desai, N.; Emtestam, L.; Hunger, R.E.; Ioannides, D.; Juhász, I.; Lapins, J.; Matusiak, L.; Prens, E.P.; Revuz, J.; et al. European S1 guideline for the treatment of hidradenitis suppurativa/acne inversa. J. Eur. Acad. Dermatol. Venereol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Nowiński, A.; Ufnal, M. Trimethylamine N-oxide: A harmful, protective or diagnostic marker in lifestyle diseases? Nutrition 2018. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, P.; Farhangi, M.A.; Nikniaz, L.; Nikniaz, Z.; Asghari-Jafarabadi, M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: An exploratory systematic review and dose-response meta- analysis. Obes. Rev. 2020. [Google Scholar] [CrossRef]
- Ge, X.; Zheng, L.; Zhuang, R.; Yu, P.; Xu, Z.; Liu, G.; Xi, X.; Zhou, X.; Fan, H. The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose-Response Meta-analysis. Adv. Nutr. 2020. [Google Scholar] [CrossRef]
- Papandreou, C.; Moré, M.; Bellamine, A. Trimethylamine n-oxide in relation to cardiometabolic health—cause or effect? Nutrients 2020, 12, 1330. [Google Scholar] [CrossRef]
- León-Mimila, P.; Villamil-Ramírez, H.; Li, X.S.; Shih, D.M.; Hui, S.T.; Ocampo-Medina, E.; López-Contreras, B.; Morán-Ramos, S.; Olivares-Arevalo, M.; Grandini-Rosales, P.; et al. Trimethylamine N-oxide levels are associated with NASH in obese subjects with type 2 diabetes. Diabetes Metab. 2021. [Google Scholar] [CrossRef]
- Roy, S.; Yuzefpolskaya, M.; Nandakumar, R.; Colombo, P.C.; Demmer, R.T. Plasma Trimethylamine-N-oxide and impaired glucose regulation: Results from the Oral infections, Glucose Intolerance and Insulin Resistance Study (ORIGINS). PLoS ONE 2020. [Google Scholar] [CrossRef]
- Sikora, M.; Stec, A.; Chrabaszcz, M.; Giebultowicz, J.; Samborowska, E.; Jazwiec, R.; Dadlez, M.; Olszewska, M.; Rudnicka, L. Clinical implications of intestinal barrier damage in Psoriasis. J. Inflamm. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Henderson, A.; Petriello, M.C.; Romano, K.A.; Gearing, M.; Miao, J.; Schell, M.; Sandoval-Espinola, W.J.; Tao, J.; Sha, B.; et al. Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metab. 2019. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Pugliese, G.; Laudisio, D.; de Alteriis, G.; Graziadio, C.; Colao, A.; Savastano, S. Phase Angle as an Easy Diagnostic Tool of Meta-Inflammation for the Nutritionist. Nutrients 2021, 13, 1446. [Google Scholar] [CrossRef] [PubMed]
- Høidrup, S.; Andreasen, A.H.; Osler, M.; Pedersen, A.N.; Jørgensen, L.M.; Jørgensen, T.; Schroll, M.; Heitmann, B.L. Assessment of habitual energy and macronutrient intake in adults: Comparison of a seven day food record with a dietary history interview. Eur. J. Clin. Nutr. 2002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Conesa, M.T.; Philippou, E.; Pafilas, C.; Massaro, M.; Quarta, S.; Andrade, V.; Jorge, R.; Chervenkov, M.; Ivanova, T.; Dimitrova, D.; et al. Exploring the validity of the 14-item mediterranean diet adherence screener (Medas): A cross-national study in seven european countries around the mediterranean region. Nutrients 2020, 12, 2960. [Google Scholar] [CrossRef]
Parameters | HS Patients n. (%) or Mean ± SD n. 35 | Controls n. (%) or Mean ± SD n. 35 | p-Value |
---|---|---|---|
Sex, females (n, %) | 24 (68.6%) | 24 (68.6%) | χ2 = 0.07, p = 0.796 |
Age (years) | 25.37 ± 8.36 | 26.14 ± 7.28 | 0.350 |
Smoking habit (yes) | 18 (51.4%) | 17 (48.6%) | χ2 = 0.00, p = 1.00 |
Physically active subjects | 15 (42.9%) | 13 (37.1%) | χ2 = 0.06, p = 0.807 |
BMI (kg/m2) | 29.26 ± 5.33 | 29.22 ± 5.62 | 0.950 |
Normal-weight (n, %) | 7 (20.0%) | 10 (28.6%) | χ2 = 0.24, p = 0.624 |
Overweight (n, %) | 12 (34.3%) | 11 (31.4%) | χ2 = 0.00, p = 1.00 |
Grade I obesity (n, %) | 12 (34.3%) | 8 (22.9%) | χ2 = 0.63, p = 0.427 |
Grade II obesity (n, %) | 4 (11.4%) | 6 (17.1%) | χ2 = 0.12, p = 0.732 |
Waist circumference (cm) | 92.19 ± 15.19 | 91.82 ± 15.51 | 0.833 |
PREDIMED score | 7.68 ± 3.18 | 8.60 ± 2.31 | 0.002 |
PREDIMED categories | |||
Low adherence (n, %) | 10 (28.6%) | 3 (8.6%) | χ2 = 3.40, p = 0.065 |
Average adherence (n, %) | 16 (45.7%) | 20 (57.1%) | χ2 = 0.52, p = 0.473 |
High adherence (n, %) | 9 (25.7%) | 12 (34.3%) | χ2 = 0.27, p = 0.602 |
Total energy intake (kcal) | 2233.30 ± 239.57 | 2271.22 ± 158.14 | 0.193 |
BIA parameters | |||
R (Ω) | 492.77 ± 76.86 | 500.60 ± 66.17 | 0.695 |
Xc (Ω) | 53.26 ± 9.37 | 59.37 ± 7.81 | 0.010 |
PhA (°) | 6.18 ± 0.63 | 6.79 ± 0.60 | <0.001 |
Parameters | HS Grade 1 n. (%) or Mean ± SD n. 12 | HS Grade 2 n. (%) or Mean ± SD n. 23 | p-Value |
---|---|---|---|
Sex, females (n, %) | 8 (66.7%) | 16 (69.6%) | χ2 = 3.11, p = 0.078 |
Age (years) | 26.25 ± 8.89 | 24.91 ± 8.23 | 0.660 |
Smoking habit (yes) | 2 (16.7%) | 16 (69.6%) | χ2 = 12.63, p = 0.001 |
Physically active subjects | 10 (83.3%) | 5 (21.7%) | χ2 = 1.36, p = 0.244 |
BMI (kg/m2) | 25.98 ± 4.61 | 30.97 ± 4.93 | 0.007 |
Normal-weight (n, %) | 5 (41.7%) | 2 (8.7%) | χ2 = 0.64, p = 0.426 |
Overweight (n, %) | 4 (33.3%) | 8 (34.8%) | χ2 = 0.91, p = 0.341 |
Grade I obesity (n, %) | 3 (25.0%) | 9 (39.1%) | χ2 = 2.51, p = 0.113 |
Grade II obesity (n, %) | 0 (0%) | 4 (17.4%) | χ2 = 2.39, p = 0.122 |
Waist circumference (cm) | 83.80 ± 16.05 | 96.57 ± 13.03 | 0.016 |
PREDIMED score | 9.83 ± 3.48 | 6.57 ± 2.41 | 0.003 |
PREDIMED categories | |||
Low adherence (n, %) | 2 (16.7%) | 8 (34.8%) | χ2 = 2.92, p = 0.087 |
Average adherence (n, %) | 3 (25.0%) | 13 (56.5%) | χ2 = 6.56, p = 0.010 |
High adherence (n, %) | 7 (58.3%) | 2 (8.7%) | χ2 = 2.04, p = 0.153 |
Total energy intake (kcal) | 2093.67 ± 168.65 | 2306.17 ± 241.43 | 0.005 |
BIA parameters | |||
R (Ω) | 508.50 ± 99.99 | 484.57 ± 62.65 | 0.390 |
Xc (Ω) | 53.92 ± 11.68 | 52.91 ± 8.20 | 0.769 |
PhA (°) | 6.73 ± 0.60 | 5.89 ± 0.42 | <0.001 |
Parameters | HS Sartorius Score | p-Value |
---|---|---|
r | ||
Age (years) | 0.140 | 0.423 |
BMI (kg/m2) | 0.443 | 0.008 |
Waist circumference (cm) | 0.462 | 0.005 |
Circulating TMAO levels (µM) | 0.840 | <0.001 |
PREDIMED score | −0.538 | 0.001 |
Total energy intake (kcal) | 0.403 | 0.016 |
R (Ω) | −0.342 | 0.044 |
Xc (Ω) | −0.105 | 0.549 |
PhA (°) | −0.857 | <0.001 |
Parameters | Hurley System | |||
---|---|---|---|---|
OR | p- Value | 95% IC | R2 | |
Age (years) | 0.98 | 0.650 | 0.90–1.07 | 0.01 |
BMI (kg/m2) | 1.24 | 0.015 | 1.04–1.48 | 0.20 |
Waist circumference (cm) | 1.07 | 0.026 | 1.01–1.13 | 0.16 |
Circulating TMAO levels (µM) | 2.16 | 0.014 | 1.17–3.99 | 0.48 |
PREDIMED score | 0.70 | 0.008 | 0.53–0.91 | 0.22 |
Total energy intake (kcal) | 1.00 | 0.025 | 1.00–1.01 | 0.19 |
PhA (°) | 0.03 | 0.004 | 0.01–0.33 | 0.39 |
Parameters | Linear Regression Model | |||||||
---|---|---|---|---|---|---|---|---|
Non-Standardized Coefficients | Standardized Coefficients | Collinearity Statistics | ||||||
T | SE | β | t | p-Value | 95% IC | Tolerance | VIF | |
Circulating TMAO levels (µM) | 1.520 | 0.404 | 0.545 | 3.76 | 0.001 | 0.69–2.35 | 0.26 | 3.92 |
PhA (°) | −7.864 | 2.396 | −0.423 | −3.28 | 0.003 | −12.77–−2.96 | 0.32 | 3.11 |
PREDIMED score | −0.838 | 0.664 | −0.229 | −1.26 | 0.217 | −2.19–0.52 | 0.16 | 6.16 |
BMI (kg/m2) | −0.481 | 0.401 | −0.220 | −1.20 | 0.240 | −1.30–0.34 | 0.16 | 6.27 |
Waist circumference (cm) | −0.002 | 0.125 | −0.003 | −0.02 | 0.986 | −0.26–0.25 | 0.20 | 4.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrea, L.; Muscogiuri, G.; Pugliese, G.; de Alteriis, G.; Maisto, M.; Donnarumma, M.; Tenore, G.C.; Colao, A.; Fabbrocini, G.; Savastano, S. Association of Trimethylamine N-Oxide (TMAO) with the Clinical Severity of Hidradenitis Suppurativa (Acne Inversa). Nutrients 2021, 13, 1997. https://doi.org/10.3390/nu13061997
Barrea L, Muscogiuri G, Pugliese G, de Alteriis G, Maisto M, Donnarumma M, Tenore GC, Colao A, Fabbrocini G, Savastano S. Association of Trimethylamine N-Oxide (TMAO) with the Clinical Severity of Hidradenitis Suppurativa (Acne Inversa). Nutrients. 2021; 13(6):1997. https://doi.org/10.3390/nu13061997
Chicago/Turabian StyleBarrea, Luigi, Giovanna Muscogiuri, Gabriella Pugliese, Giulia de Alteriis, Maria Maisto, Marianna Donnarumma, Gian Carlo Tenore, Annamaria Colao, Gabriella Fabbrocini, and Silvia Savastano. 2021. "Association of Trimethylamine N-Oxide (TMAO) with the Clinical Severity of Hidradenitis Suppurativa (Acne Inversa)" Nutrients 13, no. 6: 1997. https://doi.org/10.3390/nu13061997
APA StyleBarrea, L., Muscogiuri, G., Pugliese, G., de Alteriis, G., Maisto, M., Donnarumma, M., Tenore, G. C., Colao, A., Fabbrocini, G., & Savastano, S. (2021). Association of Trimethylamine N-Oxide (TMAO) with the Clinical Severity of Hidradenitis Suppurativa (Acne Inversa). Nutrients, 13(6), 1997. https://doi.org/10.3390/nu13061997