High Prevalence of Stunting and Anaemia Is Associated with Multiple Micronutrient Deficiencies in School Children of Small-Scale Farmers from Chamwino and Kilosa Districts, Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Population
2.2. Socio-Demographic Information
2.3. Anthropometric Assessment
2.4. Dietary Assessment
2.5. Blood Sampling and Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bhutta, Z.A.; Salam, R.A.; Das, J.K. Meeting the challenges of micronutrient malnutrition in the developing world. Br. Med. Bull. 2013, 106, 7–17. [Google Scholar] [CrossRef]
- Amare, B.; Moges, B.; Fantahun, B.; Tafess, K.; Woldeyohannes, D.; Yismaw, G.; Ayane, T.; Yabutani, T.; Mulu, A.; Ota, F. Micronutrient levels and nutritional status of school children living in Northwest Ethiopia. Nutr. J. 2012, 11, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Stuijvenberg, M.E.; Nel, J.; Schoeman, S.E.; Lombard, C.J.; du Plessis, L.M.; Dhansay, M.A. Low intake of calcium and vitamin D, but not zinc, iron or vitamin A, is associated with stunting in 2-to 5-year-old children. Nutrition 2015, 31, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Mboera, L.E.; Bwana, V.M.; Rumisha, S.F.; Malima, R.C.; Mlozi, M.R.; Mayala, B.K.; Mlacha, T. Malaria, anaemia and nutritional status among schoolchildren in relation to ecosystems, livelihoods and health systems in Kilosa District in central Tanzania. BMC Public Health 2015, 15, 553. [Google Scholar] [CrossRef] [Green Version]
- Munisi, D.Z.; Buza, J.; Mpolya, E.A.; Kinung’hi, S.M. Schistosoma mansoni infections, undernutrition and anaemia among primary schoolchildren in two onshore villages in Rorya District, North-Western Tanzania. PLoS ONE 2016, 11, e0167122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinung’hi, S.M.; Mazigo, H.D.; Dunne, D.W.; Kepha, S.; Kaatano, G.; Kishamawe, C.; Ndokeji, S.; Angelo, T.; Nuwaha, F. Coinfection of intestinal schistosomiasis and malaria and association with haemoglobin levels and nutritional status in school children in Mara region, northwestern Tanzania: A cross-sectional exploratory study. BMC Res. Notes 2017, 10, 583. [Google Scholar] [CrossRef]
- Lwambo, N.; Brooker, S.; Siza, J.; Bundy, D.; Guyatt, H. Age patterns in stunting and anaemia in African schoolchildren: A cross-sectional study in Tanzania. Eur. J. Clin. Nutr. 2000, 54, 36–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatala, S.; Kihamia, C.; Kyungu, L.; Svanbergrhaaa, U. Risk factors for anaemia in schoolchildren in Tanga Region, Tanzania. Tanzan. J. Health Res. 2008, 10, 189–202. [Google Scholar] [CrossRef]
- National Bureau of Statistics (Tanzania). Micronutrients: Results of the 2010 Tanzania Demographic and Health Survey; NBS: Dar es Salam, Tanzania; ICF Macro: Calverton, MD, USA, 2011.
- Ministry of Health, Community Development, Gender, Elderly and Children (MoHCDGEC), National Bureau of Statistics (NBS); ICF. Tanzania Demographic and Health Survey and Malaria Indicator Survey (TDHS-MIS) 2015–2016; NBS: Dar es Salaam, Tanzania; ICF: Rockville, MD, USA, 2016.
- Schulze, K.J.; Christian, P.; Wu, L.S.-F.; Arguello, M.; Cui, H.; Nanayakkara-Bind, A.; Stewart, C.P.; Khatry, S.K.; LeClerq, S.; West, K.P., Jr. Micronutrient deficiencies are common in 6-to 8-year-old children of rural Nepal, with prevalence estimates modestly affected by inflammation. J. Nutr. 2014, 144, 979–987. [Google Scholar] [CrossRef]
- World Health Organization. Nutrition Landscape Information System (NLIS) Country Profile Indicators: Interpretation Guide; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Geberselassie, S.B.; Abebe, S.M.; Melsew, Y.A.; Mutuku, S.M.; Wassie, M.M. Prevalence of stunting and its associated factors among children 6–59 months of age in Libo-Kemekem district, Northwest Ethiopia; A community based cross sectional study. PLoS ONE 2018, 13, e0195361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petry, N.; Jallow, B.; Sawo, Y.; Darboe, M.K.; Barrow, S.; Sarr, A.; Ceesay, P.O.; Fofana, M.N.; Prentice, A.M.; Wegmüller, R. Micronutrient Deficiencies, Nutritional Status and the Determinants of Anemia in Children 0–59 Months of Age and Non-Pregnant Women of Reproductive Age in The Gambia. Nutrients 2019, 11, 2275. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Nutritional Anaemias: Tools for Effective Prevention and Control; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Scale-N Project: Implementing Potentials of Nutrition-Sensitive and Diversified Agriculture to Increase Food Security. Available online: https://susland.zalf.de/scale-n/ (accessed on 7 May 2021).
- Stuetz, W.; Gowele, V.; Kinabo, J.; Bundala, N.; Mbwana, H.; Rybak, C.; Eleraky, L.; Lambert, C.; Biesalski, H.K. Consumption of dark green leafy vegetables predicts vitamin A and iron intake and status among female small-scale farmers in Tanzania. Nutrients 2019, 11, 1025. [Google Scholar] [CrossRef] [Green Version]
- Graef, F.; Uckert, G.; Schindler, J.; König, H.J.; Mbwana, H.A.; Fasse, A.; Mwinuka, L.; Mahoo, H.; Kaburire, L.N.; Saidia, P. Expert-based ex-ante assessments of potential social, ecological, and economic impacts of upgrading strategies for improving food security in rural Tanzania using the ScalA-FS approach. Food Secur. 2017, 9, 1255–1270. [Google Scholar] [CrossRef]
- Mnenwa, R.; Maliti, E. A Comparative Analysis of Poverty Incidence in Farming Systems of Tanzania. 2010. Available online: https://www.africaportal.org/publications/a-comparative-analysis-of-poverty-incidence-in-farming-systems-of-tanzania/ (accessed on 25 July 2018).
- World Health Organization. AnthroPlus Software for the Global Application of the WHO Reference 2007 for 5–19 Years to Monitor the Growth of School-Age Children and Adolescents. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years (accessed on 20 July 2018).
- Erhardt, J. Nutrisurvey Software Version. 2007. Available online: http://www.nutrisurvey.de/index.html (accessed on 16 September 2016).
- Lukmanji, Z.; Hertzmark, E.; Mlingi, N.; Assey, V.; Ndossi, G.; Fawzi, W. Tanzania Food Composition Tables; MUHAS-TFNC: Dar es Salaam, Tanzania; HSPH: Boston, MA, USA, 2008; pp. 1–259. [Google Scholar]
- Gowele, V.F.; Kinabo, J.; Jumbe, T.; Kirschmann, C.; Frank, J.; Stuetz, W. Provitamin A Carotenoids, Tocopherols, Ascorbic Acid and Minerals in Indigenous Leafy Vegetables from Tanzania. Foods 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- FAO/WHO/UNU. Human Energy Requirements. Report of a Joint FAO/WHO/UNU Expert Consultation; FAO: Rome, Italy, 2004. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrates, Fiber, Fat, Protein and Amino Acids (Macronutrients); The National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- World Health Organization. Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia; WHO: Geneva, Switzerland, 2008. [Google Scholar]
- Erhardt, J.G.; Estes, J.E.; Pfeiffer, C.M.; Biesalski, H.K.; Craft, N.E. Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J. Nutr. 2004, 134, 3127–3132. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention and Control; WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Cook, J.D.; Flowers, C.H.; Skikne, B.S. The quantitative assessment of body iron. Blood 2003, 101, 3359–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Indicators for Assessing Vitamin A Deficiency and Their Application in Monitoring and Evaluating Intervention Programmes; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- Hotz, C.; Peerson, J.M.; Brown, K.H. Suggested lower cutoffs of serum zinc concentrations for assessing zinc status: Reanalysis of the second National Health and Nutrition Examination Survey data (1976–1980). Am. J. Clin. Nutr. 2003, 78, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). Vitamin and Mineral Requirements in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation (1998, Bangkok, Thailand); FAO: Rome, Italy, 2001. [Google Scholar]
- Islam, M.S.; Biswas, T. Prevalence and correlates of the composite index of anthropometric failure among children under 5 years old in Bangladesh. Matern. Child Nutr. 2020, 16, e12930. [Google Scholar] [CrossRef] [Green Version]
- Astatkie, A. Dynamics of stunting from childhood to youthhood in Ethiopia: Evidence from the Young Lives panel data. PLoS ONE 2020, 15, e0229011. [Google Scholar] [CrossRef] [Green Version]
- Ssentongo, P.; Ba, D.M.; Ssentongo, A.E.; Fronterre, C.; Whalen, A.; Yang, Y.; Ericson, J.E.; Chinchilli, V.M. Association of vitamin A deficiency with early childhood stunting in Uganda: A population-based cross-sectional study. PLoS ONE 2020, 15, e0233615. [Google Scholar] [CrossRef]
- Stephensen, C.B. Burden of infection on growth failure. J. Nutr. 1999, 129, 534s–538s. [Google Scholar] [CrossRef] [PubMed]
- Degarege, A.; Erko, B. Association between intestinal helminth infections and underweight among school children in Tikur Wuha Elementary School, Northwestern Ethiopia. J. Infect. Public Health 2013, 6, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Delaimy, W.K.; Ferrari, P.; Slimani, N.; Pala, V.; Johansson, I.; Nilsson, S.; Mattisson, I.; Wirfalt, E.; Galasso, R.; Palli, D.; et al. Plasma carotenoids as biomarkers of intake of fruits and vegetables: Individual-level correlations in the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur. J. Clin. Nutr. 2005, 59, 1387–1396. [Google Scholar] [CrossRef]
- Bundala, N.; Kinabo, J.; Jumbe, T.; Rybak, C.; Stuetz, W.; Sieber, S. A Tailored Nutrition Education Intervention Improves Women’s Nutrition Knowledge and Dietary Practices in Farming Households of Tanzania. J. Nutr. Health Food Sci. 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Van Het Hof, K.H.; West, C.E.; Weststrate, J.A.; Hautvast, J.G. Dietary factors that affect the bioavailability of carotenoids. J. Nutr. 2000, 130, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Mulokozi, G.; Lietz, G.; Svanberg, U.; Mugyabuso, J.K.; Henry, J.C.; Tomkins, A.M. Plasma levels of retinol, carotenoids, and tocopherols in relation to dietary pattern among pregnant Tanzanian women. Int. J. Vitam. Nutr. Res. 2003, 73, 323–333. [Google Scholar] [CrossRef]
- Egbi, G.; Gbogbo, S.; Mensah, G.E.; Glover-Amengor, M.; Steiner-Asiedu, M. Effect of green leafy vegetables powder on anaemia and vitamin-A status of Ghanaian school children. BMC Nutr. 2018, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Christian, P.; West, K.P., Jr. Interactions between zinc and vitamin A: An update. Am. J. Clin. Nutr. 1998, 68, 435s–441s. [Google Scholar] [CrossRef] [Green Version]
- Dijkhuizen, M.A.; Wieringa, F.T.; West, C.E.; Muhilal. Zinc plus beta-carotene supplementation of pregnant women is superior to beta-carotene supplementation alone in improving vitamin A status in both mothers and infants. Am. J. Clin. Nutr. 2004, 80, 1299–1307. [Google Scholar] [CrossRef] [Green Version]
- Da Cunha, M.S.B.; Campos Hankins, N.A.; Arruda, S.F. Effect of vitamin A supplementation on iron status in humans: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2019, 59, 1767–1781. [Google Scholar] [CrossRef]
- Citelli, M.; Bittencourt, L.L.; da Silva, S.V.; Pierucci, A.P.; Pedrosa, C. Vitamin A modulates the expression of genes involved in iron bioavailability. Biol. Trace Elem. Res. 2012, 149, 64–70. [Google Scholar] [CrossRef]
- Platel, K.; Srinivasan, K. Bioavailability of Micronutrients from Plant Foods: An Update. Crit. Rev. Food Sci. Nutr. 2016, 56, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Hotz, C.; Gibson, R.S. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J. Nutr. 2007, 137, 1097–1100. [Google Scholar] [CrossRef]
- Hess, S.Y.; Thurnham, D.I.; Hurrell, R.F. Influence of Provitamin a Carotenoids on Iron, Zinc, and Vitamin a Status (HarvestPlus Technical Monograph 6); IFPRI and CIAT: Washington, DC, USA, 2005; Available online: https://www.ifpri.org/publication/influence-provitamin-carotenoids-iron-zinc-and-vitamin-status (accessed on 16 September 2019).
- Evang, E.C.; Habte, T.Y.; Owino, W.O.; Krawinkel, M.B. Can the supplementary consumption of baobab (Adansonia digitata L.) fruit pulp improve the hemoglobin levels and iron status of schoolchildren in Kenya? Findings of a randomized controlled intervention trial. Eur. J. Nutr. 2020. [Google Scholar] [CrossRef]
- Kamara, J.K.; Galukande, M.; Maeda, F.; Luboga, S.; Renzaho, A.M.N. Understanding the Challenges of Improving Sanitation and Hygiene Outcomes in a Community Based Intervention: A Cross-Sectional Study in Rural Tanzania. Int. J. Environ. Res. Public Health 2017, 14, 602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colston, J.M.; Faruque, A.S.G.; Hossain, M.J.; Saha, D.; Kanungo, S.; Mandomando, I.; Nisar, M.I.; Zaidi, A.K.M.; Omore, R.; Breiman, R.F.; et al. Associations between Household-Level Exposures and All-Cause Diarrhea and Pathogen-Specific Enteric Infections in Children Enrolled in Five Sentinel Surveillance Studies. Int. J. Environ. Res. Public Health 2020, 17, 8078. [Google Scholar] [CrossRef] [PubMed]
- Stoltzfus, R.J.; Chwaya, H.M.; Tielsch, J.M.; Schulze, K.J.; Albonico, M.; Savioli, L. Epidemiology of iron deficiency anemia in Zanzibari schoolchildren: The importance of hookworms. Am. J. Clin. Nutr. 1997, 65, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Tatala, S.; Svanberg, U.; Mduma, B. Low dietary iron availability is a major cause of anemia: A nutrition survey in the Lindi District of Tanzania. Am. J. Clin. Nutr. 1998, 68, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Balarajan, Y.; Ramakrishnan, U.; Özaltin, E.; Shankar, A.H.; Subramanian, S. Anaemia in low-income and middle-income countries. Lancet 2011, 378, 2123–2135. [Google Scholar] [CrossRef]
- Thurnham, D.I.; McCabe, G.P.; Northrop-Clewes, C.A.; Nestel, P. Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: Meta-analysis. Lancet 2003, 362, 2052–2058. [Google Scholar] [CrossRef]
- Spottiswoode, N.; Duffy, P.E.; Drakesmith, H. Iron, anemia and hepcidin in malaria. Front. Pharmacol. 2014, 5, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, N.J. Anaemia and malaria. Malar. J. 2018, 17, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Village | All | Mzula | Chinoje | Tindiga | Mhenda-Kitunduweta | p |
---|---|---|---|---|---|---|
District | Chamwino | Kilosa | ||||
Children, N | 666 | 167 | 166 | 169 | 164 | |
Age, years 1 | 7.3 (6.4, 8.1) | 7.4 (6.5, 8.1) | 7.1 (6.4, 8) | 7.2 (6.4, 8) | 7.3 (6.4, 8.3) | 0.488 |
5y (4.6–5.9y) 2 | 12.0 (80) | 9.0 (15) | 12.7 (21) | 14.2 (24) | 12.2 (20) | |
6y (6.0–6.9y) | 30.0 (200) | 27.5 (46) | 31.3 (52) | 30.2 (51) | 31.1 (51) | |
7y (7.0–7.9y) | 27.8 (185) | 30.5 (51) | 28.9 (48) | 29.0 (49) | 22.6 (37) | 0.196 |
8y (8.0–8.9y) | 19.7 (131) | 20.4 (34) | 20.5 (34) | 13.0 (22) | 25.0 (41) | |
9y (9.0–10.1y) | 10.5 (70) | 12.6 (21) | 6.6 (11) | 13.6 (23) | 9.1 (15) | |
Sex, female = 1 | 54.7 (364) | 53.9 (90) | 53.0 (88) | 58.0 (98) | 53.7 (88) | 0.791 |
Family size | 5 (4, 7) | 5 (4, 7) a | 6 (5, 7) b | 5 (4, 6.5) a | 5 (4, 7) a | 0.037 |
Mother literate, =1 | 56.9 (379) | 55.1 (92) | 56.0 (93) | 52.1 (88) | 64.6 (106) | 0.117 |
HAZ 3 | −1.42 ± 1.05 | −1.39 ± 1.0 | −1.32 ± 1.10 | −1.37 ± 1.06 | −1.60 ± 1.03 | 0.089 |
Stunting | 28.1 (187) | 25.7 (43) | 25.3 (42) | 26.6 (45) | 34.8 (57) | 0.181 |
WAZ | −1.11 ± 0.95 | −1.25 ± 0.93 | −1.09 ± 1.03 | −1.0 ± 0.94 | −1.09 ± 0.91 | 0.099 |
Underweight | 14.4 (96) | 16.8 (28) | 13.9 (23) | 11.2 (19) | 15.9 (26) | 0.485 |
BAZ | −0.28 ± 0.78 | −0.52 ± 0.73 c | −0.31 ± 0.88 b,c | −0.18 ± 0.73 a,b | −0.08 ± 0.71 a | <0.001 |
Wasting/Thinness | 0.8 (5) | 0.0 (0) a | 3.0 (5) b | 0.0 (0) a | 0.0 (0) a | 0.002 |
Overweight | 5.0 (33) | 2.4 (4) a | 2.4 (4) a | 7.1 (12) b | 7.9 (13) b | 0.007 |
Obese | 0.2 (1) | 0 (0) | 0.6 (1) | 0 (0) | 0 (0) | 0.389 |
Malaria, =1 | 30.7 (205) | 16.7 (28) a | 21.1 (35) a | 34.9 (59) b | 50.6 (83) c | <0.001 |
Diarrhoea, =1 | 20.7 (138) | 18.5 (31) | 22.9 (38) | 16.0 (27) | 25.6 (42) | 0.127 |
Village | All | Mzula | Chinoje | Tindiga | Mhenda-Kitunduweta | p |
---|---|---|---|---|---|---|
District | Chamwino | Kilosa | ||||
Children, N | 666 | 167 | 166 | 169 | 164 | |
Haemoglobin (g/L) 1 | 116 (109, 125) | 126 (117, 132) a | 120 (114, 126) b | 112 (107, 119) c | 110.5 (102, 117) d | <0.001 |
Hb < 115 g/L, % (n) 2 | 42.9 (286) | 18.6 (31) a | 25.9 (43) a | 59.2 (100) b | 68.3 (112) b | <0.001 |
CRP >5 mg/L | 11.7 (78) | 6.0 (10) a | 9.1 (15) a | 10.1 (17) a | 22.0 (36) b | <0.001 |
AGP > 1 g/L | 22.3 (148) | 10.8 (18) a | 12.7 (21) a | 28.4 (48) b | 37.2 (61) b | <0.001 |
Ferritin (µg/L) | 39.9 (28.5, 59.5) | 37.7 (28.8, 56.4) a | 36.3 (26.9, 55.2) a | 33.7 (24.3, 47.1) b | 53.45 (35.1, 82.2) c | <0.001 |
Ferritin, adj. (µg/L) | 34.2 (24.7, 52.6) | 36.3 (26.4, 54.4) a,c | 34.4 (24.9, 53.8) a | 28.0 (20.8, 41.9) b | 42.6 (29.5, 57.6) c | <0.001 |
sTfR (mg/L) | 7.17 (6.14, 8.65) | 6.76 (5.72, 7.95) a | 6.64 (5.79, 7.75) a | 7.75 (6.56, 9.50) b | 7.93 (6.63, 10.29) b | <0.001 |
ID, adjusted | 29.3 (195) | 20.4 (34) a | 17.6 (29) a | 39.1 (66) b | 40.2 (66) b | <0.001 |
IST, adj. (mg/kg BW) | 4.09 (2.55, 5.69) | 4.79 (3.01, 6.10) a | 4.51 (3.14, 6.10) a | 3.16 (1.60, 4.68) b | 4.15 (2.81, 5.64) a | <0.001 |
Zinc (mg/L) | 0.723 (0.64, 0.80) | 0.752 (0.68,0.84) a | 0.666 (0.60, 0.75) b | 0.723 (0.65, 0.80) a,c | 0.723 (0.64, 0.80) c | <0.001 |
Zinc < 0.65 mg/L | 26.4 (176) | 16.8 (28) a | 39.2 (65) b | 23.1 (39) a,c | 26.8 (44) c | <0.001 |
Retinol, µmol/L | 0.853 (0.70, 0.99) | 0.848 (0.72, 0.99) a | 0.814 (0.63, 0.97) b | 0.870 (0.75, 1.00) a | 0.878 (0.69, 0.99) a,b | 0.011 |
Retinol, < 0.7 µmol/L | 24.9 (166) | 22.8 (38) b | 34.3 (57) c | 16.0 (27) b | 26.8 (44) a,c | 0.001 |
γ-Tocopherol, µmol/L | 0.706 (0.42, 1.18) | 1.108 (0.83, 1.51) a | 1.214 (0.81, 1.84) a | 0.429 (0.28, 0.63) b | 0.456 (0.35, 0.64) c | <0.001 |
α-Tocopherol, µmol/L | 15.36 (13.2, 8.0) | 14.45 (12.6, 16.3) a | 13.88 (12.0, 15.8) b | 17.57 (15.2, 20.3) c | 16.26 (14.2, 18.7) d | <0.001 |
α-Carotene, µmol/L | 0.110 (0.04, 0.29) | 0.043 (0.03, 0.07) a | 0.034 (0.02, 0.05) b | 0.286 (0.19, 0.47) c | 0.285 (0.18, 0.44) c | <0.001 |
β-Carotene, µmol/L | 0.483 (0.33, 0.68) | 0.484 (0.34, 0.67) a | 0.554 (0.41, 0.76) b | 0.434 (0.30, 0.63) a | 0.451 (0.32, 0.64) a | <0.001 |
β-Cryptoxanthin, µmol/L | 0.162 (0.07, 0.34) | 0.334 (0.17, 0.51) a | 0.077 (0.05, 0.13) b | 0.095 (0.05, 0.23) b | 0.240 (0.13, 0.50) a | <0.001 |
Lutein/zeaxanth., µmol/L | 0.917 (0.62, 1.24) | 1.176 (0.94, 1.50) a | 1.174 (0.94, 1.52) a | 0.689 (0.50, 0.96) b | 0.648 (0.51, 0.83) b | <0.001 |
Lycopene, µmol/L | 0.334 (0.19, 0.57) | 0.228 (0. 14, 0.35) a | 0.227 (0.15, 0.35) a | 0.650 (0.49, 0.87) b | 0.378 (0.21, 0.58) c | <0.001 |
Village | All | Mzula | Chinoje | Tindiga | Mhenda-Kitunduweta | RNI/AMDR |
---|---|---|---|---|---|---|
District | Chamwino | Kilosa | ||||
Children, N | 666 | 167 | 166 | 169 | 164 | |
Energy, EN (Kcal) 1 | 898 (579, 1296) | 715 (469, 1003) a | 550 (370, 759) b | 1181 (865, 1505) c | 1215 (979, 1559) c | 1250–1975 |
EN ≥ RNI, % (n) 2 | 10.2 (68) | 3.6 (6) a | 3.0 (5) a | 17.2 (29) b | 17.1 (28) b | |
Protein (g) | 20 (12.8, 32.4) | 16.9 (11.1, 25.7) a | 12.7 (8.7, 17.1) b | 25.3 (18.0, 37.8) c | 32.2 (21.9, 48.9) d | |
EN by Protein (%) | 11 (9, 14) | 12 (9, 14) a | 12 (11, 14) b | 9 (7, 12) c | 11 (9, 14) d | 10–30% |
Fat (g) | 19.2 (9.3, 29.1) | 13.7 (7.9, 23.9) a | 7.2 (4.0, 13.7) b | 25.6 (17.4, 41.2) c | 24.0 (16.2, 35.1) c | |
EN by fat (%) | 19 (13, 24) | 22 (14, 29) a | 14 (10, 21) b | 20 (16, 25) c | 18 (13, 24) c | 25–35% |
Carbohydrates (g) | 144.1 (81.2, 218) | 106.2 (68.9, 139) a | 66.3 (42.4, 107) b | 203.2 (154.8, 255) c | 215.2 (170.9, 270)c | |
EN by CHO (%) | 71 (64, 76) | 67 (59, 76) a | 73.50 (66, 77) b | 71 (66, 75) c | 71 (64, 76) c | 45–65% |
vitamin A (µg) | 183 (65, 392) | 253 (121, 441) a | 255 (158, 424) a | 141 (21, 456) b | 90 (26, 236) c | 450/500 |
RE ≥ RNI, % (n) | 19.1 (127) | 21.6 (36) a | 22.3 (37) a | 21.9 (37) a | 10.4 (17) b | |
Vitamin E (mg) | 0.8 (0.6, 1.6) | 0.9 (0.2, 2.6) a | 0 (0, 0.5) b | 0.8 (0.4, 1.3) c | 1.1 (0.8, 2.3) a | 5/7 |
α-TE ≥ RNI, % (n) | 4.8 (32) | 7.2 (12) | 2.4 (4) | 3 (5) | 6.7 (11) | |
Vitamin B1 (mg) | 0.5 (0.3, 0.7) | 0.5 (0.3, 0.8) a | 0.4 (0.3, 0.6) b | 0.4 (0.3, 0.6) b | 0.7 (0.5, 1.0) c | 0.6/0.9 |
B1 ≥ RNI, % (n) | 24.9 (166) | 24.0 (40) a | 13.9 (23) b | 17.2 (29) a,b | 45.1 (74) c | |
Vitamin B2 (mg) | 0.5 (0.4, 0.7) | 0.6 (0.4, 0.7) a | 0.6 (0.4, 0.8) a | 0.4 (0.2, 0.6) b | 0.5 (0.3, 0.8) c | 0.6/0.9 |
B2 ≥ RNI, % (n) | 24.8 (165) | 26.9 (45) a | 28.3 (47) a | 13.0 (22) b | 31.1 (51) a | |
Vitamin B6 (mg) | 0.8 (0.6, 1.1) | 0.7 (0.5, 0.9) a | 0.7 (0.5, 0.9) a | 0.8 (0.6, 1.0) b | 1.0 (0.7, 1.2) c | 0.6/1.0 |
B6 ≥ RNI, % (n) | 46.2 (308) | 38.9 (65) a | 36.7 (61) a | 46.7 (79) a | 62.8 (103) b | |
B12 (µg) | 0 (0, 0.3) | 0 (0, 0) a | 0 (0, 0) a | 0 (0, 0.9) b | 0.1 (0, 2.2) b | 1.2/1.8 |
B12 ≥ RNI, % (n) | 14.0 (93) | 6.0 (10) a | 1.2 (2) b | 21.3 (36) c | 27.4 (45) c | |
Folic acid (µg) | 201 (128, 291) | 206 (134, 281) a | 174 (116, 237) a | 178 (117, 285) a | 258 (160, 363) b | 200/300 |
FA ≥ RNI, % (n) | 33.8 (225) | 31.1 (52) a,b | 21.7 (36) b | 32.0 (54) a | 50.6 (83) c | |
Ascorbic acid (mg) | 7.8 (1.5, 30.2) | 3.3 (0.9, 9.3) a | 1.6 (0.7, 6.9) a | 15.9 (5.9, 39.1) b | 24.5 (9.5, 47.1) c | 30/35 |
AA ≥ RNI, % (n) | 23.1 (154) | 14.4 (24) a | 12 (20) a | 31.4 (53) b | 34.8 (57) b | |
Calcium (mg) | 309 (133, 671) | 471 (242, 801) a | 512 (322, 763) a | 155 (77, 341) b | 175 (86, 490) b | 600/700 |
Ca ≥ RNI, % (n) | 26 (173) | 32.9 (55) a | 35.5 (59) a | 13.0 (22) b | 22.6 (37) c | |
Iron (mg) | 11.5 (7.6, 18.6) | 15.9 (10.9, 22.7) a | 18.4 (13.1, 24.7) a | 7.2 (5.3, 9.6) b | 8.8 (6.2, 13) c | 6/9 |
Iron ≥ RNI, % (n) | 73.7 (491) | 89.2 (149) a | 95.8 (159) b | 46.7 (79) c | 63.4 (104) d | |
Zinc (mg) | 4.9 (3.5, 6,5) | 4.7 (3.3, 6.6) a | 4.4 (3.3, 5.9) a | 4.7 (3.5, 6.3) a | 5.5 (4.2, 8.1) b | 10.3/11.3 |
Zinc ≥ RNI, % (n) | 4.7 (31) | 4.8 (8) | 4.8 (8) | 1.8 (3) | 7.3 (12) | |
Magnesium (mg) | 163 (101, 242) | 186 (106, 283) a | 158 (96, 251) a,b | 141 (91, 211) b | 175 (121, 249) a | 73/100 |
Mg ≥ RNI, % (n) | 80.3 (535) | 79 (132) | 78.9 (131) | 76.9 (130) | 86.6 (142) |
Micronutrient Status | Chamwino, n = 333 | Kilosa, n = 333 | p | ||
Haemoglobin, g/L | 123 (115, 130) | 104 (111, 117) | <0.001 | ||
Anaemia, % (n) | 22.2 (74) | 63.7 (212) | <0.001 | ||
CRP ↑ or AGP ↑, % (n) | 13.8 (46) | 35.4 (118) | <0.001 | ||
Iron-ST, adj (mg/kg BW) | 4.64 (3.04, 6.09) | 3.67 (2.07, 5.29) | <0.001 | ||
ID adj., % (n) | 19.0 (63) | 39.6 (132) | <0.001 | ||
Retinol, µmol/L | 0.830 (0.67, 0.97) | 0.877 (0.72, 0.99) | 0.028 | ||
VAD, % (n) | 28.5 (95) | 21.3 (71) | 0.032 | ||
Zinc, mg/L | 0.709 (0.64, 0.80) | 0.723 (0.64, 0.80) | 0.186 | ||
ZnD, % (n) | 28.0 (93) | 24.9 (83) | 0.367 | ||
α-Carotene, µmol/L | 0.038 (0.03, 0.06) | 0.286 (0.18, 0.46) | <0.001 | ||
β-Carotene, µmol/L | 0.526 (0.38, 0.73) | 0.446 (0.31, 0.63) | <0.001 | ||
β-Cryptoxanthin, µmol/L | 0.147 (0.07, 0.36) | 0.173 (0.07, 0.32) | 0.841 | ||
Lutein-zeaxanthin, µmol/L | 1.176 (0.94, 1.51) | 0.669 (0.50, 0.89) | <0.001 | ||
Lycopene, µmol/L | 0.227 (0.15, 0.34) | 0.531 (0.33, 0.75) | <0.001 | ||
γ-Tocopherol, µmol/L | 1.145 (0.82, 1.66) | 0.444 (0.32, 0.64) | <0.001 | ||
α-Tocopherol, µmol/L | 14.15 (12.3, 16.1) | 16.86 (14.7, 19.6) | <0.001 | ||
Micronutrient intake | |||||
Iron intake, mg | 17.2 (12.2, 24.3) | 8.0 (5.8, 11.0) | <0.001 | ||
Iron suff. % (n) | 92.2 (317) | 55.0 (183) | <0.001 | ||
RE intake, µg | 255 (151, 438) | 104 (23, 308) | <0.001 | ||
RE suff. % (n) | 21.9 (73) | 16.2 (54) | 0.061 | ||
Zinc intake, mg | 4.49 (3.32, 6.19) | 5.19 (3.76, 7.1) | 0.006 | ||
Zinc suff. % (n) | 4.8 (16) | 4.5 (15) | 0.854 | ||
α-TE intake, mg | 0.32 (0.02, 1.60) | 0.77 (0.45, 1.51) | <0.001 | ||
α-TE suff., % (n) | 4.8 (16) | 4.8 (16) | 1.000 | ||
Food Intake | % (N) | Grams | % (N) | Grams | p |
Millet 1 | 92 (307) | 375 (250, 500) * | 4 (14) | 250 (181, 375) | <0.001 |
Maize 2 | 11 (36) | 250 (190, 500) | 86 (288) | 250 (131, 400) | <0.001 |
Rice (with oil) 3 | 3 (11) | 205 (125, 300) | 61 (203) | 250 (250, 300) | <0.001 |
DGLV 4 | 92 (305) | 126 (90, 219) | 31 (104) | 100 (63, 150) | <0.001 |
Vegetables 5 | 8 (26) | 95 (49, 131) | 27 (90) | 100 (50, 125) | <0.001 |
Legumes 6 | 53 (177) | 20 (10, 93) | 77 (258) | 125 (100, 211) ** | <0.001 |
Roots 7 | 1 (5) | 83 (32, 106) | 26 (88) | 168 (100, 200) * | <0.001 |
Fruits 8 | 10 (35) | 153 (115, 200) | 18 (59) | 182 (100, 300) | 0.008 |
Meat 9 | 4 (14) | 75 (49, 115) | 14 (47) | 75 (50, 100) | <0.001 |
Fish 10 | 2 (8) | 95 (49, 107) | 25 (85) | 125 (72, 150) | <0.001 |
Chamwino | Kilosa | |||||
---|---|---|---|---|---|---|
HAZ < −2SD (25.5%) N = 85 | WAZ < −2SD (15.3) N = 51 | BMI > 1SD (2.7%) N = 9 | HAZ < −2SD (30.6%) N = 102 | WAZ < −2SD (13.5%) N = 45 | BMI > 1SD (7.5%) N = 25 | |
Age, years | 0.71 (0.54, 0.94) | 2.94 (1.77, 4.88) * | 0.36 (0.14, 0.97) | 1.93 (1.26, 2.98) | 0.32 (0.17, 0.60) * | |
WAZ < −2SD | 23.8 (10.7, 53.0) * | 29.2 (11.0, 77.0) * | ||||
HAZ < −2SD | 30.5 (10.7, 86.5) * | 20.4 (6.97, 58.9) * | ||||
MUAC, cm | 0.11 (0.05, 0.23) * | 7.87 (3.10, 20.0) * | 0.18 (0.10, 0.33) * | 7.20 (3.74, 13.8) * | ||
ID adj., =1 (yes) | 4.53 (1.37, 15.0) | |||||
VAD, =1 (yes) | 2.09 (1.12, 3.90) | |||||
ZnD, =1 (yes) | 6.46 (0.99, 42.18) | |||||
β-Cryptoxanthin, µmol/L | 0.10 (0.01, 0.75) | |||||
Lutein-zeaxanth., µmol/L | 5.91 (1.32, 26.5) | |||||
B6 intake ≥ RNI, =1 | 12.3 (2.24, 68.0) | |||||
R2 (Nagelkerke) | 0.369 | 0.640 | 0.546 | 0.298 | 0.613 | 0.576 |
Chamwino | Kilosa | |||||
---|---|---|---|---|---|---|
Anaemia (22.3%) N = 74 | ID (19.0%) N = 63 | VAD (28.5%) N = 95 | Anaemia (63.7%) N = 212 | ID (39.6%) N = 132 | VAD (21.3%) N = 71 | |
Malaria, =1 | 2.43 (1.28, 4.62) | |||||
High CRP or AGP, =1 | 4.02 (1.95, 8.27) * | 2.02 (1.22, 3.34) | 1.84 (1.17, 2.91) | 2.54 (1.43, 4.52) | ||
ID, =1 (yes) | 1.90 (1.00, 3.64) | 2.39 (1.29, 4.44) | ||||
VAD, =1 (yes) | 2.05 (1.16, 3.62) | 2.79 (1.57, 4.97) * | ||||
ZnD, =1 (yes) | 2.19 (1.26, 3.80) | 2.71 (1.53, 4.81) | ||||
β-Carotene, µmol/L | 0.29 (0.10, 0.88) | |||||
β-Cryptoxanthin, µmol/L | 0.26 (0.07, 0.93) | |||||
α-Tocopherol µmol/L | 0.88 (0.80, 0.96) | 0.88 (0.80, 0.96) | ||||
Lycopene, µmol/l | 0.35 (0.17, 0.71) | |||||
Lutein-zeaxanth., µmol/L | 0.30 (0.10, 0.86) | |||||
B6 intake ≥RNI, =1 | 2.05 (1.19, 3.55) | |||||
R2 (Nagelkerke) | 0.126 | 0.097 | 0.204 | 0.073 | 0.028 | 0.195 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gowele, V.F.; Kinabo, J.; Jumbe, T.; Rybak, C.; Stuetz, W. High Prevalence of Stunting and Anaemia Is Associated with Multiple Micronutrient Deficiencies in School Children of Small-Scale Farmers from Chamwino and Kilosa Districts, Tanzania. Nutrients 2021, 13, 1576. https://doi.org/10.3390/nu13051576
Gowele VF, Kinabo J, Jumbe T, Rybak C, Stuetz W. High Prevalence of Stunting and Anaemia Is Associated with Multiple Micronutrient Deficiencies in School Children of Small-Scale Farmers from Chamwino and Kilosa Districts, Tanzania. Nutrients. 2021; 13(5):1576. https://doi.org/10.3390/nu13051576
Chicago/Turabian StyleGowele, Victoria Flavian, Joyce Kinabo, Theresia Jumbe, Constance Rybak, and Wolfgang Stuetz. 2021. "High Prevalence of Stunting and Anaemia Is Associated with Multiple Micronutrient Deficiencies in School Children of Small-Scale Farmers from Chamwino and Kilosa Districts, Tanzania" Nutrients 13, no. 5: 1576. https://doi.org/10.3390/nu13051576
APA StyleGowele, V. F., Kinabo, J., Jumbe, T., Rybak, C., & Stuetz, W. (2021). High Prevalence of Stunting and Anaemia Is Associated with Multiple Micronutrient Deficiencies in School Children of Small-Scale Farmers from Chamwino and Kilosa Districts, Tanzania. Nutrients, 13(5), 1576. https://doi.org/10.3390/nu13051576