Growth and Body Composition in PKU Children—A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
CGMP-AA and AA Protein Substitutes
2.2. Study Design
- (1)
- AA: protein substitute given as AA only;
- (2)
- CGMP50: patients tolerating a combination of CGMP-AA and AA;
- (3)
- CGMP100: patients tolerating all their protein substitute as CGMP-AA.
2.2.1. Selection into CGMP-AA or AA Group
2.2.2. Dual X-ray Absorptiometry (DXA)
2.2.3. Anthropometric Measurements
2.2.4. Blood Phenylalanine Levels
2.2.5. Pubertal Status
2.3. Statistical Analysis of Anthropometry and Body Composition
Power Calculation
2.4. Ethical Permission
3. Results
3.1. Subjects
3.2. Pubertal Status
3.3. Subject Withdrawal
3.4. Protein Substitutes and Phenylalanine Concentrations
3.5. Body Composition Lean Mass, Fat Mass and % Body Fat
3.6. Lean Body Mass, % Body Fat and Fat Mass
3.7. Changes in Height Z Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdullah, A.; Peeters, A.; de Courten, M.; Stoelwinder, J. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res. Clin. Pract. 2010, 89, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.A.; Pineda, I.; Rodriguez, G.; Fleta, J.; Giner, A.; Juste, M.G.; Sarria, A.; Bueno, M. Leptin and metabolic syndrome in obese and non-obese children. Horm. Metab. Res. 2002, 34, 394–399. [Google Scholar] [CrossRef]
- Sarria, A.; Moreno, L.A.; Garcí-LIop, L.A.; Fleta, J.; Morellon, M.P.; Bueno, M. Body mass index, triceps skinfold and waist circumference in screening for adiposity in male children and adolescents. Acta Paediatr. 2001, 90, 387–392. [Google Scholar] [CrossRef]
- Kelly, D.A. Nutritional factors affecting growth before and after liver transplantation. Pediatr. Transpl. 1997, 1, 80–84. [Google Scholar]
- Cole, T.J.; Freeman, J.V.; Preece, M.A. Body mass index reference curves for the UK, 1990. Arch. Dis. Child. 1995, 73, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.; Jumean, M.; Murad, M.H.; Okorodudu, D.; Kumar, S.; Somers, V.K.; Sochor, O.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: A systematic review and meta-analysis. Pediatr. Obes. 2015, 10, 234–244. [Google Scholar] [CrossRef]
- Dokoupil, K.; Gokmen-Ozel, H.; Lammardo, A.M.; Motzfeldt, K.; Robert, M.; Rocha, J.C.; van Rijn, M.; Ahring, K.; Bélanger-Quintana, A.; MacDonald, A.; et al. Optimising growth in phenylketonuria: Current state of the clinical evidence base. Clin. Nutr. 2012, 31, 16–21. [Google Scholar] [CrossRef]
- MacDonald, A.; Chakrapani, A.; Hendriksz, C.; Daly, A.; Davies, P.; Asplin, D.; Hall, K.; Booth, I.W. Protein substitute dosage in PKU: How much do young patients need? Arch. Dis. Child. 2006, 91, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef] [Green Version]
- Gropper, S.S.; Acosta, P.B. Effect of simultaneous ingestion of L-amino acids and whole protein on plasma amino acid and urea nitrogen concentrations in humans. J. Parenter. Enteral Nutr. 1991, 15, 48–53. [Google Scholar] [CrossRef]
- Gropper, S.S.; Gropper, D.M.; Acosta, P.B. Plasma amino acid response to ingestion of L-amino acids and whole protein. J. Pediatr. Gastroenterol. Nutr. 1993, 16, 143–150. [Google Scholar] [CrossRef]
- Monch, E.; Herrmann, M.E.; Brösicke, H.; Schöffer, A.; Keller, M. Utilisation of amino acid mixtures in adolescents with phenylketonuria. Eur. J. Pediatr. 1996, 155, S115–S120. [Google Scholar] [CrossRef]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, A.; Van Rijn, M.; Feillet, F.; Lund, A.M.; Bernstein, L.; Bosch, A.M.; Gizewska, M.; Van Spronsen, F.J. Adherence issues in inherited metabolic disorders treated by low natural protein diets. Ann. Nutr. Metab. 2012, 61, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.H.; White, F.J.; Hall, S.K.; MacDonald, A.; Rylance, G.; Boneh, A.; Francis, D.E.; Shortland, G.J.; Schmidt, M.; Vail, A.; et al. How practical are recommendations for dietary control in phenylketonuria? Lancet 2002, 360, 55–57. [Google Scholar] [CrossRef]
- Kleinman, R.E.; Greer, F.R. Pediatric Nutrition; American Academy of Pediatrics: Elk Grove Village, IL, USA, 2019; p. 1731. [Google Scholar]
- Lim, K.; van Calcar, S.C.; Nelson, K.L.; Gleason, S.T.; Ney, D.M. Acceptable low-phenylalanine foods and beverages can be made with glycomacropeptide from cheese whey for individuals with PKU. Mol. Genet. Metab. 2007, 92, 176–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, J.; Softic, S.; El Ouaamari, A.; Krumpoch, M.T.; Kleinridders, A.; Kulkarni, R.N.; O’Neill, B.T.; Kahn, C.R. Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function. Diabetes. 2016, 65, 2201–2213. [Google Scholar] [CrossRef] [Green Version]
- James, H.A.; O’Neill, B.T.; Nair, K.S. Insulin Regulation of Proteostasis and Clinical Implications. Cell Metab. 2017, 26, 310–323. [Google Scholar] [CrossRef] [PubMed]
- Adibi, S.A. Intestinal transport of dipeptides in man: Relative importance of hydrolysis and intact absorption. J. Clin. Investig. 1971, 50, 2266–2275. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, T.; Luhovyy, B.L.; Brown, P.H.; Cho, C.E.; Anderson, G.H. Effect of premeal consumption of whey protein and its hydrolysate on food intake and postmeal glycemia and insulin responses in young adults. Am. J. Clin. Nutr. 2010, 91, 966–975. [Google Scholar] [CrossRef]
- Silk, D.B.; Fairclough, P.D.; Clark, M.L.; Hegarty, J.E.; Addison, J.M.; Burston, D.; Clegg, K.M.; Matthews, D.M. Use of a peptide rather than free amino acid nitrogen source in chemically defined “elemental” diets. JPEN J. Parenter Enteral Nutr. 1980, 4, 548–553. [Google Scholar] [CrossRef]
- Van Calcar, S.C.; MacLeod, E.L.; Gleason, S.T.; Etzel, M.R.; Clayton, M.K.; Wolff, J.A.; Ney, D.M. Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am. J. Clin. Nutr. 2009, 89, 1068–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wegberg, A.M.J.; MacDonald, A.; Ahring, K.; Bélanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 1–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, A.; Evans, S.; Chahal, S.; Santra, S.; Macdonald, A. Glycomacropeptide in children with phenylketonuria: Does its phenylalanine content affect blood phenylalanine control? J. Hum. Nutr. Diet. 2017, 30, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M.; Whitehouse, R.H. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch. Dis. Child. 1976, 51, 170–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daly, A.; Evans, S.; Pinto, A.; Jackson, R.; Ashmore, C.; Rocha, J.C.; Macdonald, A. The Impact of the Use of Glycomacropeptide on Satiety and Dietary Intake in Phenylketonuria. Nutrients 2020, 12, 2704. [Google Scholar] [CrossRef] [PubMed]
- Bifari, F.; Nisoli, E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: A pharmacological point of view. Br. J. Pharmacol. 2017, 174, 1366–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Huemer, M.; Huemer, C.; Möslinger, D.; Huter, D.; Stöckler-Ipsiroglu, S. Growth and body composition in children with classical phenylketonuria: Results in 34 patients and review of the literature. J. Inherit. Metab. Dis. 2007, 30, 694–699. [Google Scholar] [CrossRef]
- Evans, M.; Truby, H.; Boneh, A. The relationship between dietary intake, growth and body composition in Phenylketonuria. Mol. Genet. Metab. 2017, 122, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Hoeksma, M.; Van Rijn, M.; Verkerk, P.H.; Bosch, A.M.; Mulder, M.F.; De Klerk, J.B.C.; De Koning, T.J.; Rubio-Gozalbo, E.; De Vries, M.; Sauer, P.J.J.; et al. The intake of total protein, natural protein and protein substitute and growth of height and head circumference in Dutch infants with phenylketonuria. J. Inherit. Metab. Dis. 2005, 28, 845–854. [Google Scholar] [CrossRef]
- Aldámiz-Echevarría, L.; Bueno, M.A.; Couce, M.L.; Lage, S.; Dalmau, J.; Vitoria, I.; Andrade, F.; Blasco-Alonso, J.; Alcalde, C.; Gil, D.; et al. Anthropometric characteristics and nutrition in a cohort of PAH-deficient patients. Clin. Nutr. 2014, 33, 702–717. [Google Scholar] [CrossRef]
- Alfheeaid, H.; Gerasimidis, K.; Năstase, A.-M.; Elhauge, M.; Cochrane, B.; Malkova, D.; Gerasimidis, K. Impact of phenylketonuria type meal on appetite, thermic effect of feeding and postprandial fat oxidation. Clin. Nutr. 2018, 37, 851–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldámiz-Echevarría, L.; Bueno, M.A.; Couce, M.L.; Lage, S.; Dalmau, J.; Vitoria, I.; Andrade, F.; Llarena, M.; Blasco-Alonso, J.; Alcalde, C.; et al. Tetrahydrobiopterin therapy vs phenylalanine-restricted diet: Impact on growth in PKU. Mol. Genet. Metab. 2013, 109, 331–338. [Google Scholar] [CrossRef]
- Acosta, P.B.; Yannicelli, S. Protein intake affects phenylalanine requirements and growth of infants with phenylketonuria. Acta Paediatr. 1994, 407, 66–67. [Google Scholar] [CrossRef] [PubMed]
- Acosta, P.B.; Yannicelli, S.; Singh, R.; Mofidi, S.; Steiner, R.; DeVincentis, E.; Jurecki, E.; Bernstein, L.; Gleason, S.; Chetty, M.; et al. Nutrient intakes and physical growth of children with phenylketonuria undergoing nutrition therapy. J. Am. Diet. Assoc. 2003, 103, 1167–1173. [Google Scholar] [CrossRef]
- Macdonald, A.; Rylance, G.; Davies, P.; Asplin, D.; Hall, S.K.; Booth, I.W. Administration of protein substitute and quality of control in phenylketonuria: A randomized study. J. Inherit. Metab. Dis. 2003, 26, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.C.; Van Rijn, M.; Van Dam, E.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Ozel, H.G.; Lammardo, A.M.; Robert, M.; Heidenborg, C.; et al. Weight Management in Phenylketonuria: What Should Be Monitored? Ann. Nutr. Metab. 2015, 68, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weglage, J.; Brämswig, J.H.; Koch, H.G.; Karassalidou, S.; Ullrich, K. Growth in patients with phenylketonuria. Eur. J. Nucl. Med. Mol. Imaging 1994, 153, 537–538. [Google Scholar] [CrossRef]
- Rocha, J.C.; Macdonald, A. Dietary intervention in the management of phenylketonuria: Current perspectives. Pediatr. Heal. Med. Ther. 2016, ume 7, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, M.E.; Brosicke, H.G.; Keller, M.; Monch, E.; Helge, H. Dependence of the utilization of a phenylalanine-free amino acid mixture on different amounts of single dose ingested. A case report. Eur. J. Pediatr. 1994, 153, 501–503. [Google Scholar] [CrossRef]
- Macdonald, A.; Rylance, G.; Hall, S.K.; Asplin, D.; Booth, I.W. Factors affecting the variation in plasma phenylalanine in patients with phenylketonuria on diet. Arch. Dis. Child. 1996, 74, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, A.; Rylance, G.W.; Asplin, D.; Hall, S.K.; Booth, I.W. Does a single plasma phenylalanine predict quality of control in phenylketonuria? Arch. Dis. Child. 1998, 78, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Couce, M.L.; Guler, I.; Anca-Couce, A.; Lojo, M.; Mirás, A.; Leis, R.; Pérez-Muñuzuri, A.; Fraga, J.M.; Gude, F. New insights in growth of phenylketonuric patients. Eur. J. Nucl. Med. Mol. Imaging 2014, 174, 651–659. [Google Scholar] [CrossRef]
- Moretti, F.; Pellegrini, N.; Salvatici, E.; Rovelli, V.; Banderali, G.; Radaelli, G.; Scazzina, F.; Giovannini, M.; Verduci, E. Dietary glycemic index, glycemic load and metabolic profile in children with phenylketonuria. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 176–182. [Google Scholar] [CrossRef]
- Ilgaz, F.; Pinto, A.; Gökmen-Özel, H.; Rocha, J.C.; Van Dam, E.; Ahring, K.; Bélanger-Quintana, A.; Dokoupil, K.; Karabulut, E.; Macdonald, A. Long-Term Growth in Phenylketonuria: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.C.K.; E Williams, J.; Chomtho, S.; Darch, T.; Grijalva-Eternod, C.; Kennedy, K.; Haroun, D.; Wilson, C.; Cole, T.J.; Fewtrell, M.S. Body-composition reference data for simple and reference techniques and a 4-component model: A new UK reference child. Am. J. Clin. Nutr. 2012, 96, 1316–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, D.R.; Moore, R.H.; Leonard, M.B.; Zemel, B.S. Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat. Am. J. Clin. Nutr. 2013, 98, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.K.; Fewtrell, M.S.; E Williams, J.; Haroun, D.; Lawson, M.S.; Cole, T.J. Body composition in normal weight, overweight and obese children: Matched case–control analyses of total and regional tissue masses, and body composition trends in relation to relative weight. Int. J. Obes. 2006, 30, 1506–1513. [Google Scholar] [CrossRef] [Green Version]
- Roemmich, J.N.; Clark, P.A.; Weltman, A.; Rogol, A.D. Alterations in growth and body composition during puberty. I. Comparing multicompartment body composition models. J. Appl. Physiol. 1997, 83, 927–935. [Google Scholar] [CrossRef]
- Sopher, A.B.; Thornton, J.C.; Wang, J.; Pierson, R.N.; Heymsfield, S.B.; Horlick, M. Measurement of Percentage of Body Fat in 411 Children and Adolescents: A Comparison of Dual-Energy X-Ray Absorptiometry With a Four-Compartment Model. Pediatrics 2004, 113, 1285–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.E.; Wells, J.C.K.; Wilson, C.M.; Haroun, D.; Lucas, A.; Fewtrell, M.S. Evaluation of Lunar Prodigy dual-energy X-ray absorptiometry for assessing body composition in healthy persons and patients by comparison with the criterion 4-component model. Am. J. Clin. Nutr. 2006, 83, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Ofenheimer, A.; Breyer-Kohansal, R.; Hartl, S.; Burghuber, O.C.; Krach, F.; Schrott, A.; Franssen, F.M.E.; Wouters, E.F.M.; Breyer, M. Reference charts for body composition parameters by dual-energy X-ray absorptiometry in European children and adolescents aged 6 to 18 years—Results from the Austrian LEAD (Lung, hEart, sociAl, boDy ) cohort. Pediatr. Obes. 2021, 16, e12695. [Google Scholar] [CrossRef] [PubMed]
AA | CGMP50 | CGMP100 | |
---|---|---|---|
Number recruited | n = 19 | n = 16 | n = 13 |
Girls | n = 8 | n = 8 | n = 5 |
Boys | n = 11 | n = 8 | n = 8 |
Median age y (range) | 11.1 (5–15) | 7.3 (5–15) | 9.2 (5–16) |
% of children prepubertal (stage 1 and 2) | 32% | 69% | 62% |
Girls | n = 2 | n = 6 | n = 5 |
Boys | n = 4 | n = 5 | n = 3 |
% of children pubertal (stage 3 to 5) | 68% | 31% | 38% |
Girls | n = 6 | n = 2 | n = 0 |
Boys | n = 7 | n = 3 | n = 5 |
Body Composition | Time of Assessment | AA (Range) n = 19 | GMP50 (Range) n = 13 | GMP100 (Range) n = 16 |
---|---|---|---|---|
Lean mass (g) | Enrolment | 26,702 (16,920–34,209) | 16,334 (14,280–17,686) | 20,060 (16,451–21,947) |
36 m | 32,560 (25,893–40,511) | 23,921 (22,725–26,477) | 31,268 (25,561–35,875) | |
Delta | 5858 (8973–6302) | 7587 (8445–8791) | 11,208 (9110–13,928) | |
Fat mass (g) | Enrolment | 9528 (6961–15,018) | 5764 (4504–6758) | 6688 (5057–8811) |
36 m | 17,216 (10,930–20,687) | 12,945 (10,678–16,519) | 12,220 (8347–13,101) | |
Delta | 7688 (3969–5669) | 7181 (6174–9761) | 5532 (3290–4290) | |
% body fat | Enrolment | 29 (23–36) | 24 (22–28) | 25 (19–30) |
36 m | 35 (25–39) | 33 (30–36) | 28 (20–33) | |
Delta | 6 | 9 | 3 |
Time (Months) | AA Height z Score n = 19 | CGMP50 Height z Score n = 16 | CGMP100 Height z Score n = 13 |
---|---|---|---|
Enrolment (range) | 0.2 (−0.2 to 0.8) | −0.1 (−0.6 to 0.6) | −0.1 (−0.4 to 0.3) |
12 months (range) | 0.2 (−0.2 to 0.6) | 0.1 (−0.4 to 0.5) | 0.1 (−0.1 to 0.3) |
24 months (range) | 0.2 (−0.1 to 0.5) | 0.2 (−0.2 to 0.5) | 0.4 (0.0 to 0.7) |
36 months (range) | 0.2 (0.0 to 0.5) | 0.3 (−0.1 to 0.7) | 0.6 (0.1 to 0.7) |
Delta height z score | 0 | +0.4 | +0.7 |
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | |
---|---|---|---|---|---|
Age | 1 | 0.015 | 0.015 | 0.020 | 0.887 |
Treatment | 2 | 1.225 | 0.613 | 0.843 | 0.432 |
Treatment/time | 3 | 2.081 | 0.694 | 0.954 | 0.415 |
Residuals | 185 | 134.418 | 0.727 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daly, A.; Högler, W.; Crabtree, N.; Shaw, N.; Evans, S.; Pinto, A.; Jackson, R.; Strauss, B.J.; Wilcox, G.; Rocha, J.C.; et al. Growth and Body Composition in PKU Children—A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes. Nutrients 2021, 13, 1323. https://doi.org/10.3390/nu13041323
Daly A, Högler W, Crabtree N, Shaw N, Evans S, Pinto A, Jackson R, Strauss BJ, Wilcox G, Rocha JC, et al. Growth and Body Composition in PKU Children—A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes. Nutrients. 2021; 13(4):1323. https://doi.org/10.3390/nu13041323
Chicago/Turabian StyleDaly, Anne, Wolfgang Högler, Nicola Crabtree, Nick Shaw, Sharon Evans, Alex Pinto, Richard Jackson, Boyd J. Strauss, Gisela Wilcox, Júlio C. Rocha, and et al. 2021. "Growth and Body Composition in PKU Children—A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes" Nutrients 13, no. 4: 1323. https://doi.org/10.3390/nu13041323
APA StyleDaly, A., Högler, W., Crabtree, N., Shaw, N., Evans, S., Pinto, A., Jackson, R., Strauss, B. J., Wilcox, G., Rocha, J. C., Ashmore, C., & MacDonald, A. (2021). Growth and Body Composition in PKU Children—A Three-Year Prospective Study Comparing the Effects of L-Amino Acid to Glycomacropeptide Protein Substitutes. Nutrients, 13(4), 1323. https://doi.org/10.3390/nu13041323