Can Healthy and Sustainable Dietary Patterns That Fit within Current Dutch Food Habits Be Identified?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Assessment of Healthiness of Diets
2.4. Assessment of the Environmental Impact of Diets
2.5. Lifestyle and Anthropometric Variables
2.6. Statistical Analysis
3. Results
3.1. Population Characteristics and Food Consumption
3.2. Dietary Patterns Derived by RRR
3.2.1. Healthiness and Sustainability of the Three Dietary Patterns
3.2.2. Dietary Characterization of the Three Dietary Patterns
3.2.3. Characteristics of Adherents of the Three Dietary Patterns
3.3. Differences in Pattern Scores per Level of Education
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
DHD15-Index | Maximum Score a (10 Points) | Minimum Score a (0 Points) |
---|---|---|
1. Vegetables (g) | ≥200 | 0 |
2. Fruit (g) | ≥200 | 0 |
3a. Wholegrain products (g) 3b. Replace refined with wholegrain products | ≥90 (5 points) No consumption of refined products or ratio wholegrain/refined ≥11 (5 points) | 0 No consumption of wholegrain products or ratio wholegrain/refined ≤0.7 |
4. Legumes (g) | ≥10 | 0 |
5. Nuts (g) | ≥15 | 0 |
6. Dairy products b (g) | 300–450 | 0 or ≥750 |
7. Fish c (g) | ≥15 | 0 |
8. Tea (g) | ≥450 | 0 |
9. Replace butter and hard fats with margarines and oils | No consumption of fats or ratio oils/fats ≥13 | No consumption of oils or ratio ≤0.6 |
10. Replace unfiltered coffee with filtered coffee | Consumption of only filtered coffee or no coffee consumption | Any consumption of unfiltered coffee |
11. Red meat (g) | <45 | ≥100 |
12. Processed meat (g) | 0 | ≥50 |
13. Sweetened beverages and fruit juices (g) | 0 | ≥250 |
14. Alcohol (g) | ≤10 | Men: ≥30 Women: ≥20 |
15. Sodium (g) | <1.9 | ≥3.8 |
Main Groups | Aggregated Groups | GloboDiet Groups | Median (IQR) GHGE per kg b | Median (IQR) Blue Water Use per kg c |
---|---|---|---|---|
Animal-based foods | ||||
Processed meat | Meat, fish and eggs | “07-04” meat products and processed meat and “red”, and “07-04” meat products and processed meat and “white” a | 13.15 (10.44–17.95) | 0.13 (0.1–0.16) |
Red unprocessed meat | Meat, fish and eggs | “07-00” meat miscellaneous; “07-01” fresh meat; “07-03” game and “07-05” oval meat | 21.91 (12.42–30.03) | 0.19 (0.12–0.24) |
White unprocessed meat | Meat, fish and eggs | “07-02” poultry | 10.87 (10.87–10.87) | 0.15 (0.15–0.15) |
Dairy | Dairy and cheese | “05” dairy (excl. “05-05” cheese; “05-02” dairy replacers and “05-07-02”, “05-08-02” both non-dairy-based products) | 2.19 (2.03–2.45) | 0.1 (0.09–0.1) |
Cheese | Dairy and cheese | “05-05” cheese | 12.53 (10.72–13.09) | 0.02 (0.02–0.02) |
Fish | Meat, fish, and eggs | “08” fish, shellfish, and amphibians | 6.95 (5.42–13.36) | 0.04 (0.03–0.06) |
Eggs | Meat, fish, and eggs | “09” eggs and egg products | 4.32 (4.32–4.32) | 0.06 (0.03–0.14) |
Plant-based foods | ||||
Potatoes and cereals | Potatoes and cereals | “01” potatoes and other tubers and “06” cereals and cereal products | 1.27 (1.11–1.5) | 0.03 (0.02–0.05) |
Vegetables | Vegetables, fruits, and legumes | “02” vegetables | 1.62 (1.3–1.97) | 0.07 (0.05–0.09) |
Legumes | Vegetables, fruits, and legumes | “03” legumes | 1.93 (1.93–1.93) | 0.07 (0.07–0.07) |
Fruits | Vegetables, fruits, and legumes | “04” fruits, olives (excl. 04.02) | 0.85 (0.69–1.3) | 0.14 (0.07–0.26) |
Nuts and seeds | Nuts and seeds | “04-02” nuts, peanuts, seeds and nut spread | 6.32 (4.28–8.68) | 0.17 (0.17–1.72) |
Beverages | ||||
Fruit and vegetable juice | Non-alcoholic beverages | “13-01” fruit and vegetable juice | 1.42 (1.1–1.5) | 0.45 (0.24–0.47) |
Soft drinks | Non-alcoholic beverages | “13-02” lemonade, soft drinks | 0.6 (0.56–0.65) | 0.01 (0.01–0.02) |
Coffee and tea | Non-alcoholic beverages | “13-03” coffee, tea, and herbal tea | 0.26 (0.21–0.3) | 0.02 (0.01–0.03) |
Water | Non-alcoholic beverages | “13-04” water | 0 (0–0) | 0 (0–0) |
Alcoholic beverages | Alcoholic beverages | “14” alcoholic beverages | 2.02 (0.71–2.21) | 0.05 (0.01–0.09) |
Miscellaneous | ||||
Sweets and snacks | Miscellaneous | “11” sugar and confectionery; “12” cakes and sweet biscuits, and “18” savory snacks | 2.98 (2.29–3.73) | 0.06 (0.04–0.09) |
Fats and oils | Fats and oils | “10” fats and oils | 4.95 (3.59–6.04) | 0.1 (0.08–0.55) |
Broth, sauces, and condiments | Miscellaneous | “15” condiments, spices, sauces, and yeast and “16” soups and stocks | 1.81 (0.8–3.24) | 0.04 (0.02–0.06) |
Other | Miscellaneous | “17” miscellaneous; “07-06” meat replacers; “05-02” dairy replacers and “05-07-02”, “05-08-02” both non-dairy-based products | 0.01 (0.01–1.06) | 0 (0–0.01) |
References
- United Nations General Assembly. Resolution 70/1 Transforming Our World: The 2030 Agenda for Sustainable Development United Nations; United Nations General Assembly: New York, NY, USA, 2015. [Google Scholar]
- United Nations. Paris Climate Agreement; United Nations: Paris, France, 2015. [Google Scholar]
- Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 2011, 36, S23–S32. [Google Scholar] [CrossRef]
- Tukker, A.; Huppes, G.; Guinée, J.; Heijungs, R.; De Koning, A.; Van Oers, L.; Suh, S.; Geerken, T.; Van Holderbeke, M.; Jansen, B. Environmental Impact of Products (EIPRO) Analysis of the Life Cycle Environmental Impacts Related to the Final Consumption of the EU-25; European Commission, Joint Research Centre, Institute for Prospective Technological Studies: Brussels, Belgium, 2006. [Google Scholar]
- Foley, J.A.; De Fries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlingame, B.; Dernini, S. Sustainable Diets and Biodiversity; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 2010. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- National Institute for Public Health and Environment. Voedselconsumptie 2012–2016 Wat, Waar en Wanneer. 2018. Available online: https://www.wateetnederland.nl/documenten/voedselconsumptie-2012-2016-wat-waar-en-wanneer (accessed on 16 October 2019).
- Ocké, M.C. Evaluation of methodologies for assessing the overall diet: Dietary quality scores and dietary pattern analysis. Proc. Nutr. Soc. 2013, 72, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.; Boeing, H.; Boffetta, P.; Nagel, G.; Orfanos, P.; Ferrari, P.; Bamia, C. Comparison of two statistical approaches to predict all-cause mortality by dietary patterns in German elderly subjects. Br. J. Nutr. 2005, 93, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Hoffmann, K. Methodological approaches to study dietary patterns in relation to risk of coronary heart disease and stroke. Br. J. Nutr. 2006, 95, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Weikert, C.; Schulze, M.B. Evaluating dietary patterns: The role of reduced rank regression. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 341–346. [Google Scholar] [CrossRef]
- Hoffmann, K.; Schulze, M.B.; Schienkiewitz, A.; Nöthlings, U.; Boeing, H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am. J. Epidemiol. 2004, 159, 935–944. [Google Scholar] [CrossRef]
- Biesbroek, S.; Verschuren, W.M.; van der Schouw, Y.T.; Sluijs, I.; Boer, J.M.; Temme, E.H. Identification of data-driven Dutch dietary patterns that benefit the environment and are healthy. Clim. Chang. 2018, 147, 571–583. [Google Scholar] [CrossRef] [Green Version]
- van Rossum, C.; Buurma-Rethans, E.; Dinnissen, C.; Beukers, M.; Brants, H.; Ocké, M. The Diet of the Dutch: Results of the Dutch National Food Consumption Survey 2012–2016; National Institute for Public Health and the Environment, RIVM: Bilthoven, The Netherlands, 2020. [Google Scholar]
- Slimani, N.; Casagrande, C.; Nicolas, G.; Freisling, H.; Huybrechts, I.; Ocke, M.; Niekerk, E.; Van Rossum, C.; Bellemans, M.; De Maeyer, M. The standardized computerized 24-h dietary recall method EPIC-Soft adapted for pan-European dietary monitoring. Eur. J. Clin. Nutr. 2011, 65, S5–S15. [Google Scholar] [CrossRef] [Green Version]
- The National Insitute for Public Health and the Environment. NEVO Online Version 2016/5.0. Available online: https://nevo-online.rivm.nl/ (accessed on 16 October 2019).
- Looman, M.; Feskens, E.J.; de Rijk, M.; Meijboom, S.; Biesbroek, S.; Temme, E.H.; de Vries, J.; Geelen, A. Development and evaluation of the Dutch Healthy Diet index 2015. Public Health Nutr. 2017, 20, 2289–2299. [Google Scholar] [CrossRef]
- Kromhout, D.; Spaaij, C.; de Goede, J.; Weggemans, R. The 2015 Dutch food-based dietary guidelines. Eur. J. Clin. Nutr. 2016, 70, 869. [Google Scholar] [CrossRef]
- National Institute for Public Health and Environment. Environmental Impact of Foods; Life Cycle, Product Group; Milieubelasting Voedingsmiddelen; Levenscyclus, Productgroep, n.d. Available online: https://statline.rivm.nl/#/RIVM/nl/dataset/50060NED/table?ts=1587137105547 (accessed on 16 October 2019).
- Marinussen, M.; Kramer, G.; Pluimers, J.; Blonk, H. De Milieudruk Van ons eten; Een Analyse op Basis van de Voedselconsumptiepeiling 2007–2010; Blonk Milieu Advies: Gouda, The Netherlands, 2012; (In Dutch, Summary In English). [Google Scholar]
- Vellinga, R.E.; van de Kamp, M.; Toxopeus, I.B.; van Rossum, C.; de Valk, E.; Biesbroek, S.; Hollander, A.; Temme, E.H. Greenhouse Gas Emissions and Blue Water Use of Dutch Diets and Its Association with Health. Sustainability 2019, 11, 6027. [Google Scholar] [CrossRef] [Green Version]
- Vieux, F.; Privet, L.; Soler, L.G.; Irz, X.; Ferrari, M.; Sette, S.; Raulio, S.; Tapanainen, H.; Hoffmann, R.; Surry, Y. More sustainable European diets based on self-selection do not require exclusion of entire categories of food. J. Clean. Prod. 2020, 248, 119298. [Google Scholar] [CrossRef]
- Seconda, L.; Baudry, J.; Alles, B.; Soler, L.-G.; Hercberg, S.; Langevin, B.; Pointereau, P.; Lairon, D.; Kesse-Guyot, E. Identification of sustainable dietary patterns by a multicriteria approach in the NutriNet-Sante cohort. J. Clean. Prod. 2018, 196, 1256–1265. [Google Scholar] [CrossRef]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.; Smith, P.; Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: A systematic review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Vieux, F.; Perignon, M.; Gazan, R.; Darmon, N. Dietary changes needed to improve diet sustainability: Are they similar across Europe? Eur. J. Clin. Nutr. 2018, 72, 951–960. [Google Scholar] [CrossRef] [PubMed]
- van de Kamp, M.E.; van Dooren, C.; Hollander, A.; Geurts, M.; Brink, E.J.; van Rossum, C.; Biesbroek, S.; de Valk, E.; Toxopeus, I.B.; Temme, E.H. Healthy diets with reduced environmental impact?–The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines. Food Res. Int. 2018, 104, 14–24. [Google Scholar] [CrossRef]
- Biesbroek, S.; Kneepkens, M.C.; Van Den Berg, S.W.; Fransen, H.P.; Beulens, J.W.; Peeters, P.H.; Boer, J.M. Dietary patterns within educational groups and their association with CHD and stroke in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. Br. J. Nutr. 2018, 119, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Giskes, K.; Avendaňo, M.; Brug, J.; Kunst, A. A systematic review of studies on socioeconomic inequalities in dietary intakes associated with weight gain and overweight/obesity conducted among European adults. Obes. Rev. 2010, 11, 413–429. [Google Scholar] [CrossRef]
- Van Bussel, L.M.; Van Rossum, C.T.; Temme, E.H.; Boon, P.E.; Ocké, M.C. Educational differences in healthy, environmentally sustainable and safe food consumption among adults in the Netherlands. Public Health Nutr. 2020, 1–11. [Google Scholar] [CrossRef]
- Ockene, J.K.; Edgerton, E.A.; Teutsch, S.M.; Marion, L.N.; Miller, T.; Genevro, J.L.; Loveland-Cherry, C.J.; Fielding, J.E.; Briss, P.A. Integrating evidence-based clinical and community strategies to improve health. Am. J. Prev. Med. 2007, 32, 244–252. [Google Scholar] [CrossRef]
- World Health Organization. Global Strategy on Diet, Physical Activity and Health; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Serra-Majem, L.; Ribas-Barba, L.; Salvador, G.; Serra, J.; Castell, C.; Cabezas, C.; Plasencia, A. Compliance with dietary guidelines in the Catalan population: Basis for a nutrition policy at the regional level (the PAAS strategy). Public Health Nutr. 2007, 10, 1406–1414. [Google Scholar] [CrossRef] [Green Version]
- Kipnis, V.; Subar, A.F.; Midthune, D.; Freedman, L.S.; Ballard-Barbash, R.; Troiano, R.P.; Bingham, S.; Schoeller, D.A.; Schatzkin, A.; Carroll, R.J. Structure of dietary measurement error: Results of the OPEN biomarker study. Am. J. Epidemiol. 2003, 158, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanellopoulos, A.; Gerdessen, J.C.; Ivancic, A.; Geleijnse, J.M.; Bloemhof-Ruwaard, J.M.; van’t Veer, P. Designing healthier and acceptable diets using data envelopment analysis. Public Health Nutr. 2020, 23, 2290–2302. [Google Scholar] [CrossRef] [PubMed]
- Mertens, E.; Kuijsten, A.; Kanellopoulos, A.; Dofková, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Havard, S.; Trolle, E. Improving health and carbon footprints of European diets using a benchmarking approach. Public Health Nutr. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D.; Wardle, D.A. Biodiversity loss and its impact on humanity. Nature 2012, 486, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Castro-Quezada, I.; Ruano-Rodríguez, C.; Ribas-Barba, L.; Serra-Majem, L. Misreporting in nutritional surveys: Methodological implications. Nutr. Hosp. 2015, 31, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Foley, S.; Shelley, E.; Gibney, M. Energy under-reporting in Swedish and Irish dietary surveys: Implications for food-based dietary guidelines. Br. J. Nutr. 1999, 81, S127–S131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onwezen, M.; Kunz, M.; Dagevos, H.; Verain, M. Consumers More Inclined to Eat ‘Alternative’proteins Compared to 2015; Wageningen University & Research: Wageningen, The Netherlands, 2020. [Google Scholar]
- Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment. Int. J. Life Cycle Assess. 2008, 13, 374. [Google Scholar] [CrossRef]
Total Population from DNFCS | “High Fruit and Vegetable Dietary Pattern” | “Low Meat Dietary Pattern” 1 | “High Dairy, Low Fruit Juices Dietary Pattern” | ||||
---|---|---|---|---|---|---|---|
Quartile 1 | Quartile 4 | Quartile 1 | Quartile 4 | Quartile 1 | Quartile 4 | ||
Age (years) (median, IQR) | 51 (31–70) | 41 (27–56) | 59 (38–72) | 56 (36–71) | 47 (30–68) | 49 (30–68) | 55 (31–72) |
Males (n (%)) | 1043 (50.2) | 336 (64.7) | 143 (27.6) | 263 (50.7) | 250 (48.2) | 278 (53.6) | 240 (46.2) |
Body mass index (kg/m2) 2 (median, IQR) | 25.5 (22.7–29.0) | 25.2 (22.2–29.0) | 25.6 (22.9–29.4) | 27.2 (24.2–30.6) | 24.0 (21.7–27.1) | 25.3 (22.7–28.4) | 25.9 (23.3–29.5) |
Smokers (n (%)) | 413 (20.0) | 136 (26.6) | 79 (15.2) | 121 (23.4) | 74 (14.3) | 132 (25.6) | 93 (18.0) |
Energy intake (kcal/day) (median, IQR) | 2064 (1699–2552) | 2459 (1968–2956) | 1715 (1421–2020) | 1922 (1562–2421) | 2151 (1772–2660) | 2170 (1809–2679) | 1857 (1547–2300) |
Education (n (%)) 3 | |||||||
Low | 602 (29.0) | 145 (27.9) | 160 (30.8) | 171 (33.0) | 126 (24.3) | 133 (25.6) | 172 (33.1) |
Moderate | 789 (38.0) | 234 (45.1) | 166 (32.0) | 207 (39.9) | 184 (35.5) | 210 (40.5) | 217 (41.8) |
High | 687 (33.1) | 140 (27.0) | 193 (37.2) | 141 (27.2) | 209 (40.3) | 176 (33.9) | 130 (25.1) |
Dietary consumption (gram/2000 kcal) | |||||||
Animal-based products | |||||||
Meat | |||||||
Processed meat | 35.5 (11.7–67.5) | 49.4 (24.6–84.4) | 20.8 (0–55.4) | 62.43 (26.0–103.6) | 12.9 (0–31.3) | 44.9 (16.3–77.4) | 21.8 (7.6–46.1) |
Red unprocessed meat | 20.3 (0–53.0) | 18.3 (0–46.1) | 18.0 (0–57.2) | 71.3 (29.9–104.7) | 0 (0–16.4) | 9.6 (0–38.1) | 36.1 (0–75.8) |
White unprocessed meat | 0 (0–23.4) | 0 (0–17.4) | 0 (0–33.6) | 0 (0–24.3) | 0 (0–16.7) | 0 (0–16.1) | 0 (0–37.7) |
Dairy | 255.0 (120.0–421.8) | 191.1 (65.8–336.4) | 303.4 (145.0–485.5) | 275.6 (122.2–458.2) | 221.8 (95.7–365.2) | 148.7 (46.0–270.6) | 453.0 (292.3–613.4) |
Cheese | 28.2 (12.8–48.2) | 22.3 (7.5–38.7) | 32.8 (17.1–55.0) | 28.4 (11.8–49.9) | 23.3 (10.8–42.1) | 25.7 (8.5–44.6) | 32.8 (16.6–56.9) |
Fish | 0 (0–14.9) | 0 (0–0) | 0 (0–52.0) | 0 (0–0) | 0 (0–23.6) | 0 (0–0) | 0 (0–54.0) |
Eggs | 0 (0–22.9) | 0 (0–17.3) | 0 (0–26.2) | 0 (0–24.4) | 0 (0–21.1) | 0 (0–24.1) | 0 (0–16.6) |
Plant-based foods | |||||||
Potatoes and cereals 4 | 256.4 ± 85.0 | 247.7 ± 78.3 | 249.7 ± 92.8 | 242.9 ± 89.1 | 263.1 ± 84.6 | 227.8 ± 80.5 | 293.7 ± 89.2 |
Vegetables | 125.6 (73.8–204.1) | 65.6 (34.6–100.0) | 237.8 (164.5–329.5) | 152.7 (90.0–234.7) | 109.3 (57.2–189.4) | 112.2 (56.8–190.1) | 150.5 (94.3–236.0) |
Legumes | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) |
Fruit | 95.2 (13.5–193.7) | 13.5 (0–65.2) | 223.9 (136.59–346.8) | 76.7 (0–171.1) | 112.4 (37.1–231.2) | 83.0 (0–179.9) | 113.1 (23.5–214.4) |
Nuts and seeds | 0 (0–13.1) | 0 (0–6.1) | 0 (0–20.9) | 0 (0–1.4) | 7.9 (0–26.1) | 0 (0–24.9) | 0 (0–0) |
Beverages | |||||||
Non-alcoholic beverages | |||||||
Fruit and vegetables juice | 0 (0–81.7) | 0 (0–153.0) | 0 (0–0) | 0 (0–96.9) | 0 (0–68.7) | 125.6 (3.0–223.5) | 0 (0–0) |
Soft drinks | 121.3 (0–360.3) | 324.3 (87.7–653.3) | 0 (0–171.4) | 127.7 (0–406.6) | 74.4 (0–254.3) | 152.8 (0–390.3) | 84.5 (0–276.9) |
Coffee and tea | 735.9 (452.2–1146.8) | 430.9 (218.5–681.8) | 1216.7 (777.6–1742.6) | 715.1 (442.9–1141.9) | 778.1 (479.9–1223.8) | 706.4 (390.8–1106.8) | 779.1 (493.4–1189.3) |
Water | 464.1 (149.4–956.1) | 291.7 (65.1–704.6) | 730.2 (318.0–1269.3) | 504.1 (156.4–1151.4) | 436.3 (144.1–918.7) | 367.9 (127.5–816.1) | 560.8 (201.1–1265.8) |
Alcoholic beverages | 0 (0–211.2) | 62.8 (0–301.4) | 0 (0–111.5) | 10.8 (0–261.7) | 0 (0–131.6) | 94.4 (0–351.4) | 0 (0–68.5) |
Miscellaneous | |||||||
Sweets and snacks | 71.8 (40.6–109.7) | 85.0 (47.7–129.0) | 56.8 (25.4–87.1) | 48.5 (24.4–80.3) | 99.5 (61.1–142.4) | 68.8 (39.8–107.0) | 64.0 (33.9–103.7) |
Fat and oils | 20.3 (12.6–28.8) | 12.0 (12.5–29.0) | 19.0 (11.1–28.3) | 19.3 (11.6–27.3) | 22.0 (13.7–31.7) | 18.9 (11.6–27.2) | 21.0 (12.7–29.2) |
Broth, sauces, and condiments | 50.0 (19.2–118.8) | 52.9 (21.9–115.0) | 46.2 (14.6–126.9) | 47.0 (17.6–113.1) | 46.1 (15.5–115.7) | 48.7 (20.7–116.8) | 39.2 (14.4–111.4) |
Other | 0 (0–0.2) | 0 (0–0) | 0 (0–1.6) | 0 (0–0.7) | 0 (0–0.1) | 0 (0–0.2) | 0 (0–0.1) |
Total Population of the DNFCS | “High Fruit and Vegetable Dietary Pattern” | “Low Meat Dietary Pattern” a | “High Dairy, Low Fruit Juices Dietary Pattern” | ||||
---|---|---|---|---|---|---|---|
Quartile 1 | Quartile 4 | Quartile 1 | Quartile 4 | Quartile 1 | Quartile 4 | ||
DHD15-index score b | 59.4 ± 18.6 | 42.1 ± 13.1 | 75.6 ± 15.3 | 51.5 ± 17.3 | 69.5 ± 17.8 | 52.2 ± 19.0 | 67.1 ± 16.9 |
GHGE (kg CO2 equivalents/2000 kcal) | 4.70 (4.02–5.62) | 4.26 (3.70–4.98) | 5.36 (4.54–6.33) | 5.98 (5.20–6.96) | 3.78 (3.35–4.22) | 4.52 (3.78–5.49) | 5.13 (4.42–6.05) |
Blue water use (m3/2000 kcal) | 0.13 (0.10–0.19) | 0.09 (0.07–0.11) | 0.22 (0.17–0.28) | 0.13 (0.10–0.19) | 0.14 (0.09–0.20) | 0.18 (0.12–0.24) | 0.12 (0.09–0.17) |
Level of Education | |||||
---|---|---|---|---|---|
Dietary Pattern | Gender | Age | Low | Middle | High |
“High fruit and vegetable dietary pattern” (pattern scores range between −2.913 and 7.789) | Male | <40 | −1.033 a (N = 38) | −0.748 a (N = 141) | −0.436 b (N = 159) |
40–59 | −0.508 (N = 53) | −0.479 (N = 134) | −0.250 (N = 104) | ||
>59 | −0.323 ab (N = 47) | −0.412 a (N = 52) | 0.031 b (N = 56) | ||
>70 * | N = 104 | N = 79 | N = 76 | ||
Female | <40 | −0.350 a (N = 39) | −0.216 a (N = 154) | 0.434 b (N = 160) | |
40–59 | 0.120 a (N = 81) | 0.118 a (N = 136) | 0.892 b (N = 65) | ||
>59 | 0.371 a (N = 240) | 0.604 a (N = 93) | 1.631 b (N = 67) | ||
>70 * | N = 167 | N = 50 | N = 40 | ||
“Low meat dietary pattern” (pattern scores range between −5.689 and 2.633) ** | Male | <40 | −0.039 ab | −0.063 a | 0.247 b |
40–59 | −0.043 | −0.146 | 0.076 | ||
>59 | 0.003 | −0.103 | −0.081 | ||
Female | <40 | −0.210 a | 0.073 ab | 0.229 b | |
40–59 | −0.048 | 0.011 | 0.042 | ||
>59 | −0.022 | −0.045 | 0.303 | ||
“High dairy, low fruit juices dietary pattern” (pattern scores range between −5.638 and 2.834) ** | Male | <40 | −0.170 | −0.014 | −0.125 |
40–59 | −0.193 | −0.083 | −0.118 | ||
>59 | 0.069 | −0.174 | −0.280 | ||
Female | <40 | −0.064 | −0.130 | 0.013 | |
40–59 | 0.194 | 0.044 | −0.032 | ||
>59 | 0.262 | 0.094 | 0.085 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heerschop, S.N.; Biesbroek, S.; Temme, E.H.M.; Ocké, M.C. Can Healthy and Sustainable Dietary Patterns That Fit within Current Dutch Food Habits Be Identified? Nutrients 2021, 13, 1176. https://doi.org/10.3390/nu13041176
Heerschop SN, Biesbroek S, Temme EHM, Ocké MC. Can Healthy and Sustainable Dietary Patterns That Fit within Current Dutch Food Habits Be Identified? Nutrients. 2021; 13(4):1176. https://doi.org/10.3390/nu13041176
Chicago/Turabian StyleHeerschop, Samantha N., Sander Biesbroek, Elisabeth H. M. Temme, and Marga C. Ocké. 2021. "Can Healthy and Sustainable Dietary Patterns That Fit within Current Dutch Food Habits Be Identified?" Nutrients 13, no. 4: 1176. https://doi.org/10.3390/nu13041176