Effects of Combined Vitamin K2 and Vitamin D3 Supplementation on Na[18F]F PET/MRI in Patients with Carotid Artery Disease: The INTRICATE Rationale and Trial Design
Abstract
:1. Introduction
2. Study Design
- the first group will receive a daily dose of 400 µg MK-7 and 80 µg D3 and
- the second (i.e., control) group will receive a placebo.
3. Study Population
3.1. Inclusion Criteria
- Asymptomatic carotid artery disease on at least one side with a degree of stenosis > 25% (according to the ECST criteria). If the patient has a symptomatic carotid artery disease on the contra-lateral side, he/she will still be included in the study, if intensified medical treatment for this symptomatic stenosis (e.g., statins, antiplatelet medication) was started ≥6 month before inclusion of the patient. This protocol was chosen in order to assure a stable situation on the plaque(s), which avoids an overspill from this medication on the assumed effects of the supplementation.
- Age older than 18 years.
- Signed informed consent provided.
3.2. Exclusion Criteria
- Antiplatelet or cholesterol lowering medication started within the past 6 months.
- Chronic or paroxysmal atrial fibrillation.
- Already performed or scheduled coronary or carotid revascularization procedure (e.g., stent implantation, coronary artery bypass graft, balloon-dilatation, endarterectomy, angioplasty).
- History of myocardial infarction or stroke.
- Malignant disease (except for treated basal-cell or squamous cell carcinoma).
- Use of vitamin K antagonists treatment.
- A life-expectancy < 1 year.
- Claustrophobia.
- Presence of a pacemaker, intra-cardiac defibrillator, or metallic implant (e.g., vascular clip, neuro-stimulator, cochlear implant, metal splinter in the eye).
- Body weight > 130 kg or body habitus that does not fit into the gantry.
- Pregnancy or wish to become pregnant in the near future.
- Breast feeding.
- (History of) metabolic or gastrointestinal disease.
- Use of vitamin K or D containing supplements or vitamin K-rich foods (e.g., fermented soya).
- Chronic inflammatory disease.
- Systemic treatment or topical treatment likely to interfere with evaluation of the study parameters.
- Corticoid treatment.
- Participation in a clinical study within one month before enrolment in the current study.
4. Study Objectives and Statistical Analyses Plan
4.1. Primary Objective
4.2. Secondary Objectives
- the vitamin supplementation can diminish, halt, or even reverse the development of arterial micro-calcification in the coronary arteries in the context of atherosclerosis as detected by CAC score compared to placebo after 3 months;
- the primary parameter correlates or is able to predict the results of the CAC score;
- the vitamin supplementation can influence MRI parameters such as normalized wall index (i.e., measurement of plaque burden), intra-plaque hemorrhage volume, lipid-rich necrotic core volume, and fibrous cap status;
- the vitamin supplementation can influence US after 3 months of supplementation;
- Na[18F]F uptake in the carotids is associated with US at the end of the study visit;
- the vitamin supplementation is influencing plasma levels of dp-ucMGP after 3 months, in comparison with a placebo, in order to select a possible peripheral marker for vitamin K-status;
- baseline plasma levels of dp-ucMGP can be reliable biomarkers of plaque vulnerability and of its calcified state;
- there is a correlation between serum MK-7 concentrations and the values of the prothrombin time (PT) or the international normalized ratio (INR).
4.3. Statistical Analyses Plan
5. Study Procedures
5.1. Hospital Visit
5.2. Na[18F]F PET/MRI
5.2.1. PET Image Evaluation
5.2.2. MRI Evaluation
5.3. CAC Scan
5.4. US Examination
- gray-scale median of the intima-media thickness;
- gray-scale median of the plaque;
- adventitia-adventitia diameter;
- intima-intima diameter;
- plaque echolucency.
5.5. Laboratory Assessments
- total cholesterol;
- LDL-cholesterol;
- HDL-cholesterol;
- triglycerides;
- creatinine;
- glucose;
- albumin;
- parathyroid hormone;
- calcium;
- phosphate;
- coagulation function (e.g., PT, INR).
6. Randomization, Blinding, and Treatment Allocation
7. Investigational Product
8. Discussion
9. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, R.C.; Leopold, J.A.; Loscalzo, J. Vascular Calcification. Circ. Res. 2006, 99, 1044–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vattikuti, R.; Towler, D.A. Osteogenic regulation of vascular calcification: An early perspective. Am. J. Physiol. Metab. 2004, 286, E686–E696. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T. Ultrastructure and biological function of matrix vesicles in bone mineralization. Histochem. Cell Biol. 2018, 149, 289–304. [Google Scholar] [CrossRef]
- Boulos, N.M.; Gardin, J.M.; Malik, S.; Postley, J.; Wong, N.D. Carotid Plaque Characterization, Stenosis, and Intima-Media Thickness According to Age and Gender in a Large Registry Cohort. Am. J. Cardiol. 2016, 117, 1185–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saba, L.; Yuan, C.; Hatsukami, T.S.; Balu, N.; Qiao, Y.; DeMarco, J.K.; Saam, T.; Moody, A.R.; Li, D.; Matouk, C.C.; et al. Carotid Artery Wall Imaging: Perspective and Guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology. Am. J. Neuroradiol. 2018, 39, E9–E31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucerius, J.; Dijkgraaf, I.; Mottaghy, F.M.; Schurgers, L.J. Target identification for the diagnosis and intervention of vulnerable atherosclerotic plaques beyond 18F-fluorodeoxyglucose positron emission tomography imaging: Promising tracers on the horizon. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 251–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassem, M.; Florea, A.; Mottaghy, F.M.; van Oostenbrugge, R.; Kooi, M.E. Magnetic resonance imaging of carotid plaques: Current status and clinical perspectives. Ann. Transl. Med. 2020, 8, 1266. [Google Scholar] [CrossRef]
- Florea, A.; Morgenroth, A.; Bucerius, J.; Schurgers, L.J.; Mottaghy, F.M. Locking and loading the bullet against micro-calcification. Eur. J. Prev. Cardiol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Dweck, M.R.; Aikawa, E.; Newby, D.E.; Tarkin, J.M.; Rudd, J.H.F.; Narula, J.; Fayad, Z.A. Noninvasive Molecular Imaging of Disease Activity in Atherosclerosis. Circ. Res. 2016, 119, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Price, P.A.; Urist, M.R.; Otawara, Y. Matrix Gla protein, a new γ-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem. Biophys. Res. Commun. 1983, 117, 765–771. [Google Scholar] [CrossRef]
- Luo, G.; Ducy, P.; McKee, M.D.; Pinero, G.J.; Loyer, E.; Behringer, R.R.; Karsenty, G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997, 386, 78–81. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Uitto, J.; Reutelingsperger, C.P. Vitamin K-dependent carboxylation of matrix Gla-protein: A crucial switch to control ectopic mineralization. Trends Mol. Med. 2013, 19, 217–226. [Google Scholar] [CrossRef]
- Price, P.A.; Otsuka, A.A.; Poser, J.W.; Kristaponis, J.; Raman, N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc. Natl. Acad. Sci. USA 1976, 73, 1447–1451. [Google Scholar] [CrossRef] [Green Version]
- Cranenburg, E.C.M.; Vermeer, C.; Koos, R.; Boumans, M.L.; Hackeng, T.M.; Bouwman, F.G.; Kwaijtaal, M.; Brandenburg, V.M.; Ketteler, M.; Schurgers, L.J. The circulating inactive form of matrix Gla protein (ucMGP) as a biomarker for cardiovascular calcification. J. Vasc. Res. 2008, 45, 427–436. [Google Scholar] [CrossRef]
- Ueland, T.; Gullestad, L.; Dahl, C.P.; Aukrust, P.; Aakhus, S.; Solberg, O.G.; Vermeer, C.; Schurgers, L.J. Undercarboxylated matrix Gla protein is associated with indices of heart failure and mortality in symptomatic aortic stenosis. J. Intern. Med. 2010, 268, 483–492. [Google Scholar] [CrossRef]
- Parker, B.D.; Schurgers, L.J.; Brandenburg, V.M.; Christenson, R.H.; Vermeer, C.; Ketteler, M.; Shlipak, M.G.; Whooley, M.A.; Ix, J.H. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: The heart and soul study. Ann. Intern. Med. 2010, 152, 640–648. [Google Scholar] [CrossRef] [Green Version]
- Dalmeijer, G.W.; van der Schouw, Y.T.; Magdeleyns, E.J.; Vermeer, C.; Verschuren, W.M.M.; Boer, J.M.A.; Beulens, J.W.J. Matrix Gla Protein Species and Risk of Cardiovascular Events in Type 2 Diabetic Patients. Diabetes Care 2013, 36, 3766–3771. [Google Scholar] [CrossRef] [Green Version]
- Dalmeijer, G.W.; van der Schouw, Y.T.; Vermeer, C.; Magdeleyns, E.J.; Schurgers, L.J.; Beulens, J.W.J. Circulating matrix Gla protein is associated with coronary artery calcification and vitamin K status in healthy women. J. Nutr. Biochem. 2013, 24, 624–628. [Google Scholar] [CrossRef]
- Liabeuf, S.; Olivier, B.; Vemeer, C.; Theuwissen, E.; Magdeleyns, E.; Aubert, C.; Brazier, M.; Mentaverri, R.; Hartemann, A.; Massy, Z.A. Vascular calcification in patients with type 2 diabetes: The involvement of matrix Gla protein. Cardiovasc. Diabetol. 2014, 13, 85. [Google Scholar] [CrossRef] [Green Version]
- Delanaye, P.; Krzesinski, J.-M.; Warling, X.; Moonen, M.; Smelten, N.; Médart, L.; Pottel, H.; Cavalier, E. Dephosphorylated-uncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol. 2014, 15, 145. [Google Scholar] [CrossRef] [Green Version]
- Venardos, N.; Bennett, D.; Weyant, M.J.; Reece, T.B.; Meng, X.; Fullerton, D.A. Matrix Gla protein regulates calcification of the aortic valve. J. Surg. Res. 2015, 199, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, F.-F.; Drummen, N.E.A.; Schutte, A.E.; Thijs, L.; Jacobs, L.; Petit, T.; Yang, W.-Y.; Smith, W.; Zhang, Z.-Y.; Gu, Y.-M.; et al. Vitamin K Dependent Protection of Renal Function in Multi-ethnic Population Studies. EBioMedicine 2016, 4, 162–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riphagen, I.; Keyzer, C.; Drummen, N.; de Borst, M.; Beulens, J.; Gansevoort, R.; Geleijnse, J.; Muskiet, F.; Navis, G.; Visser, S.; et al. Prevalence and Effects of Functional Vitamin K Insufficiency: The PREVEND Study. Nutrients 2017, 9, 1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Wang, X.-D.; Mernitz, H.; Wallin, R.; Shea, M.K.; Booth, S.L. 9-Cis Retinoic Acid Reduces 1α,25-Dihydroxycholecalciferol-Induced Renal Calcification by Altering Vitamin K-Dependent γ-Carboxylation of Matrix γ-Carboxyglutamic Acid Protein in A/J Male Mice. J. Nutr. 2008, 138, 2337–2341. [Google Scholar] [CrossRef] [Green Version]
- Fraser, J.D.; Price, P.A. Induction of matrix gla protein synthesis during prolonged 1,25-Dihydroxyvitamin D3 treatment of osteosarcoma cells. Calcif. Tissue Int. 1990, 46, 270–279. [Google Scholar] [CrossRef]
- Miyake, N.; Hoshi, K.; Sano, Y.; Kikuchi, K.; Tadano, K.; Koshihara, Y. 1,25-Dihydroxyvitamin D 3 Promotes Vitamin K 2 Metabolism in Human Osteoblasts. Osteoporos. Int. 2001, 12, 680–687. [Google Scholar] [CrossRef]
- Seyama, Y.; Horiuch, M.; Hayashi, M.; Kanke, Y. Effect of vitamin K2 on experimental calcinosis induced by vitamin D2 in rat soft tissue. Int. J. Vitam. Nutr. Res. 1996, 66, 36–38. [Google Scholar]
- Scragg, R.; Stewart, A.W.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Sluyter, J.; Murphy, J.; Khaw, K.-T.; Camargo, C.A. Effect of Monthly High-Dose Vitamin D Supplementation on Cardiovascular Disease in the Vitamin D Assessment Study. JAMA Cardiol. 2017, 2, 608. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Arbour, N.C.; Darwish, H.M.; DeLuca, H.F. Transcriptional control of the osteocalcin gene by 1,25-dihydroxyvitamin D-2 and its 24-epimer in rat osteosarcoma cells. Biochim. Biophys. Acta Gene Struct. Expr. 1995, 1263, 147–153. [Google Scholar] [CrossRef]
- van Ballegooijen, A.J.; Beulens, J.W.J.; Kieneker, L.M.; de Borst, M.H.; Gansevoort, R.T.; Kema, I.P.; Schurgers, L.J.; Vervloet, M.G.; Bakker, S.J.L. Combined low vitamin D and K status amplifies mortality risk: A prospective study. Eur. J. Nutr. 2020. [Google Scholar] [CrossRef]
- Asakura, H.; Myou, S.; Ontachi, Y.; Kato, M.; Saito, M.; Yamazaki, M.; Nakao, S.; Mizutani, T.; Morishita, E. Vitamin K Administration to Elderly Patients with Osteoporosis Induces No Hemostatic Activation, Even in Those with Suspected Vitamin K Deficiency. Osteoporos. Int. 2001, 12, 996–1000. [Google Scholar] [CrossRef]
- Halder, M.; Petsophonsakul, P.; Akbulut, A.C.; Pavlic, A.; Bohan, F.; Anderson, E.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K: Double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int. J. Mol. Sci. 2019, 20, 896. [Google Scholar] [CrossRef] [Green Version]
- Ikari, Y.; Torii, S.; Shioi, A.; Okano, T. Impact of menaquinone-4 supplementation on coronary artery calcification and arterial stiffness: An open label single arm study. Nutr. J. 2016, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mansour, A.G.; Hariri, E.; Daaboul, Y.; Korjian, S.; El Alam, A.; Protogerou, A.D.; Kilany, H.; Karam, A.; Stephan, A.; Bahous, S.A. Vitamin K2 supplementation and arterial stiffness among renal transplant recipients—a single-arm, single-center clinical trial. J. Am. Soc. Hypertens. 2017, 11, 589–597. [Google Scholar] [CrossRef]
- Gast, G.C.M.; de Roos, N.M.; Sluijs, I.; Bots, M.L.; Beulens, J.W.J.; Geleijnse, J.M.; Witteman, J.C.; Grobbee, D.E.; Peeters, P.H.M.; van der Schouw, Y.T. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 504–510. [Google Scholar] [CrossRef]
- Forouhi, N.G.; Menon, R.K.; Sharp, S.J.; Mannan, N.; Timms, P.M.; Martineau, A.R.; Rickard, A.P.; Boucher, B.J.; Chowdhury, T.A.; Griffiths, C.J.; et al. Effects of vitamin D2 or D3 supplementation on glycaemic control and cardiometabolic risk among people at risk of type 2 diabetes: Results of a randomized double-blind placebo-controlled trial. Diabetes, Obes. Metab. 2016, 18, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Mozos, I.; Stoian, D.; Luca, C.T. Crosstalk between Vitamins A, B12, D, K, C, and e Status and Arterial Stiffness. Dis. Markers 2017, 2017. [Google Scholar] [CrossRef]
- Koyama, K.; Ito, A.; Yamamoto, J.; Nishio, T.; Kajikuri, J.; Dohi, Y.; Ohte, N.; Sano, A.; Nakamura, H.; Kumagai, H.; et al. Randomized Controlled Trial of the Effect of Short-term Coadministration of Methylcobalamin and Folate on Serum ADMA Concentration in Patients Receiving Long-term Hemodialysis. Am. J. Kidney Dis. 2010, 55, 1069–1078. [Google Scholar] [CrossRef]
- Omenn, G.S.; Goodman, G.E.; Thornquist, M.D.; Balmes, J.; Cullen, M.R.; Glass, A.; Keogh, J.P.; Meyskens, F.L.; Valanis, B.; Williams, J.H.; et al. Effects of a Combination of Beta Carotene and Vitamin A on Lung Cancer and Cardiovascular Disease. N. Engl. J. Med. 1996, 334, 1150–1155. [Google Scholar] [CrossRef] [Green Version]
Study Procedure | Recruitment (t ≈ −7 Days) | Baseline Visit (t = 0) | End of the Study Visit (t ≈ 3 Months) |
---|---|---|---|
Informed consent | X 1 | ||
Hospital visit | X | X 1 | X 1 |
| X | ||
| X | ||
| X | X 1 | X 1 |
| X | X 1 | X 1 |
| X | X | |
| X | X | |
Blood sampling and laboratory assessments | X 1 | X 1 | |
US examination | X 1 | X 1 | |
Na[18F]F PET/MRI | X 1 | X 1 | |
CAC scan | X 1 | X 1 | |
Randomization | X 1 | ||
Drug distribution | X 1 | ||
Drug count | X 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florea, A.; Kooi, M.E.; Mess, W.; Schurgers, L.J.; Bucerius, J.; Mottaghy, F.M. Effects of Combined Vitamin K2 and Vitamin D3 Supplementation on Na[18F]F PET/MRI in Patients with Carotid Artery Disease: The INTRICATE Rationale and Trial Design. Nutrients 2021, 13, 994. https://doi.org/10.3390/nu13030994
Florea A, Kooi ME, Mess W, Schurgers LJ, Bucerius J, Mottaghy FM. Effects of Combined Vitamin K2 and Vitamin D3 Supplementation on Na[18F]F PET/MRI in Patients with Carotid Artery Disease: The INTRICATE Rationale and Trial Design. Nutrients. 2021; 13(3):994. https://doi.org/10.3390/nu13030994
Chicago/Turabian StyleFlorea, Alexandru, M. Eline Kooi, Werner Mess, Leon J. Schurgers, Jan Bucerius, and Felix M. Mottaghy. 2021. "Effects of Combined Vitamin K2 and Vitamin D3 Supplementation on Na[18F]F PET/MRI in Patients with Carotid Artery Disease: The INTRICATE Rationale and Trial Design" Nutrients 13, no. 3: 994. https://doi.org/10.3390/nu13030994