The Role of Inflammatory Diet and Vitamin D on the Link between Periodontitis and Cognitive Function: A Mediation Analysis in Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Cognitive Assessment
2.3. Periodontal Assessment
2.4. Dietary Inflammatory Index (DII)
2.5. Sociodemographic and Health-Related Variables
2.6. Biochemical Parameters
2.7. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Mediation Analysis
3.2.1. Proinflammatory Diet
3.2.2. Vitamin D Deficit
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Dementia. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 19 October 2020).
- Alzheimer’s Disease International. World Alzheimer Report 2015, The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015; Available online: https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf (accessed on 29 August 2020).
- Wu, Y.-T.; Beiser, A.S.; Breteler, M.M.B.; Fratiglioni, L.; Helmer, C.; Hendrie, H.C.; Honda, H.; Ikram, M.A.; Langa, K.M.; Lobo, A.; et al. The changing prevalence and incidence of dementia over time—Current evidence. Nat. Rev. Neurol. 2017, 13, 327–339. [Google Scholar] [CrossRef]
- Brayne, C.; Davis, D. Making Alzheimer’s and dementia research fit for populations. Lancet 2012, 380, 1441–1443. [Google Scholar] [CrossRef]
- Fang, W.-L.; Jiang, M.-J.; Gu, B.-B.; Wei, Y.-M.; Fan, S.-N.; Liao, W.; Zheng, Y.-Q.; Liao, S.-W.; Xiong, Y.; Li, Y.; et al. Tooth loss as a risk factor for dementia: Systematic review and meta-analysis of 21 observational studies. BMC Psychiatry 2018, 18, 1–11. [Google Scholar] [CrossRef]
- Takeuchi, K.; Ohara, T.; Furuta, M.; Takeshita, T.; Shibata, Y.; Hata, J.; Yoshida, D.; Yamashita, Y.; Ninomiya, T. Tooth loss and risk of dementia in the community: The Hisayama Study. J. Am. Geriatr. Soc. 2017, 65, e95–e100. [Google Scholar] [CrossRef]
- Chen, J.; Ren, C.-J.; Wu, L.; Xia, L.-Y.; Shao, J.; Leng, W.-D.; Zeng, X.-T. Tooth loss is associated with increased risk of dementia and with a dose-response relationship. Front. Aging Neurosci. 2018, 10, 415. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Chen, Y.; van der Sluis, L.W.M.; Schuller, A.A.; Tjakkes, G.-H. White blood cell count mediates the association between periodontal inflammation and cognitive performance measured by digit symbol substitution test among older, U.S. adults. J. Gerontol. Ser. A 2009. [Google Scholar] [CrossRef]
- Demmer, R.T.; Norby, F.L.; Lakshminarayan, K.; Walker, K.A.; Pankow, J.S.; Folsom, A.R.; Mosley, T.; Beck, J.; Lutsey, P.L. Periodontal disease and incident dementia: The Atherosclerosis Risk in Communities Study (ARIC). Neurology. 2020, 95, 1660–1671. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Beydoun, H.A.; Hossain, S.; El-Hajj, Z.W.; Weiss, J.; Zonderman, A.B. Clinical and bacterial markers of periodontitis and their association with incident all-cause and alzheimer’s disease dementia in a large national survey. J. Alzheimer’s Dis. 2020, 75, 157–172. [Google Scholar] [CrossRef]
- Beydoun, M.A.; Beydoun, H.A.; Weiss, J.; Hossain, S.; El-Hajj, Z.W.; Zonderman, A.B. Helicobacter pylori, periodontal pathogens, and their interactive association with incident all-cause and Alzheimer’s disease dementia in a large national survey. Mol. Psychiatry 2020, 1–16. [Google Scholar] [CrossRef]
- Kim, D.-H.; Jeong, S.-N.; Lee, J.-H. Severe periodontitis with tooth loss as a modifiable risk factor for the development of Alzheimer, vascular, and mixed dementia: National Health Insurance Service-National Health Screening Retrospective Cohort 2002–2015. J. Periodontal Implant. Sci. 2020, 50, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, N.-S.; Chung, C.-H.; Yeh, C.-B.; Huang, R.-Y.; Yuh, D.-Y.; Huang, S.-Y.; Lu, R.-B.; Chang, H.-A.; Kao, Y.-C.; Chiang, W.-S.; et al. Are chronic periodontitis and gingivitis associated with dementia? A nationwide, retrospective, matched-cohort study in Taiwan. Neuroepidemiology 2016, 47, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Ebersole, J.L.; Dawson, D.; Emecen-Huja, P.; Nagarajan, R.; Howard, K.; Grady, M.E.; Thompson, K.; Peyyala, R.; Al-Attar, A.; Lethbridge, K.; et al. The periodontal war: Microbes and immunity. Periodontology 2000 2017, 75, 52–115. [Google Scholar] [CrossRef] [PubMed]
- Slots, J. Periodontitis: Facts, fallacies and the future. Periodontology 2000 2017, 75, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef]
- Darveau, R.P. Periodontitis: A polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 2010, 8, 481–490. [Google Scholar] [CrossRef]
- Botelho, J.; Machado, V.; Proença, L.; Bellini, D.H.; Chambrone, L.; Alcoforado, G.; Mendes, J.J. The impact of nonsurgical periodontal treatment on oral health-related quality of life: A systematic review and meta-analysis. Clin. Oral Investig. 2020, 24, 585–596. [Google Scholar] [CrossRef]
- Tonsekar, P.P.; Jiang, S.S.; Yue, G. Periodontal disease, tooth loss and dementia: Is there a link? A systematic review. Gerodontology 2017, 34, 151–163. [Google Scholar] [CrossRef]
- Maldonado, A.; Laugisch, O.; Bürgin, W.; Sculean, A.; Eick, S. Clinical periodontal variables in patients with and without de-mentia—A systematic review and meta-analysis. Clin Oral Investig. 2018, 22, 2463–2474. [Google Scholar] [CrossRef]
- Leigh, S.-J.; Morris, M.J. Diet, inflammation and the gut microbiome: Mechanisms for obesity-associated cognitive impairment. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165767. [Google Scholar] [CrossRef]
- Moretti, R.; Peinkhofer, C. B Vitamins and fatty acids: What do they share with small vessel disease-related dementia? Int. J. Mol. Sci. 2019, 20, 5797. [Google Scholar] [CrossRef]
- Hayden, K.M.; Beavers, D.P.; Steck, S.E.; Hebert, J.R.; Tabung, F.K.; Shivappa, N.; Casanova, R.; Manson, J.E.; Padula, C.B.; Salmoirago-Blotcher, E.; et al. The association between an inflammatory diet and global cognitive function and incident dementia in older women: The Women’s Health Initiative Memory Study. Alzheimer’s Dement. 2017, 13, 1187–1196. [Google Scholar] [CrossRef]
- Ozawa, M.; Shipley, M.; Kivimaki, M.; Singh-Manoux, A.; Brunner, E.J. Dietary pattern, inflammation and cognitive decline: The Whitehall II prospective cohort study. Clin. Nutr. 2017, 36, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Woelber, J.P.; Bremer, K.; Vach, K.; König, D.; Hellwig, E.; Ratka-Krüger, P.; Al-Ahmad, A.; Tennert, C. An oral health optimized diet can reduce gingival and periodontal inflammation in humans—A randomized controlled pilot study. BMC Oral Health 2016, 17, 1–8. [Google Scholar] [CrossRef]
- Zhao, C.; Tsapanou, A.; Manly, J.; Schupf, N.; Brickman, A.M.; Gu, Y. Vitamin D intake is associated with dementia risk in the Washington Heights-Inwood Columbia Aging Project (WHICAP). Alzheimer’s Dement. 2020, 16. [Google Scholar] [CrossRef]
- Soysal, P.; Dokuzlar, O.; Erken, N.; Günay, F.S.D.; Isik, A.T. The relationship between dementia subtypes and nutritional parameters in older adults. J. Am. Med. Dir. Assoc. 2020, 21, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S.; Taimuri, U.; Basnan, S.A.; Ai-Orabi, W.K.; Awadallah, A.; Almowald, F.; Hazazi, A. Low vitamin d and its association with cognitive impairment and dementia. J. Aging Res. 2020, 2020, 6097820. [Google Scholar] [CrossRef]
- Machado, V.; Lobo, S.; Proença, L.; Mendes, J.J.; Botelho, J. Vitamin D and periodontitis: A systematic review and meta-analysis. Nutrients 2020, 12, 2177. [Google Scholar] [CrossRef]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of obser-vational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 2007, 4, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Brody, D.J.; Kramarow, E.A.; Taylor, C.A.; McGuire, L.C. Cognitive performance in adults aged 60 and Over: National Health and Nutrition Examination Survey, 2011–2014. Natl. Health. Stat. Rep. 2019, 126, 1–23. [Google Scholar]
- Moms, J.C.; Heyman, A.; Mohs, R.C.; Hughes, J.P.; Van Belle, G.; Fillenbaum, G.; Mellits, E.D.; Clark, C. The consortium to establish a registry for alzheimer’s disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 1989, 39, 1159. [Google Scholar] [CrossRef]
- Strauss, E.; Sherman, E.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms and Commentary; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Salthouse, T.A. What do adult age differences in the digit symbol substitution test reflect? J. Gerontol. 1992, 47, P121–P128. [Google Scholar] [CrossRef]
- Dye, B.A.; Thornton-Evans, G. A Brief history of national surveillance efforts for periodontal disease in the United States. J. Periodontol. 2007, 78, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Eke, P.I.; Page, R.C.; Wei, L.; Thornton-Evans, G.; Genco, R.J. Update of the case definitions for population-based surveillance of periodontitis. J. Periodontol. 2012, 83, 1449–1454. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Hébert, J.R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014, 17, 1689–1696. [Google Scholar] [CrossRef]
- Muñoz Aguilera, E.; Leira, Y.; Miró Catalina, Q.; Orlandi, M.; Czesnikiewicz-Guzik, M.; Guzik, T.J.; Hingorani, A.D.; Nart, J.; D’Aiuto, F. Is systemic inflammation a missing link between periodontitis and hypertension? Results from two large populations-based surveys. J. Intern. Med. 2020. [Google Scholar] [CrossRef]
- Beck, J.D.; Moss, K.L.; Morelli, T.; Offenbacher, S. Periodontal profile class is associated with prevalent diabetes, coronary heart disease, stroke, and systemic markers of C-reactive protein and interleukin-6. J. Periodontol. 2018, 89, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, Y.; Nickel, J.C.; Iwasaki, L.R.; Duan, P.; Simmer-Beck, M.; Brown, L. Gender differences in the association of periodontitis and type 2 diabetes. Int. Dent. J. 2018, 68, 433–440. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simmone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Kopelman, P.G. Obesity as a medical problem. Nature 2000, 404, 635–643. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention. MEC Laboratory Procedures Manual; Center for Disease Control and Prevention: Atlanta, GA, USA, 2016. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_15_16/2016_MEC_Laboratory_Procedures_Manual.pdf (accessed on 30 August 2020).
- Center for Disease Control and Prevention. NHANES Laboratory Procedures Manual; Center for Disease Control and Prevention: Atlanta, GA, USA, 2009. Available online: https://www.cdc.gov/nchs/data/nhanes/nhanes_09_10/lab.pdf (accessed on 30 August 2020).
- Botelho, J.; Machado, V.; Proença, L.; Mendes, J.J. The 2018 periodontitis case definition improves accuracy performance of full-mouth partial diagnostic protocols. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Botelho, J.; Lyra, P.; Proença, L.; Godinho, C.; Mendes, J.J.; Machado, V. Relationship between blood and standard biochemistry levels with periodontitis in parkinson’s disease patients: Data from the NHANES 2011–2012. J. Pers. Med. 2020, 10, 69. [Google Scholar] [CrossRef]
- Leira, Y.; Carballo, Á.; Orlandi, M.; Aldrey, J.M.; Pías-Peleteiro, J.M.; Moreno, F.; Vázquez-Vázquez, L.; Campos, F.; D’Aiuto, F.; Castillo, J.; et al. Periodontitis and systemic markers of neurodegeneration: A case–control study. J. Clin. Periodontol. 2020, 47, 561–571. [Google Scholar] [CrossRef]
- Cavicchia, P.P.; Steck, S.E.; Hurley, T.G.; Hussey, J.R.; Ma, Y.; Ockene, I.S.; Hébert, J.R. A new dietary inflammatory index predicts interval changes in serum high-sensitivity c-reactive protein. J. Nutr. 2009, 139, 2365–2372. [Google Scholar] [CrossRef]
- Carson, S.J.; Burns, J. Impact of smoking on tooth loss in adults. Evid. Based Dent. 2016, 17, 73–74. [Google Scholar] [CrossRef]
- Niegawa, T.; Takitani, K.; Takaya, R.; Ishiro, M.; Kuroyanagi, Y.; Okasora, K.; Minami, Y.; Matsuda, T.; Tamai, H. Evaluation of uric acid levels, thyroid function, and anthropometric parameters in Japanese children with Down syndrome. J. Clin. Biochem. Nutr. 2018, 62, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Shivappa, N.; Hebert, J.R.; Marcos, A.; Diaz, L.E.; Gomez, S.; Nova, E.; Michels, N.; Arouca, A.; González-Gil, E.; Frederic, G.; et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol. Nutr. Food Res. 2017, 61, 1–23. [Google Scholar] [CrossRef]
- Ramallal, R.; Toledo, E.; Martínez, J.A.; Shivappa, N.; Hébert, J.R.; Martínez-González, M.A.; Ruiz-Canela, M. Inflammatory potential of diet, weight gain, and incidence of overweight/obesity: The SUN cohort. Obesity 2017, 25, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Neufcourt, L.; Assmann, K.E.; Fezeu, L.; Touvier, M.; Graffouillère, L.; Shivappa, N.; Hebert, J.R.; Wirth, M.D.; Hercberg, S.; Galan, P.; et al. Prospective association between the dietary inflammatory index and metabolic syndrome: Findings from the SU.VI.MAX study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 988–996. [Google Scholar] [CrossRef]
- Kheirouri, S.; Alizadeh, M. Dietary inflammatory potential and the risk of neurodegenerative diseases in adults. Epidemiol. Rev. 2019, 41, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Vasefi, M.; Hudson, M.; Ghaboolian-Zare, E. Diet Associated with Inflammation and Alzheimer’s Disease. J. Alzheimer’s Dis. Rep. 2019, 3, 299–309. [Google Scholar] [CrossRef]
- Botelho, J.; Machado, V.; Proença, L.; Delgado, A.S.; Mendes, J.J. Vitamin D deficiency and oral Health: A comprehensive review. Nutrients 2020, 12, 1471. [Google Scholar] [CrossRef]
- Etgen, T.; Chonchol, M.; Förstl, H.; Sander, D. Chronic kidney disease and cognitive impairment: A Systematic review and meta-analysis. Am. J. Nephrol. 2012, 35, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Balion, C.; Griffith, L.E.; Strifler, L.; Henderson, M.; Patterson, C.; Heckman, G.; Llewellyn, D.J.; Raina, P. Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology 2012, 79, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Landel, V.; Annweiler, C.; Millet, P.; Morello, M.; Féron, F. Vitamin D, cognition and alzheimer’s Disease: The therapeutic benefit is in the d-tails. J. Alzheimer’s Dis. 2016, 53, 419–444. [Google Scholar] [CrossRef]
- Tran, D.T.; Gay, I.; Du, X.L.; Fu, Y.; Bebermeyer, R.D.; Neumann, A.S.; Streckfus, C.; Chan, W.; Walji, M.F. Assessing periodontitis in populations: A systematic review of the validity of partial-mouth examination protocols. J. Clin. Periodontol. 2013, 40, 1064–1071. [Google Scholar] [CrossRef]
- Eke, P.; Thornton-Evans, G.; Wei, L.; Borgnakke, W.; Dye, B. Accuracy of NHANES periodontal examination protocols. J. Dent. Res. 2010, 89, 1208–1213. [Google Scholar] [CrossRef]
- Deng, F.E.; Shivappa, N.; Tang, Y.; Mann, J.R.; Hebert, J.R. Association between diet-related inflammation, all-cause, all-cancer, and cardiovascular disease mortality, with special focus on prediabetics: Findings from NHANES III. Eur. J. Nutr. 2017, 56, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Kotsakis, G.A.; Chrepa, V.; Shivappa, N.; Wirth, M.; Hébert, J.; Koyanagi, A.; Tyrovolas, S. Diet-borne systemic inflammation is associated with prevalent tooth loss. Clin. Nutr. 2018, 37, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
No Periodontitis (n = 625) | Periodontitis (n = 1437) | p-Value | |
---|---|---|---|
Age (years), mean (SD) | 68.74 (0.27) | 69.0 (0.18) | 0.395 |
Gender, n (%) | |||
Males | 228 (36.5) | 816 (56.8) | <0.001 |
Females | 397 (63.5) | 621 (43.2) | |
Race/ethnicity, n (%) | |||
Mexican American | 50 (8.0) | 162 (11.2) | <0.001 |
Non-Hispanic White | 46 (7.3) | 173 (12.0) | |
Non-Hispanic Black | 373 (59.7) | 559 (38.9) | |
Other Hispanic | 92 (14.7) | 371 (25.8) | |
Other race | 64 (10.2) | 172 (12) | |
Education level, n (%) | |||
<High school | 39 (6.2) | 215 (14.9) | <0.001 |
High school | 179 (28.6) | 523 (36.3) | |
>High school | 407 (65.1) | 699 (48.6) | |
Smoking status, n (%) | |||
Never | 390 (62.4) | 687 (48.5) | |
Former | 204 (32.6) | 530 (36.9) | |
Current | 31 (5.0) | 209 (14.6) | |
BMI (kg/m2), mean (SD) | 28.8 (0.24) | 28.7 (0.16) | 0.408 |
Family income/poverty ratio, mean (SD) | 2.98 (1.69) | 2.40 (1.62) | <0.001 |
Marital status | |||
Single | 39 (6.2) | 94 (6.5) | 0.012 |
Married/living with a partner | 404 (64.6) | 831 (57.8) | |
Divorced/separated/widowed | 182 (29.1) | 512 (35.6) | |
Chronic medical conditions, mean (SD) | 0.73 (0.44) | 0.75 (0.43) | 0.351 |
Diabetes, n (%) | 99 (15.8) | 340 (26.7) | 0.001 |
Hypertension, n (%) | 159 (25.5) | 439 (30.9) | 0.014 |
Minutes of sedentarism (min), mean (SD) | 435.4 (577.4) | 462.2 (895.7) | <0.001 |
Cognitive function, mean (SD) | |||
CERAD word learning | 19.2 (6.1) | 17.2 (6.8) | <0.001 |
CERAD delayed recall | 6.2 (2.6) | 5.4 (2.7) | <0.001 |
Animal fluency test | 17.1 (6.7) | 15.0 (6.9) | <0.001 |
DSST | 50.2 (20.4) | 40.9 (21.1) | <0.001 |
Periodontal measurements, mean (SD) | |||
PD (mm) | 1.13 (0.32) | 1.87 (0.80) | <0.001 |
AL (mm) | 1.34 (0.42) | 2.51 (1.23) | <0.001 |
Missing teeth | 6.9 (7.3) | 9.1 (7.2) | <0.001 |
DII, mean (SD) | −0.32 (1.81) | −0.05 (1.80) | <0.001 |
Biochemical parameters, mean (SD) | |||
Vitamin D (nmol/L) | 82.92 (30.47) | 72.87 (30.67) | <0.001 |
WBC (109/L) | 6.57 (1.79) | 7.02 (2.56) | <0.001 |
HDL (mg/dL) | 57.57 (16.29) | 55.20 (16.22) | <0.001 |
LDL (mg/dL) | 112.00 (37.27) | 110.07 (36.49) | 0.438 |
Total cholesterol (mg/dL) | 193.59 (42.49) | 190.68 (41.06) | 0.065 |
Triglycerides (mg/dL) | 118.07 (63.25) | 121.25 (73.92) | 0.505 |
Exposure: PD and Outcome: CERAD Word Learning Test | ||||||
---|---|---|---|---|---|---|
Mediator | Exposure to Mediator | Mediator to Outcome | Direct Effect | Mediated (Indirect) Effect | Total Effect (Exposure to Outcome) | Proportion Mediated (%) |
DII | 0.21 (0.08) ** | −0.37 (0.11) *** | −0.41 (0.25) | −0.08 (0.04) * | −0.48 (0.25) | 16.2 |
Vitamin D (nmol/L) | −6.24 (1.29) *** | 0.01 (0.01) | −0.36 (0.27) | −0.06 (0.04) | −0.42 (0.27) | - |
Exposure: AL and Outcome: CERAD Word Learning Test | ||||||
Mediator | Exposure to Mediator | Mediator to Outcome | Direct Effect | Mediated (Indirect) Effect | Total Effect (Exposure to Outcome) | Proportion Mediated (%) |
DII | 0.14 (0.05) ** | −0.37 (0.11) *** | −0.20 (0.17) | −0.05 (0.02) * | −0.26 (0.17) | 19.9 |
Vitamin D (nmol/L) | −3.80 (0.84) *** | 0.05 (0.03) | −0.24 (0.18) | −0.04 (0.03) | −0.28 (0.18) | - |
Exposure: PD and Outcome: CERAD Delayed Recall Test | ||||||
---|---|---|---|---|---|---|
Mediator | Exposure to Mediator | Mediator to Outcome | Direct Effect | Mediated (Indirect) Effect | Total Effect (Exposure to Outcome) | Proportion Mediated (%) |
DII | 0.21 (0.08) ** | −0.13 (0.05) *** | −0.10 (0.11) | −0.03 (0.01) * | −0.12 (0.11) | 22.8 |
Vitamin D (nmol/L) | −6.24 (1.29) *** | 0.01 (0.00) * | −0.06 (0.11) | −0.05 (0.02) * | −0.11 (0.11) | 73.2 |
Exposure: AL and Outcome: Delayed Recall Test | ||||||
Mediator | Exposure to Mediator | Mediator to Outcome | Direct Effect | Mediated (Indirect) Effect | Total Effect (Exposure to Outcome) | Proportion Mediated (%) |
DII | 0.14 (0.05) ** | −0.13 (0.05) ** | −0.03 (0.07) | −0.02 (0.01) * | −0.05 (0.07) | 36.4 |
Vitamin D (nmol/L) | −3.80 (0.84) *** | 0.01 (0.00) * | −0.04 (0.07) | −0.03 (0.01) * | −0.06 (0.07) | 63.3 |
Exposure: PD and Outcome: Animal Fluency Test | ||||||
---|---|---|---|---|---|---|
Mediator | Exposure to Mediator | Mediator to Outcome | Direct Effect | Mediated (Indirect) Effect | Total Effect (Exposure to Outcome) | Proportion Mediated (%) |
DII | 0.21 (0.08) ** | −0.46 (0.11) *** | −0.49 (0.27) | −0.10 (0.05) * | −0.58 (0.27) * | 16.7 |
Vitamin D (nmol/L) | −6.24 (1.29) *** | 0.01 (0.01) * | −0.42 (0.28) | −0.08 (0.05) * | −0.51 (0.28) | 12.2 |
Exposure: AL and Outcome: Animal Fluency Test | ||||||
Mediator | Exposure to Mediator | Mediator to Outcome | Direct Effect | Mediated (Indirect) Effect | Total Effect (Exposure to Outcome) | Proportion Mediated (%) |
DII | 0.14 (0.05) ** | −0.46 (0.11) *** | −0.32 (0.18) | −0.07 (0.03) * | −0.39 (0.18) * | 16.5 |
Vitamin D (nmol/L) | −3.80 (0.84) *** | 0.01 (0.01) | −0.34 (0.18) | −0.05 (0.03) | −0.39 (0.18) * | - |
Exposure: PD and Outcome: DSST | ||||||
---|---|---|---|---|---|---|
Mediator | Exposure to Mediator | Mediator to Outcome | Direct Effect | Mediated (Indirect) Effect | Total Effect (Exposure to Outcome) | Proportion Mediated (%) |
DII | 0.21 (0.08) ** | −1.70 (0.30) *** | −3.23 (0.72) *** | −0.36 (0.16) * | −3.24 (0.72) *** | 11.0 |
Vitamin D (nmol/L) | −6.24 (1.29) *** | 0.06 (0.02) *** | −3.64 (0.76) *** | −0.40 (0.15) * | −4.03 (0.76) *** | 9.3 |
Exposure: AL and Outcome: DSST | ||||||
Mediator | Exposure to Mediator | Mediator to Outcome | Direct Effect | Mediated (Indirect) Effect | Total Effect (Exposure to Outcome) | Proportion Mediated (%) |
DII | 0.14 (0.05) ** | −1.69 (0.30) *** | −2.33 (0.48) *** | −0.24 (0.10) * | −2.57 (0.48) *** | 9.2 |
Vitamin D (nmol/L) | −3.80 (0.84) *** | 0.06 (0.02) *** | −2.56 (0.50) *** | −0.24 (0.09) * | −2.80 (0.49) *** | 8.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botelho, J.; Leira, Y.; Viana, J.; Machado, V.; Lyra, P.; Aldrey, J.M.; Pías-Peleteiro, J.M.; Blanco, J.; Sobrino, T.; Mendes, J.J. The Role of Inflammatory Diet and Vitamin D on the Link between Periodontitis and Cognitive Function: A Mediation Analysis in Older Adults. Nutrients 2021, 13, 924. https://doi.org/10.3390/nu13030924
Botelho J, Leira Y, Viana J, Machado V, Lyra P, Aldrey JM, Pías-Peleteiro JM, Blanco J, Sobrino T, Mendes JJ. The Role of Inflammatory Diet and Vitamin D on the Link between Periodontitis and Cognitive Function: A Mediation Analysis in Older Adults. Nutrients. 2021; 13(3):924. https://doi.org/10.3390/nu13030924
Chicago/Turabian StyleBotelho, João, Yago Leira, João Viana, Vanessa Machado, Patrícia Lyra, José Manuel Aldrey, Juan Manuel Pías-Peleteiro, Juan Blanco, Tomás Sobrino, and José João Mendes. 2021. "The Role of Inflammatory Diet and Vitamin D on the Link between Periodontitis and Cognitive Function: A Mediation Analysis in Older Adults" Nutrients 13, no. 3: 924. https://doi.org/10.3390/nu13030924
APA StyleBotelho, J., Leira, Y., Viana, J., Machado, V., Lyra, P., Aldrey, J. M., Pías-Peleteiro, J. M., Blanco, J., Sobrino, T., & Mendes, J. J. (2021). The Role of Inflammatory Diet and Vitamin D on the Link between Periodontitis and Cognitive Function: A Mediation Analysis in Older Adults. Nutrients, 13(3), 924. https://doi.org/10.3390/nu13030924