The Impact of Changes in the Intake of Fiber and Antioxidants on the Development of Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. Assessment of Dietary Intake
2.3. Assessment of Baseline Health Status and Laboratory Data
2.4. Spirometry
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS. Med. 2006, 3, e442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Criner, G.J.; Frith, P.; Halpin, D.M.G.; Han, M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: The GOLD science committee report 2019. Eur. Respir. J. 2019, 53, 1900164. [Google Scholar] [CrossRef]
- Davis, R.M.; Novotny, T.E. The epidemiology of cigarette smoking and its impact on chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 1989, 140 Pt 2, S82–S84. [Google Scholar] [CrossRef]
- Burrows, B.; Knudson, R.J.; Cline, M.G.; Lebowitz, M.D. Quantitative relationships between cigarette smoking and ventilatory function. Am. Rev. Respir. Dis. 1989, 115, 195–205. [Google Scholar]
- Fletcher, C.; Peto, R. The natural history of chronic airflow obstruction. Br. Med. J. 1977, 1, 1645–1648. [Google Scholar] [CrossRef] [Green Version]
- Hancock, D.B.; Eijgelsheim, M.; Wilk, J.B.; Gharib, S.A.; Loehr, L.R.; Marciante, K.D.; Franceschini, N.; van Durme, Y.M.; Chen, T.H.; Barr, R.G.; et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 2010, 42, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aymerich, J.; Lange, P.; Benet, M.; Schnohr, P.; Anto, J.M. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: A population-based cohort study. Am. J. Respir. Crit. Care. Med. 2007, 175, 458–463. [Google Scholar] [CrossRef]
- Bentley, A.R.; Kritchevsky, S.B.; Harris, T.B.; Holvoet, P.; Jensen, R.L.; Newman, A.B.; Lee, J.S.; Yende, S.; Bauer, D.; Cassano, P.A.; et al. Dietary antioxidants and forced expiratory volume in 1 s decline: The Health, Aging and Body Composition study. Eur. Respir. J. 2012, 39, 979–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.; Camargo, C.A., Jr.; Varraso, R.; Paik, D.C.; Willett, W.C.; Barr, R.G. Consumption of cured meats and prospective risk of chronic obstructive pulmonary disease in women. Am. J. Clin. Nutr. 2008, 87, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Varraso, R.; Fung, T.T.; Hu, F.B.; Willett, W.; Camargo, C.A., Jr. Prospective study of dietary patterns and chronic obstructive pulmonary disease among US men. Thorax 2007, 62, 786–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, S.O.; Jameson, K.A.; Syddall, H.E.; Aihie Sayer, A.; Dennison, E.M.; Cooper, C.; Robinson, S.M.; Hertfordshire Cohort Study Group. The relationship of dietary patterns with adult lung function and COPD. Eur. Respir. J. 2010, 36, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Kan, H.; Stevens, J.; Heiss, G.; Rose, K.M.; London, S.J. Dietary fiber, lung function, and chronic obstructive pulmonary disease in the atherosclerosis risk in communities study. Am. J. Epidemiol. 2008, 167, 570–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varraso, R.; Willett, W.C.; Camargo, C.A., Jr. Prospective study of dietary fiber and risk of chronic obstructive pulmonary disease among US women and men. Am. J. Epidemiol. 2010, 171, 776–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, P.F.; Shu, L.; Si, C.J.; Zhang, X.Y.; Yu, X.L.; Gao, W. Dietary Patterns and Chronic Obstructive Pulmonary Disease: A Meta-analysis. COPD J. Chronic Obstr. Pulm. Dis. 2016, 13, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.Y.; Shin, M.H.; Lee, S.H.; Kim, J.E.; Lee, H.S.; Cho, J.S.; Kim, H.Y. The development of food frequency questionnaire for nutrition assessment in adults. In Proceedings of the Korean Society of Health Promotion Conference, Seoul, Korea, 19 May 2007; Korean Society of Health Promotion: Seoul, Korea. [Google Scholar]
- The Korean Nutrition Society. Dietary Reference Intakes for Koreans, 1st ed.; The Korean Nutrition Society: Seoul, Korea, 2010; pp. 520–524. [Google Scholar]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.K.; Park, D.; Lee, J.O. Normal predictive values of spirometry in Korean population. Tuber. Resp. Dis. 2005, 58, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Haboubi, N. Assessment and management of nutrition in older people and its importance to health. Clin. Interv. Aging. 2010, 5, 207–216. [Google Scholar] [PubMed] [Green Version]
- Leslie, W.; Hankey, C. Aging, Nutritional Status and Health. Healthcare 2015, 3, 648–658. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health and Welfare; Korea Centers for Disease Control and Prevention. Korea Health Statistics 2011: Korea National Health and Nutrition Examination Survey (KNHANES V-2). 2012. Available online: http://knhanes.cdc.go.kr/ (accessed on 31 January 2013).
- Zhu, K.; Devine, A.; Suleska, A.; Tan, C.Y.; Toh, C.Z.; Kerr, D.; Prince, R.L. Adequacy and change in nutrient and food intakes with aging in a seven-year cohort study in elderly women. J. Nutr. Health. Aging. 2010, 14, 723–729. [Google Scholar] [CrossRef]
- Power, S.E.; Jeffery, I.B.; Ross, R.P.; Stanton, C.; O’Toole, P.W.; O’Connor, E.M.; Fitzgerald, G.F. Food and nutrient intake of Irish community-dwelling elderly subjects: Who is at nutritional risk? J. Nutr. Health. Aging. 2014, 18, 561–572. [Google Scholar] [CrossRef]
- Volkert, D.; Kreuel, K.; Heseker, H.; Stehle, P. Energy and nutrient intake of young-old, old-old and very-old elderly in Germany. Eur. J. Clin. Nutr. 2004, 58, 1190–1200. [Google Scholar] [CrossRef] [Green Version]
- Elmadfa, I.; Meyer, A.; Nowak, V.; Hasenegger, V.; Putz, P.; Verstraeten, R.; Remaut-DeWinter, A.M.; Kolsteren, P.; Dostálová, J.; Dlouhý, P.; et al. European Nutrition and Health Report 2009. Ann. Nutr. Metab. 2009, 55 (Suppl. 2), 1–40. [Google Scholar]
- Molloy, A.M.; Scott, J.M. Folates and prevention of disease. Public Health Nutr. 2001, 4, 601–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013, 347, f6879. [Google Scholar] [CrossRef] [Green Version]
- Ye, E.Q.; Chacko, S.A.; Chou, E.L.; Kugizaki, M.; Liu, S. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J. Nutr. 2012, 142, 1304–1313. [Google Scholar] [CrossRef]
- Kunzmann, A.T.; Coleman, H.G.; Huang, W.Y.; Kitahara, C.M.; Cantwell, M.M.; Berndt, S.I. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am. J. Clin. Nutr. 2015, 102, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, J.S.; Goodwin, J.M.; Garry, P.J. Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA 1983, 249, 2917–2921. [Google Scholar] [CrossRef]
- Romieu, I. Nutrition and lung health. Int. J. Tuberc. Lung. Dis. 2005, 9, 362–374. [Google Scholar] [PubMed]
- Gan, W.Q.; Man, S.F.; Senthilselvan, A.; Sin, D.D. Association between chronic obstructive pulmonary disease and systemic inflammation: A systematic review and a meta-analysis. Thorax 2004, 59, 574–580. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.F.; Kao, T.W.; Wang, C.C.; Peng, T.C.; Chang, Y.W.; Chen, W.L. Serum white blood cell count and pulmonary function test are negatively associated. Acta Clin. Belg. 2015, 70, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Rios-Covian, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de Los Reyes-Gavilan, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly, Y.M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trompette, A.; Gollwitzer, E.S.; Yadava, K.; Sichelstiel, A.K.; Sprenger, N.; Ngom-Bru, C.; Blanchard, C.; Junt, T.; Nicod, L.P.; Harris, N.L.; et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 2014, 20, 159–166. [Google Scholar] [CrossRef]
- Ahmad, A.; Shameem, M.; Husain, Q. Altered oxidant-antioxidant levels in the disease prognosis of chronic obstructive pulmonary disease. Int. J. Tuberc. Lung. Dis. 2013, 17, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- World Health Orginization. Ambient Air Pollution: A global Assessment of Exposure and Burden of Disease. 2016. Available online: https://apps.who.int/iris/rest/bitstreams/1061179/retrieve (accessed on 5 May 2020).
- Sargeant, L.A.; Jaeckel, A.; Wareham, N.J. Interaction of vitamin C with the relation between smoking and obstructive airways disease in EPIC Norfolk. European Prospective Investigation into Cancer and Nutrition. Eur. Respir. J. 2000, 16, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Dallongeville, J.; Marecaux, N.; Fruchart, J.C.; Amouyel, P. Cigarette smoking is associated with unhealthy patterns of nutrient intake: A meta-analysis. J. Nutr. 1998, 128, 1450–1457. [Google Scholar] [CrossRef] [Green Version]
- Wysokinski, A.; Sobow, T.; Kloszewska, I.; Kostka, T. Mechanisms of the anorexia of aging—A review. Age 2015, 37, 9821. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, A.A.M.; van Lieshout, L.E.L.M.; van den Heuvel, E.G.H.M.; Matthys, C.; Péter, S.; de Groot, L.C.P.G.M. Conventional foods, followed by dietary supplements and fortified foods, are the key sources of vitamin D, vitamin B6, and selenium intake in Dutch participants of the NU-AGE study. Nutr. Res. 2016, 36, 1171–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocké, M.C.; Buurma-Rethans, E.J.M.; de Boer, E.J.; Wilson-van den Hooven, C.; Etemad-Ghameshlou, Z.; Drijvers, J.J.M.M.; van Rossum, C.T.M. Diet of Community-Dwelling Older Adults: Dutch National Food Consumption Survey Older Adults 2010–2012; National Institute for Public Health, Sport and the Environment: Bilthoven, The Netherlands, 2013. [Google Scholar]
- Tabak, C.; Smit, H.A.; Heederik, D.; Ocke, M.C.; Kromhout, D. Diet and chronic obstructive pulmonary disease: Independent beneficial effects of fruits, whole grains, and alcohol (the MORGEN study). Clin. Exp. Allergy 2001, 31, 747–755. [Google Scholar] [CrossRef]
- Carey, I.M.; Strachan, D.P.; Cook, D.G. Effects of changes in fresh fruit consumption on ventilatory function in healthy British adults. Am. J. Respir. Crit. Care. Med. 1998, 158, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Kaluza, J.; Larsson, S.C.; Orsini, N.; Linden, A.; Wolk, A. Fruit and vegetable consumption and risk of COPD: A prospective cohort study of men. Thorax 2017, 72, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Walda, I.C.; Tabak, C.; Smit, H.A.; Rasanen, L.; Fidanza, F.; Menotti, A.; Nissinen, A.; Feskens, E.J.; Kromhout, D. Diet and 20-year chronic obstructive pulmonary disease mortality in middle-aged men from three European countries. Eur. J. Clin. Nutr. 2002, 56, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawal, G.; Yadav, S. Nutrition in chronic obstructive pulmonary disease: A review. J. Transl. Int. Med. 2015, 3, 151–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | 2012 | 2017 | |||
---|---|---|---|---|---|
Total n = 1439 | Total n = 1439 | Airflow Limitation (+) n = 48 | Airflow Limitation (−) n = 1391 | p-Value * | |
Males, n (%) | 517 (35.93) | 517(35.93) | 41 (85.42) | 476 (34.22) | <0.001 |
Age, years | 52.53 (0.21) | 57.51 (0.21) | 64.10 (1.19) | 57.28 (0.21) | <0.001 |
BMI, kg/m3, n (%) | 23.26 (0.08) | 23.27 (0.08) | 24.38 (0.39) | 23.23 (0.08) | 0.008 |
AC, cm | 81.23 (0.24) | 82.46 (0.23) | 87.75 (1.19) | 82.25 (0.24) | <0.001 |
Smoking history, n (%) | <0.001 | ||||
Nonsmoker | 976 (67.82) | 974 (67.69) | 11 (22.92) | 963 (69.23) | |
Former smoker | 278 (19.32) | 314 (21.82) | 26 (54.16) | 288 (20.70) | |
Current smoker | 185 (12.86) | 151(10.49) | 11 (22.92) | 140 (10.07) | |
Pack years †, years | 27.72 (0.82) | 28.86 (0.88)) | 42.07 (3.79) | 27.56 (0.88) | 0.001 |
History of respiratory disease, n (%) | 89 (6.18) | 101 (7.02) | 10 (20.83) | 91 (6.54) | <0.001 |
TB | 69 (4.79) | 71 (4.93) | 6 (12.50) | 65 (4.67) | 0.014 |
COPD | 2 (0.14) | 4 (0.28) | 2 (4.17) | 2 (0.14) | 0.006 |
Asthma | 19 (1.32) | 29 (2.02) | 4 (8.33) | 25 (1.80) | 0.003 |
Respiratory symptom | 512 (35.58) | 537 (37.32) | 26 (54.16) | 511 (36.74) | 0.014 |
DOE | 442 (30.72) | 447 (31.06) | 20 (41.67) | 427 (30.70) | 0.106 |
Phlegm | 64 (4.45) | 65 (4.52) | 4 (8.33) | 61 (4.39) | 0.272 |
Cough | 58 (4.03) | 52 (3.61) | 2 (4.17) | 50 (3.60) | 0.691 |
Wheezing | 36 (2.50) | 38 (2.64) | 3 (6.25) | 35 (2.52) | 0.130 |
Regular exercise, n (%) | 871 (60.53) | 925 (64.28) | 36 (75.00) | 889 (63.92) | 0.116 |
Laboratory finding | |||||
WBC (× 103/µL) | 5.34 (0.04) | 5.33 (0.04) | 5.78 (0.31) | 5.32 (0.04) | 0.145 |
CRP (mg/L) | 0.09 (0.005) | 0.10 (0.004) | 0.13 (0.025) | 0.10 (0.004) | 0.170 |
Glucose (mg/dL) | 96.80 (0.48) | 102.84 (0.61) | 107.31 (2.44) | 102.28 (0.62) | 0.072 |
LDL (mg/dL) | 119.41 (0.81) | 125.40 (0.92) | 119.40 (4.96) | 125.61 (0.93) | 0.224 |
HDL (mg/dL) | 58.54 (0.38) | 61.03 (0.45) | 55.69 (2.23) | 61.21 (0.46) | 0.027 |
TG (mg/dL) | 109.65 (1.81) | 109.40 (1.72) | 122.02 (10.19) | 108.97 (1.74) | 0.172 |
Spirometry | |||||
FVC (L) | 3.58 (0.02) | 3.51 (0.02) | 4.15 (0.12) | 3.49 (0.02) | 0.001 |
FVC (% of predicted value) | 94.18 (0.23) | 93.74 (0.25) | 93.79 (1.53) | 93.74 (0.25) | 0.972 |
FEV1 (L) | 2.88 (0.01) | 2.75 (0.01) | 2.75 (0.08) | 2.75 (0.01) | 0.934 |
FEV1 (% of predicted value) | 94.73 (0.23) | 93.96 (0.25) | 84.67 (1.56) | 94.28 (0.25) | <0.001 |
FEV1/FVC | 80.82 (0.13) | 78.75 (0.14) | 66.25 (0.35) | 79.18 (0.13) | <0.001 |
Nutrients | 2012 | 2017 | Difference between 2012 and 2017 | |||||
---|---|---|---|---|---|---|---|---|
Total n = 1439 | Total n = 1439 | Airflow Limitation (+) n = 48 | Airflow Limitation (−) n = 1,391 | p-Value * | Airflow Limitation (+) n = 48 | Airflow Limitation (−) n = 1391 | p-Value | |
Fiber, g | 8.45 (0.04) | 6.36 (0.04) | 6.14 (0.23) | 6.37 (0.04) | 0.305 | −2.97 (0.28) | −2.06 (0.05) | <0.001 |
Vitamin A, RE | 1097.79 (7.33) | 806.52 (7.23) | 811.85 (41.63) | 806.34 (7.34) | 0.891 | −392.87 (45.00) | −287.76 (8.91) | 0.031 |
Vitamin B1, mg | 1.15 (0.01) | 0.97 (0.01) | 1.03 (0.04) | 0.97 (0.01) | 0.113 | −0.28 (0.05) | −0.18 (0.01) | 0.021 |
Vitamin B2, mg | 1.18 (0.01) | 1.01 (0.01) | 1.12 (0.06) | 1.01 (0.01) | 0.046 | −0.20 (0.04) | −0.17 (0.01) | 0.423 |
Niacin, mg | 16.16 (0.10) | 13.2 (0.10) | 15.40 (0.59) | 13.12 (0.10) | <0.001 | −3.55 (0.49) | −2.94 (0.10) | 0.241 |
Vitamin B6, mg | 2.16 (0.01) | 1.71 (0.01) | 1.84 (0.06) | 1.71 (0.01) | 0.016 | −0.58 (0.06) | −0.44 (0.01) | 0.026 |
Folic acid, ug | 326.17 (1.58) | 249.18 (1.70) | 241.35 (8.98) | 249.45 (1.73) | 0.392 | −110.01 (9.68) | −75.85 (1.96) | <0.001 |
Vitamin E, mg | 15.7 (0.09) | 13.2 (0.09) | 14.08 (0.51) | 13.17 (0.09) | 0.077 | −3.09 (0.50) | −2.48 (0.10) | 0.278 |
Vitamin C, mg | 151.47 (1.58) | 113.10 (1.55) | 96.33 (7.56) | 113.68 (2.58) | 0.044 | −62.64 (10.67) | −37.53 (1.87) | 0.015 |
Protein, g | 73.49 (0.39) | 62.26 (0.39) | 71.32 (2.63) | 61.94 (0.40) | <0.001 | −12.50 (2.10) | −11.19 (1.87) | 0.531 |
Carbohydrate, g | 260.46 (1.31) | 228.21 (1.37) | 238.23 (7.13) | 227.87 (1.40) | 0.175 | −33.16 (7.90) | −32.22 (1.45) | 0.906 |
Lipid, g | 50.3 (0.35) | 45.58 (0.36) | 53.26 (2.83) | 45.31(0.36) | 0.008 | −4.90 (1.91) | −4.72 (0.36) | 0.930 |
Cholesterol, mg | 317.55 (3.84) | 336.11 (2.57) | 367.52 (23.68) | 335.03 (3.88) | 0.128 | 20.57 (19.78) | 18.49 (3.96) | 0.923 |
Total calories | 1818.37 (6.77) | 1766.56 (6.32) | 1948.73 (32.52) | 1760.27 (6.37) | <0.001 | −71.49 (9.08) | −51.13 (1.56) | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.J.; Lee, S.H.; Chang, J.H.; Lee, H.S.; Kang, E.H.; Lee, S.W. The Impact of Changes in the Intake of Fiber and Antioxidants on the Development of Chronic Obstructive Pulmonary Disease. Nutrients 2021, 13, 580. https://doi.org/10.3390/nu13020580
Jung YJ, Lee SH, Chang JH, Lee HS, Kang EH, Lee SW. The Impact of Changes in the Intake of Fiber and Antioxidants on the Development of Chronic Obstructive Pulmonary Disease. Nutrients. 2021; 13(2):580. https://doi.org/10.3390/nu13020580
Chicago/Turabian StyleJung, Young Ju, Se Hee Lee, Ji Ho Chang, Hye Seung Lee, Eun Hee Kang, and Sei Won Lee. 2021. "The Impact of Changes in the Intake of Fiber and Antioxidants on the Development of Chronic Obstructive Pulmonary Disease" Nutrients 13, no. 2: 580. https://doi.org/10.3390/nu13020580
APA StyleJung, Y. J., Lee, S. H., Chang, J. H., Lee, H. S., Kang, E. H., & Lee, S. W. (2021). The Impact of Changes in the Intake of Fiber and Antioxidants on the Development of Chronic Obstructive Pulmonary Disease. Nutrients, 13(2), 580. https://doi.org/10.3390/nu13020580