Cross-Sectional Study of Plant Sterols Intake as a Basis for Designing Appropriate Plant Sterol-Enriched Food in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Respondents’ Characteristics and Dietary Data (Plant Sterols and Nutrients Intake)
2.3. Plant Sterols Content in Foods
2.4. Blood Cholesterol Level
2.5. Data Processing and Analysis
2.6. Supplements and Functional Foods Enriched with Plant Sterols Available on the Market
3. Results
3.1. Food and Nutrients Daily Intakes
3.2. Plant Sterols Daily Intake
3.3. Blood Cholesterol Level
3.4. Plant Sterols Supplements and Fortified Products Available in the Bogor Market
4. Discussion
4.1. Plant Sterols Daily Intake
4.2. Association between Plant Sterols Intake and Blood Cholesterol Level
4.3. Recommendations of Food Formulation for Maintaining Healthy Blood Lipid Profile
4.4. Ongoing Scientific Discussion on Efficiency and Long-Term Safety of Plant Sterols Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McAloon, C.J.; Boylan, L.M.; Hamborg, T.; Stallard, N.; Osman, F.; Lim, P.B.; Hayat, S.A. The changing face of cardiovascular disease 2000-2012: An analysis of the world health organisation global health estimates data. Int. J. Cardiol. 2016, 224, 256–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roser, M.; Ritchie, H. Burden of Disease. Available online: https://ourworldindata.org/burden-of-disease (accessed on 28 December 2020).
- Ministry of Health Republic of Indonesia. Indonesia Health Profile 2013; Ministry of Health (Indonesia): Jakarta, Indonesia, 2014.
- World Health Organisation, (WHO). Noncommunicable Diseases (NCD) Country Profiles; WHO Press, World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Hoy, D.G.; Rao, C.; Hoa, N.P.; Suhardi, S.; Lwin, A.M.M. Stroke mortality variations in South-East Asia: Empirical evidence from the field. Int. J. Stroke Off. J. Int. Stroke Soc. 2013, 8 (Suppl. A1), 21–27. [Google Scholar] [CrossRef]
- Venketasubramanian, N.; Yoon, B.W.; Pandian, J.; Navarro, J.C. Stroke Epidemiology in South, East, and South-East Asia: A Review. J. Stroke 2017, 19, 286–294. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Health Observatory Data, Indonesia Country Profile; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Djaja, S.; Suwandono, A.; Soemantri, S. Pola penyakit penyebab kematian di perkotaan dan pedesaan di Indonesia, Studi Mortalitas Survei Kesehatan Rumah Tangga (SKRT) 2001. J. Kedokt. Trisakti 2003, 22, 37–46. [Google Scholar]
- Uli, R.; Satyana, R.; Zomer, E.; Magliano, D.; Liew, D.; Ademi, Z. Health and productivity burden of coronary heart disease in the working Indonesian population using life- table modelling. BMJ Open 2020, 10, e039221. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Sharma, S.; Colyer, T.; Lee, S. The future of the Indonesian healthcare ecosystem: The outlook to 2030. Oliver Wyman 2018, 1, 4–5. [Google Scholar]
- Hajar, R. Risk Factors for Coronary Artery Disease: Historical Perspectives. Hear. Views 2017, 18, 109. [Google Scholar] [CrossRef]
- Hussain, M.A.; Al Mamun, A.; Peters, S.A.; Woodward, M.; Huxley, R.R. The burden of cardiovascular disease attributable to major modifiable risk factors in Indonesia. J. Epidemiol. 2016, 26, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [Green Version]
- Mann, J.; Truswell, A.S. Essentials of Human Nutrition, 2nd ed.; Mann, J., Truswell, A.S., Eds.; Oxford University Press: Oxford, UK, 2002; ISBN 0-19-850861-1. [Google Scholar]
- Normen, L.; Frohlich, J.; Trautwein, E. Role of plant sterols in cholesterol lowering. In Phytosterols as Functional Food Components and Nutraceuticals; Dutta, P., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2004; pp. 243–294. [Google Scholar]
- Libby, P. The vascular biology of atherosclerosis. In Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine; Bonow, R., Mann, D., Zipes, D., Libby, P., Eds.; Saunders Elsevier: Philadelphia, PA, USA, 2011. [Google Scholar]
- Anum, E.A.; Adera, T. Hypercholesterolemia and coronary heart disease in the elderly: A meta-analysis. Ann. Epidemiol. 2004, 14, 705–721. [Google Scholar] [CrossRef]
- Trautwein, E.; Vermeer, M.; Hiemstra, H.; Ras, R. LDL-cholesterol lowering of plant sterols and stanols —which factors influence their efficacy? Nutrients 2018, 10, 1262. [Google Scholar] [CrossRef] [Green Version]
- Abumweis, S.S.; Barake, R.; Jones, P.J.H. Plant sterols/stanols as cholesterol lowering agents: A meta-analysis of randomized controlled trials. Food Nutr. Res. 2008, 52, 52. [Google Scholar] [CrossRef] [PubMed]
- Demonty, I.; Ras, R.T.; van der Knaap, H.C.M.; Duchateau, G.S.M.J.E.; Meijer, L.; Zock, P.L.; Geleijnse, J.M.; Trautwein, E.A. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J. Nutr. 2009, 139, 271–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musa-Veloso, K.; Poon, T.H.; Elliot, J.A.; Chung, C. A comparison of the LDL-cholesterol lowering efficacy of plant stanols and plant sterols over a continuous dose range: Results of a meta-analysis of randomized, placebo-controlled trials. Prostaglandins. Leukot. Essent. Fatty Acids 2011, 85, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Law, M. Plant sterol and stanol margarines and health. BMJ 2000, 320, 861–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B.; et al. Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation 2006, 114, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Gylling, H.; Plat, J.; Turley, S.; Ginsberg, H.N.; Ellegård, L.; Jessup, W.; Jones, P.J.; Lütjohann, D.; Maerz, W.; Masana, L.; et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis 2014, 232, 346–360. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- National Clinical Guideline Centre (UK). Lipid Modification: Cardiovascular Risk Assessment and the Modification of Blood Lipids for the Primary and Secondary Prevention of Cardiovascular Disease; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- Köhler, J.; Teupser, D.; Elsässer, A.; Weingärtner, O. Plant sterol enriched functional food and atherosclerosis. Br. J. Pharmacol. 2017, 174, 1281–1289. [Google Scholar] [CrossRef]
- Andersson, S.; Skinner, J.; Ellegård, L.; Welch, A.; Bingham, S.; Mulligan, A.; Andersson, H.; Khaw, K.-T. Intake of dietary plant sterols is inversely related to serum cholesterol concentration in men and women in the EPIC Norfolk population: A cross-sectional study. Eur. J. Clin. Nutr. 2004, 58, 1378–1385. [Google Scholar] [CrossRef]
- Jiménez-Escrig, A.; Santos-Hidalgo, A.B.; Saura-Calixto, F. Common sources and estimated intake of plant sterols in the Spanish diet. J. Agric. Food Chem. 2006, 54, 3462–3471. [Google Scholar] [CrossRef] [Green Version]
- Sanclemente, T.; Marques-Lopes, I.; Fajo-Pascual, M.; Cofan, M.; Jarauta, E.; Ros, E.; Puzo, J.; García-Otín, A. A moderate intake of phytosterols from habitual diet affects cholesterol metabolism. J. Physiol. Biochem. 2009, 65, 397–404. [Google Scholar] [CrossRef]
- Agency of Health Research and Development, Indonesian Ministry of Health. Indonesia National Health Research. Laporan Nasional 2007; Badan Penelitian dan Pengembangan Kesehatan, Departemen Kesehatan: Jakarta, Indonesia, 2008.
- Klingberg, S. Dietary Intake of Naturally Occurring Plant Sterols in Relation to Serum Cholesterol and Myocardial Infarction. Epidemiological Studies from Sweden and the UK; University of Gothenburg: Gothenburg, Sweden, 2012. [Google Scholar]
- Indonesian Food Composition Data. Available online: https://www.panganku.org/id-ID/ (accessed on 30 December 2020).
- Dutta, P. Phytosterols as Functional Food Components and Nutraceuticals; Marcel Dekker Inc.: New York, NY, USA, 2004. [Google Scholar]
- Valsta, L.; Lemström, A.; Ovaskainen, M.-L.; Lampi, A.-M.; Toivo, J.; Korhonen, T.; Piironen, V. Estimation of plant sterol and cholesterol intake in Finland: Quality of new values and their effect on intake. Br. J. Nutr. 2004, 92, 671–678. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.; Bryl, W.; Marcinkowski, J.T.; Rzesoś, A.; Wojtyła, E.; Pupek-Musialik, D. Dietary behaviours of adolescents from urban and rural areas in the district of Szamotuły—A preliminary study. Ann. Agric. Environ. Med. 2012, 19, 103–107. [Google Scholar]
- Smith, L.; Dawson, P. Food Exporters’ Guide to Indonesia; Australian Government Department of Agriculture, Fisheries and Forestry: Canberra, Australia, 2004.
- Han, J.; Yang, Y.; Feng, M.; Wang, G. Analysis of phytosterol contents in Chinese plant food and primary estimation of its intake of people. Wei Sheng Yan Jiu 2007, 36, 301–305. [Google Scholar]
- Wang, P.; Chen, Y.; He, L.; Chen, C.; Zhang, B.; Xue, W.; Su, Y. Association of natural intake of dietary plant sterols with carotid intima-media thickness and blood lipids in Chinese adults: A cross-section study. PLoS ONE 2012, 7, e32736. [Google Scholar] [CrossRef]
- Kittler, P.G.; Sucher, K. Food and Culture; Thomson Wadworth: Belmont, CA, USA, 2008. [Google Scholar]
- Ras, R.T.; van der Schouw, Y.T.; Trautwein, E.A.; Sioen, I.; Dalmeijer, G.W.; Zock, P.L.; Beulens, J.W.J. Intake of phytosterols from natural sources and risk of cardiovascular disease in the European Prospective Investigation into Cancer and Nutrition-the Netherlands (EPIC-NL) population. Eur. J. Prev. Cardiol. 2015, 22, 1067–1075. [Google Scholar] [CrossRef]
- Jaceldo-Siegl, K.; Lütjohann, D.; Sirirat, R.; Mashchak, A.; Fraser, G.E.; Haddad, E. Variations in dietary intake and plasma concentrations of plant sterols across plant-based diets among North American adults. Mol. Nutr. Food Res. 2017, 61, 61. [Google Scholar] [CrossRef]
- Hendriks, H.F.; Weststrate, J.A.; van Vliet, T.; Meijer, G.W. Spreads enriched with three different levels of vegetable oil sterols and the degree of cholesterol lowering in normocholesterolaemic and mildly hypercholesterolaemic subjects. Eur. J. Clin. Nutr. 1999, 53, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Jones, P.J.H.; Abumweis, S.S. Plant sterols: Factors affecting their efficacy and safety as functional food ingredients. Lipids Health Dis. 2004, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Carr, T.P.; Ash, M.M.; Brown, A.W. Cholesterol-lowering phytosterols: Factors affecting their use and efficacy. Nutr. Diet. Suppl. 2010, 2, 59–72. [Google Scholar] [CrossRef] [Green Version]
- American Heart Association (AHA) How to Get Your Cholesterol Tested. Available online: https://www.heart.org/en/health-topics/cholesterol/how-to-get-your-cholesterol-tested (accessed on 28 December 2020).
- European Food Safety Authority (EFSA). Consumption of Food and Beverages with Added Plant Sterols. EFSA J. 2008, 6, 133. [Google Scholar] [CrossRef]
- Clifton, P. Plant sterol and stanols—Comparison and contrasts. Sterols versus stanols in cholesterol-lowering: Is there a difference? Atheroscler. Suppl. 2002, 3, 5–9. [Google Scholar] [CrossRef]
- Martianto, D.; Sumedi, E.; Soekatri, M.; Herawati, T. Marketing and Distribution Survey of Cooking Oil at Makassar City; Koalisi Fortifikasi Indonesia: Jakarta, Indonesia, 2007. [Google Scholar]
- Kritchevsky, D.; Chen, S.C. Phytosterols health benefits and potential concerns: A review. Nutr. Res. 2005, 25, 413–428. [Google Scholar] [CrossRef]
- Garg, M.; Sharma, N.; Sharma, S.; Kapoor, P.; Kumar, A.; Chunduri, V.; Arora, P. Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Weingärtner, O.; Lütjohann, D.; Ji, S.; Weisshoff, N.; List, F.; Sudhop, T.; von Bergmann, K.; Gertz, K.; König, J.; Schäfers, H.-J.; et al. Vascular effects of diet supplementation with plant sterols. J. Am. Coll. Cardiol. 2008, 51, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- Luister, A.; Schött, H.F.; Husche, C.; Schäfers, H.-J.; Böhm, M.; Plat, J.; Gräber, S.; Lütjohann, D.; Laufs, U.; Weingärtner, O. Increased plant sterol deposition in vascular tissue characterizes patients with severe aortic stenosis and concomitant coronary artery disease. Steroids 2015, 99, 272–280. [Google Scholar] [CrossRef]
- Helske, S.; Miettinen, T.; Gylling, H.; Mäyränpää, M.; Lommi, J.; Turto, H.; Werkkala, K.; Kupari, M.; Kovanen, P.T. Accumulation of cholesterol precursors and plant sterols in human stenotic aortic valves. J. Lipid Res. 2008, 49, 1511–1518. [Google Scholar] [CrossRef] [Green Version]
- Solca, C.; Tint, G.S.; Patel, S.B. Dietary xenosterols lead to infertility and loss of abdominal adipose tissue in sterolin-deficient mice. J. Lipid Res. 2013, 54, 397–409. [Google Scholar] [CrossRef] [Green Version]
- McDaniel, A.L.; Alger, H.M.; Sawyer, J.K.; Kelley, K.L.; Kock, N.D.; Brown, J.M.; Temel, R.E.; Rudel, L.L. Phytosterol feeding causes toxicity in ABCG5/G8 knockout mice. Am. J. Pathol. 2013, 182, 1131–1138. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.D.; Thompson, P.D. Phytosterols and vascular disease. Atherosclerosis 2006, 186, 12–19. [Google Scholar] [CrossRef]
- Weingärtner, O.; Böhm, M.; Laufs, U. Controversial role of plant sterol esters in the management of hypercholesterolaemia. Eur. Heart J. 2009, 30, 404–409. [Google Scholar] [CrossRef] [Green Version]
- Genser, B.; Silbernagel, G.; De Backer, G.; Bruckert, E.; Carmena, R.; Chapman, M.J.; Deanfield, J.; Descamps, O.S.; Rietzschel, E.R.; Dias, K.C.; et al. Plant sterols and cardiovascular disease: A systematic review and meta-analysis. Eur. Heart J. 2012, 33, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Silbernagel, G.; Chapman, M.J.; Genser, B.; Kleber, M.E.; Fauler, G.; Scharnagl, H.; Grammer, T.B.; Boehm, B.O.; Mäkelä, K.-M.; Kähönen, M.; et al. High intestinal cholesterol absorption is associated with cardiovascular disease and risk alleles in ABCG8 and ABO: Evidence from the LURIC and YFS cohorts and from a meta-analysis. J. Am. Coll. Cardiol. 2013, 62, 291–299. [Google Scholar] [CrossRef]
- Vergès, B.; Fumeron, F. Potential risks associated with increased plasma plant-sterol levels. Diabetes Metab. 2015, 41, 76–81. [Google Scholar] [CrossRef]
- Glueck, C.J.; Speirs, J.; Tracy, T.; Streicher, P.; Illig, E.; Vandegrift, J. Relationships of serum plant sterols (phytosterols) and cholesterol in 595 hypercholesterolemic subjects, and familial aggregation of phytosterols, cholesterol, and premature coronary heart disease in hyperphytosterolemic probands and their first-degree r. Metabolism 1991, 40, 842–848. [Google Scholar] [CrossRef]
- Rajaratnam, R.A.; Gylling, H.; Miettinen, T.A. Independent association of serum squalene and noncholesterol sterols with coronary artery disease in postmenopausal women. J. Am. Coll. Cardiol. 2000, 35, 1185–1191. [Google Scholar] [CrossRef] [Green Version]
- Assmann, G.; Cullen, P.; Erbey, J.; Ramey, D.R.; Kannenberg, F.; Schulte, H. Plasma sitosterol elevations are associated with an increased incidence of coronary events in men: Results of a nested case-control analysis of the Prospective Cardiovascular Münster (PROCAM) study. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 13–21. [Google Scholar] [CrossRef]
- Matthan, N.R.; Pencina, M.; LaRocque, J.M.; Jacques, P.F.; D’Agostino, R.B.; Schaefer, E.J.; Lichtenstein, A.H. Alterations in cholesterol absorption/synthesis markers characterize Framingham offspring study participants with CHD. J. Lipid Res. 2009, 50, 1927–1935. [Google Scholar] [CrossRef] [Green Version]
- Silbernagel, G.; Fauler, G.; Hoffmann, M.M.; Lütjohann, D.; Winkelmann, B.R.; Boehm, B.O.; März, W. The associations of cholesterol metabolism and plasma plant sterols with all-cause and cardiovascular mortality. J. Lipid Res. 2010, 51, 2384–2393. [Google Scholar] [CrossRef] [Green Version]
- Wilund, K.R.; Yu, L.; Xu, F.; Vega, G.L.; Grundy, S.M.; Cohen, J.C.; Hobbs, H.H. No association between plasma levels of plant sterols and atherosclerosis in mice and men. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 2326–2332. [Google Scholar] [CrossRef] [Green Version]
- Pinedo, S.; Vissers, M.N.; von Bergmann, K.; Elharchaoui, K.; Lütjohann, D.; Luben, R.; Wareham, N.J.; Kastelein, J.J.P.; Khaw, K.-T.; Boekholdt, S.M. Plasma levels of plant sterols and the risk of coronary artery disease: The prospective EPIC-Norfolk Population Study. J. Lipid Res. 2007, 48, 139–144. [Google Scholar] [CrossRef]
- Fassbender, K.; Lütjohann, D.; Dik, M.G.; Bremmer, M.; König, J.; Walter, S.; Liu, Y.; Letièmbre, M.; von Bergmann, K.; Jonker, C. Moderately elevated plant sterol levels are associated with reduced cardiovascular risk-the LASA study. Atherosclerosis 2008, 196, 283–288. [Google Scholar] [CrossRef]
- Escurriol, V.; Cofán, M.; Moreno-Iribas, C.; Larrañaga, N.; Martínez, C.; Navarro, C.; Rodríguez, L.; González, C.A.; Corella, D.; Ros, E. Phytosterol plasma concentrations and coronary heart disease in the prospective Spanish EPIC cohort. J. Lipid Res. 2010, 51, 618–624. [Google Scholar] [CrossRef] [Green Version]
- Weingärtner, O.; Pinsdorf, T.; Rogacev, K.S.; Blömer, L.; Grenner, Y.; Gräber, S.; Ulrich, C.; Girndt, M.; Böhm, M.; Fliser, D.; et al. The relationships of markers of cholesterol homeostasis with carotid intima-media thickness. PLoS ONE 2010, 5, e13467. [Google Scholar]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar]
Intake | Rural Area | Urban Area | ||||
---|---|---|---|---|---|---|
Men | Women | Total | Men | Women | Total | |
Food (g/day) | 1150.34 | 1055.11 | 1102.73 | 1057.2 | 913.6 | 985.4 |
Energy (kcal/day) | 1488.65 | 1485.23 | 1489.94 | 1647.50 | 1491.42 | 1569.4 |
Protein (g/day) | 51.39 | 50.49 | 47.37 | 50.32 | 51.59 | 50.96 |
Iron (mg/day) | 20.00 | 19.21 | 17.43 | 18.25 | 20.26 | 19.26 |
Vitamin A (RE 1/day) | 222.46 | 382.40 | 302.43 | 346.35 | 250.52 | 298.43 |
Vitamin C (mg/day) | 18.07 | 53.53 | 35.80 | 25.46 | 34.41 | 29.93 |
No | Food Groups | Rural Area | Urban Area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Consumption Per Capita (g/day) 1 | % of Total Consumption | Consumption Per Capita (g/day) 1 | % of Total Consumption | ||||||||
Mean ± SD | 95% Tile | Min. | Max. | Mean ± SD | 95% Tile | Min | Max | ||||
1 | Beverages | 16.65 ± 27.71 | 75.35 | 0.00 | 152.67 | 1.88 | 15.93 ± 29.15 | 49.51 | 0.00 | 250.53 | 1.75 |
2 | Cereals and Cereal Products | 378.01 ± 164.85 | 692.77 | 39.02 | 1046.50 | 42.66 | 381.31 ± 132.32 | 570.91 | 103.07 | 759.33 | 41.98 |
3 | Eggs and Egg Products | 8.58 ± 15.60 | 41.47 | 0.00 | 88.00 | 0.97 | 10.50 ± 18.16 | 60.00 | 0.00 | 69.33 | 1.16 |
4 | Fish and Fish Products | 1.37 ± 3.63 | 8.13 | 0.00 | 24.43 | 0.15 | 2.45 ± 5.55 | 14.61 | 0.00 | 35.20 | 0.27 |
5 | Fruits and Fruit Products | 103.04 ± 106.28 | 323.93 | 0.00 | 504.07 | 11.63 | 116.41 ± 116.29 | 286.77 | 0.00 | 630.40 | 12.81 |
6 | Herbs, Spices, and Condiments | 11.91 ± 20.22 | 56.95 | 0.00 | 119.00 | 1.34 | 13.88 ± 18.59 | 50.47 | 0.00 | 112.73 | 1.53 |
8 | Legumes, Legume Products, and Nuts | 85.26 ± 63.89 | 208.73 | 0.00 | 385.72 | 9.62 | 84.66 ± 72.77 | 196.85 | 0.00 | 386.07 | 9.32 |
7 | Meat and Meat Products | 22.52 ± 32.62 | 85.58 | 0.00 | 214.73 | 2.54 | 33.65 ± 36.58 | 94.66 | 0.00 | 237.93 | 3.70 |
9 | Plant Sterol-Fortified Products | 0.04 ± 0.30 | 0.00 | 0.00 | 2.67 | 0.00 | 0.03 ± 0.30 | 0.00 | 0.00 | 3.00 | 0.00 |
10 | Snack Foods | 99.07 ± 91.71 | 253.45 | 0.00 | 584.55 | 11.18 | 106.91 ± 99.39 | 266.72 | 0.00 | 636.47 | 11.77 |
11 | Supplements | 0.05 ± 0.50 | 0.00 | 0.00 | 5.00 | 0.01 | 0.12 ± 0.45 | 1.37 | 0.00 | 2.00 | 0.01 |
12 | Vegetables and Vegetable Products | 159.64 ± 112.93 | 396.02 | 0.00 | 575.37 | 18.02 | 142.57 ± 98.44 | 337.31 | 20.19 | 624.18 | 15.69 |
TOTAL | 886.14 ± 387.87 | 1759.82 | 205.64 | 2067.78 | 100.00 | 908.43 ± 349.83 | 1549.21 | 344.33 | 2458.76 | 100.00 |
Plant Sterol (PS) Data Sources | Number of Food Items Consumed | |||||
---|---|---|---|---|---|---|
No Total (%) | Rural Area (%) | Urban Area (%) | ||||
Available from secondary data (USDA database and scientific publications) | 94 | (30.42%) | 83 | (31.44%) | 80 | (31.87%) |
Commercial product available in the market | 1 | (0.32%) | 1 | (0.38%) | 1 | (0.40%) |
Calculation of recipe | 162 | (52.43%) | 142 | (53.79%) | 127 | (50.60%) |
PS content set as zero | 27 | (8.74%) | 19 | (7.20%) | 22 | (8.76%) |
Data not available (thus PS content set as zero) | 25 | (8.09%) | 19 | (7.20%) | 21 | (8.37%) |
Total | 309 | (100.00%) | 264 | (100.00%) | 251 | (100.00%) |
No | Food Groups | Rural Area | Urban Area | ||||
---|---|---|---|---|---|---|---|
Male | Female | Total | Male | Female | Total | ||
1 | Beverages | 0.01 ± 0.10 | 0.00 ± 0.00 | 0.01 ± 0.07 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
2 | Cereals and Cereal Products | 82.30 ± 37.39 | 85.37 ± 46.38 | 83.84 ± 41.94 | 95.55 ± 34.05 | 79.89 ± 31.38 | 87.72 ± 33.51 |
3 | Eggs and Egg Products | 0.61 ± 1.19 | 1.05 ± 1.69 | 0.83 ± 1.47 | 1.70 ± 3.15 | 1.07 ± 2.49 | 1.39 ± 2.84 |
4 | Fish and Fish Products | 0.17 ± 0.39 | 0.51 ± 2.39 | 0.34 ± 1.72 | 0.56 ± 1.08 | 0.58 ± 1.64 | 0.57 ± 1.38 |
5 | Fruits and Fruit Products | 11.59 ± 13.33 | 12.94 ± 13.85 | 12.26 ± 13.54 | 12.08 ± 13.13 | 17.44 ± 28.19 | 14.76 ± 22.04 |
6 | Herbs, Spices and Condiments | 3.53 ± 7.60 | 5.62 ± 12.18 | 4.58 ± 10.15 | 4.61 ± 6.38 | 8.18 ± 10.55 | 6.39 ± 8.86 |
8 | Legumes and Legume Products | 53.51 ± 48.90 | 55.73 ± 45.44 | 54.62 ± 46.98 | 55.23 ± 44.07 | 56.00 ± 59.45 | 55.62 ± 52.06 |
7 | Meat and Meat Products | 4.00 ± 11.45 | 4.63 ± 7.30 | 4.31 ± 9.56 | 4.47 ± 4.24 | 4.36 ± 5.50 | 4.42 ± 4.89 |
9 | Phytosterol Fortified Products | 0.05 ± 0.34 | 0.02 ± 0.17 | 0.04 ± 0.26 | 0.00 ± 0.00 | 0.05 ± 0.38 | 0.03 ± 0.27 |
10 | Snack Foods | 40.77 ± 50.00 | 27.83 ± 22.19 | 34.30 ± 39.03 | 33.28 ± 31.39 | 39.42 ± 37.79 | 36.35 ± 34.70 |
11 | Supplements | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
12 | Vegetables and Vegetable Products | 26.87 ± 22.23 | 30.49 ± 20.86 | 28.68 ± 21.52 | 26.11 ± 26.63 | 30.85 ± 22.75 | 28.48 ± 24.76 |
TOTAL | 223.41 ± 120.89 | 224.19 ± 97.64 | 223.80 ± 109.33 | 233.61 ± 93.45 | 237.84 ± 115.45 | 235.73 ± 104.52 |
No | Product Type | Brand | Plant Sterols Type | Plant Sterols Concentration per Serving |
---|---|---|---|---|
1 | Milk Powder | Tropicana Slim Non-Fat Fitosterol | Phytosterols | 20.1 mg |
2 | Smoothie | Nutrive Benecol | Plant stanol ester | 1.7 g |
3 | Supplement | GNC Triple Fish With Phytosterols | Phytosterols | 800 mg |
4 | Supplement | Hemaviton Cardio | Phytosterols | 400 mg |
5 | Supplement | Natrol Cholesterol Balance | Beta Sitosterol | 440 mg |
6 | Supplement | Nature’s Plus Thermo Tropic | Phytosterols | 100 mg |
7 | Supplement | Nutrimax Prost Care | Beta Sitosterol | 150 mg |
8 | Supplement | TRA Complex | Beta Sitosterol | 40 mg |
Product Category | Common Packing Size | Plant Sterols/Plant Sterol Esters Concentration | Recommended Daily Consumption Level | Total Daily Intake of Plant Sterols |
---|---|---|---|---|
Bread | 60 g | 1.5 g/100 g | 1 × 70–80 g/day | 1.2–1.5 g |
Biscuits | 100 g | 3.3 g/100 g | 1–2 × 15–20 g/day | 1.2–1.5 g |
Noodles/Pasta | 65 g | 1.5–1.7 g/100 g | 1 × 60–80 g/day | 1.2–1.5 g |
Fat spreads /margarines | 200 g | 4.8–5.0 g/100 g | 2–3 × 10 g/day | 1.2–1.5 g |
Spicy sauces | 140 g | 5.0–9.0 g/100 mL | 1–2 × 10 g/day | 1.1–1.4 g |
Palm Oil | 1000 g | 3.9–4.4 g/100 mL | 1–2 × 12 g/day | 1.2–1.6 g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martianto, D.; Bararah, A.; Andarwulan, N.; Średnicka-Tober, D. Cross-Sectional Study of Plant Sterols Intake as a Basis for Designing Appropriate Plant Sterol-Enriched Food in Indonesia. Nutrients 2021, 13, 452. https://doi.org/10.3390/nu13020452
Martianto D, Bararah A, Andarwulan N, Średnicka-Tober D. Cross-Sectional Study of Plant Sterols Intake as a Basis for Designing Appropriate Plant Sterol-Enriched Food in Indonesia. Nutrients. 2021; 13(2):452. https://doi.org/10.3390/nu13020452
Chicago/Turabian StyleMartianto, Drajat, Atikah Bararah, Nuri Andarwulan, and Dominika Średnicka-Tober. 2021. "Cross-Sectional Study of Plant Sterols Intake as a Basis for Designing Appropriate Plant Sterol-Enriched Food in Indonesia" Nutrients 13, no. 2: 452. https://doi.org/10.3390/nu13020452
APA StyleMartianto, D., Bararah, A., Andarwulan, N., & Średnicka-Tober, D. (2021). Cross-Sectional Study of Plant Sterols Intake as a Basis for Designing Appropriate Plant Sterol-Enriched Food in Indonesia. Nutrients, 13(2), 452. https://doi.org/10.3390/nu13020452