Taxonomic Composition and Diversity of the Gut Microbiota in Relation to Habitual Dietary Intake in Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Dietary Data Collection
2.3. Fecal Sample Collection
2.4. 16S rRNA Gene Sequencing and Taxonomic Assignment
2.5. Statistical Analysis
3. Results
3.1. Association of Dietary Intake with Gut Microbial Composition
3.2. Association of Dietary Intake with the within-Sample Diversity of Gut Microbiota
3.3. Enterotypes of Gut Microbiota and Their Association with Dietary Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic Analysis of the Human Distal Gut Microbiome. Science 2006, 312, 1355–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Natividad, J.M.M.; Verdu, E.F. Modulation of Intestinal Barrier by Intestinal Microbiota: Pathological and Therapeutic Implications. Pharmacol. Res. 2013, 69, 42–51. [Google Scholar] [CrossRef] [PubMed]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The Role of Short-Chain Fatty Acids in the Interplay between Diet, Gut Microbiota, and Host Energy Metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Kasubuchi, M.; Hasegawa, S.; Hiramatsu, T.; Ichimura, A.; Kimura, I. Dietary Gut Microbial Metabolites, Short-Chain Fatty Acids, and Host Metabolic Regulation. Nutrients 2015, 7, 2839–2849. [Google Scholar] [CrossRef] [Green Version]
- Bäumler, A.J.; Sperandio, V. Interactions between the Microbiota and Pathogenic Bacteria in the Gut. Nature 2016, 535, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Belkaid, Y.; Hand, T. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M.; et al. Enterotypes of the Human Gut Microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of Diet on the Gut Microbiome and Implications for Human Health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [Green Version]
- Zmora, N.; Suez, J.; Elinav, E. You Are What You Eat: Diet, Health and the Gut Microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippo, C.D.; Cavalieri, D.; Paola, M.D.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini, G.; Lionetti, P. Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children from Europe and Rural Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 14691–14696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Świątecka, D.; Dominika, Ś.; Narbad, A.; Arjan, N.; Ridgway, K.P.; Karyn, R.P.; Kostyra, H.; Henryk, K. The Study on the Impact of Glycated Pea Proteins on Human Intestinal Bacteria. Int. J. Food Microbiol. 2011, 145, 267–272. [Google Scholar] [PubMed]
- Telle-Hansen, V.H.; Holven, K.B.; Ulven, S.M. Impact of a Healthy Dietary Pattern on Gut Microbiota and Systemic Inflammation in Humans. Nutrients 2018, 10, 1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, M.Y.; Rho, M.; Song, Y.-M.; Lee, K.; Sung, J.; Ko, G. Stability of Gut Enterotypes in Korean Monozygotic Twins and Their Association with Biomarkers and Diet. Sci. Rep. 2014, 4, 7348. [Google Scholar] [CrossRef] [Green Version]
- Patra, J.K.; Das, G.; Paramithiotis, S.; Shin, H.-S. Kimchi and Other Widely Consumed Traditional Fermented Foods of Korea: A Review. Front. Microbiol. 2016, 7, 1493. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.D.; Shin, A.; Kim, J. Dietary Patterns of Korean Adults and the Prevalence of Metabolic Syndrome: A Cross-Sectional Study. PLoS ONE 2014, 9, e111593. [Google Scholar] [CrossRef]
- Bell, V.; Ferrão, J.; Pimentel, L.; Pintado, M.; Fernandes, T. One Health, Fermented Foods, and Gut Microbiota. Foods 2018, 7, 195. [Google Scholar] [CrossRef] [Green Version]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.; et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and Reproducibility of Food Frequency Questionnaire for Korean Genome Epidemiologic Study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Sturm, M.; Schroeder, C.; Bauer, P. SeqPurge: Highly-Sensitive Adapter Trimming for Paired-End NGS Data. BMC Bioinform. 2016, 17, 208. [Google Scholar] [CrossRef] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Fu, L.; Niu, B.; Wu, S.; Wooley, J. Ultrafast Clustering Algorithms for Metagenomic Sequence Analysis. Brief. Bioinform. 2012, 13, 656–668. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods 2010, 7, 335–336. [Google Scholar]
- Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vázquez-Baeza, Y.; Birmingham, A.; et al. Normalization and Microbial Differential Abundance Strategies Depend upon Data Characteristics. Microbiome 2017, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Morgan, X.C.; Huttenhower, C. Chapter 12: Human Microbiome Analysis. PLoS Comput. Biol. 2012, 8, e1002808. [Google Scholar] [CrossRef] [Green Version]
- Chao, A. Nonparametric Estimation of the Number of Classes in a Population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar]
- Kim, B.-R.; Shin, J.; Guevarra, R.; Lee, J.H.; Kim, D.W.; Seol, K.-H.; Lee, J.-H.; Kim, H.B.; Isaacson, R. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. The Mathematical Theory of Communication. 1963. MD Comput. Comput. Med. Pract. 1997, 14, 306–317. [Google Scholar]
- Faith, D.P. Conservation Evaluation and Phylogenetic Diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Chao, A.; Chiu, C.-H.; Jost, L. Phylogenetic Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers. In Biodiversity Conservation and Phylogenetic Systematics: Preserving Our Evolutionary Heritage in an Extinction Crisis; Pellens, R., Grandcolas, P., Eds.; Topics in Biodiversity and Conservation; Springer International Publishing: Cham, Switzerland, 2016; pp. 141–172. [Google Scholar]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, T.P.; Erb, I.; Gloor, G.; Notredame, C.; Richardson, M.F.; Crowley, T.M. A Field Guide for the Compositional Analysis of Any-Omics Data. GigaScience 2019, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Izenman, A.J. Reduced-Rank Regression for the Multivariate Linear Model. J. Multivar. Anal. 1975, 5, 248–264. [Google Scholar] [CrossRef] [Green Version]
- Syakur, M.A.; Khotimah, B.K.; Rochman, E.M.S.; Satoto, B.D. Integration K-Means Clustering Method and Elbow Method for Identification of The Best Customer Profile Cluster. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012017. [Google Scholar] [CrossRef] [Green Version]
- Rousseeuw, P.J. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R.; Walther, G.; Hastie, T. Estimating the Number of Clusters in a Data Set via the Gap Statistic. J. R. Stat. Soc. Ser. B 2001, 63, 411–423. [Google Scholar] [CrossRef]
- Martínez, I.; Stegen, J.C.; Maldonado-Gómez, M.X.; Eren, A.M.; Siba, P.M.; Greenhill, A.R.; Walter, J. The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, and Ecological Processes. Cell Rep. 2015, 11, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human Gut Microbiome Viewed across Age and Geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Sonnenburg, E.D.; Sonnenburg, J.L. Starving Our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metab. 2014, 20, 779–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnenburg, E.D.; Smits, S.A.; Tikhonov, M.; Higginbottom, S.K.; Wingreen, N.S.; Sonnenburg, J.L. Diet-Induced Extinctions in the Gut Microbiota Compound over Generations. Nature 2016, 529, 212–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, K.; Chung, S.K.; Vanamala, J.; Xu, B. Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium Prausnitzii in Preventing Diabetes. Int. J. Mol. Sci. 2018, 19, 3720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho-Wells, A.L.; Helmolz, K.; Nodet, C.; Molzer, C.; Leonard, C.; McKevith, B.; Thielecke, F.; Jackson, K.G.; Tuohy, K.M. Determination of the in Vivo Prebiotic Potential of a Maize-Based Whole Grain Breakfast Cereal: A Human Feeding Study. Br. J. Nutr. 2010, 104, 1353–1356. [Google Scholar] [CrossRef] [Green Version]
- Walter, J.; Martínez, I.; Rose, D.J. Holobiont Nutrition: Considering the Role of the Gastrointestinal Microbiota in the Health Benefits of Whole Grains. Gut Microbes 2013, 4, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef]
- Karlsson, F.; Tremaroli, V.; Nielsen, J.; Bäckhed, F. Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes 2013, 62, 3341–3349. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Brown, E.M.; Allsopp, P.J.; Magee, P.J.; Gill, C.I.; Nitecki, S.; Strain, C.R.; McSorley, E.M. Seaweed and Human Health. Nutr. Rev. 2014, 72, 205–216. [Google Scholar] [CrossRef]
- You, L.; Gong, Y.; Li, L.; Hu, X.; Brennan, C.; Kulikouskaya, V. Beneficial Effects of Three Brown Seaweed Polysaccharides on Gut Microbiota and Their Structural Characteristics: An Overview. Int. J. Food Sci. Technol. 2020, 55, 1199–1206. [Google Scholar] [CrossRef]
- Charoensiddhi, S.; Conlon, M.A.; Vuaran, M.S.; Franco, C.M.M.; Zhang, W. Impact of Extraction Processes on Prebiotic Potential of the Brown Seaweed Ecklonia Radiata by in Vitro Human Gut Bacteria Fermentation. J. Funct. Foods 2016, 24, 221–230. [Google Scholar] [CrossRef]
- Liu, M.; Ma, L.; Chen, Q.; Zhang, P.; Chen, C.; Jia, L.; Li, H. Fucoidan Alleviates Dyslipidemia and Modulates Gut Microbiota in High-Fat Diet-Induced Mice. J. Funct. Foods 2018, 48, 220–227. [Google Scholar] [CrossRef]
- Ramnani, P.; Chitarrari, R.; Tuohy, K.; Grant, J.; Hotchkiss, S.; Philp, K.; Campbell, R.; Gill, C.; Rowland, I. In Vitro Fermentation and Prebiotic Potential of Novel Low Molecular Weight Polysaccharides Derived from Agar and Alginate Seaweeds. Anaerobe 2012, 18, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-W.; Lee, J.-H.; Kim, S.-E.; Park, M.-H.; Chang, H.C.; Kim, H.-Y. Analysis of Microbial Communities in Doenjang, a Korean Fermented Soybean Paste, Using Nested PCR-Denaturing Gradient Gel Electrophoresis. Int. J. Food Microbiol. 2009, 131, 265–271. [Google Scholar] [CrossRef]
- Nam, Y.-D.; Lee, S.-Y.; Lim, S.-I. Microbial Community Analysis of Korean Soybean Pastes by Next-Generation Sequencing. Int. J. Food Microbiol. 2012, 155, 36–42. [Google Scholar] [CrossRef]
- Shin, J.-H.; Jung, S.; Kim, S.-A.; Kang, M.-S.; Kim, M.-S.; Joung, H.; Hwang, G.-S.; Shin, D.-M. Differential Effects of Typical Korean Versus American-Style Diets on Gut Microbial Composition and Metabolic Profile in Healthy Overweight Koreans: A Randomized Crossover Trial. Nutrients 2019, 11, 2450. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Cheng, M.; Ning, K. Stereotypes About Enterotype: The Old and New Ideas. Genomics Proteomics Bioinformatics 2019, 17, 4–12. [Google Scholar] [CrossRef]
- Poretsky, R.; Rodriguez-R, L.M.; Luo, C.; Tsementzi, D.; Konstantinidis, K.T. Strengths and Limitations of 16S RRNA Gene Amplicon Sequencing in Revealing Temporal Microbial Community Dynamics. PLoS ONE 2014, 9, e93827. [Google Scholar] [CrossRef] [Green Version]
- Scepanovic, P.; Hodel, F.; Mondot, S.; Partula, V.; Byrd, A.; Hammer, C.; Alanio, C.; Bergstedt, J.; Patin, E.; Touvier, M.; et al. A Comprehensive Assessment of Demographic, Environmental, and Host Genetic Associations with Gut Microbiome Diversity in Healthy Individuals. Microbiome 2019, 7, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total (n = 222) | Men (n = 108) | Women (n = 114) | ||||
---|---|---|---|---|---|---|
Age 1 (years) | 29.6 | 20–51 | 26.9 | 21–48 | 32.2 | 20–51 |
BMI 1 (kg/m2) | 22.9 | 19.1–28.5 | 23.6 | 20.2–28.8 | 22.3 | 18.8–27.0 |
Alcohol intake 1 (g/day) | 9.7 | 0.0–39.8 | 14.1 | 0.0–52.9 | 5.5 | 0.0–27.1 |
Dietary supplement intake (n, %) | ||||||
Yes | 76 | 34.2% | 26 | 24.1% | 50 | 43.9% |
No | 143 | 64.4% | 80 | 74.1% | 63 | 55.3% |
Don’t know | 3 | 1.4% | 2 | 1.9% | 1 | 0.9% |
Regular physical activity (n, %) | ||||||
Yes | 92 | 41.4% | 49 | 45.4% | 43 | 37.7% |
No | 130 | 58.6% | 59 | 54.6% | 71 | 62.3% |
Smoking status (n, %) | ||||||
Ever (former/current) | 54 | 24.3% | 47 | 43.5% | 7 | 6.1% |
Never | 168 | 75.7% | 61 | 56.5% | 107 | 93.9% |
Education (n, %) | ||||||
<University graduation | 110 | 49.5% | 60 | 55.6% | 50 | 43.9% |
≥University graduation | 112 | 50.5% | 48 | 44.4% | 64 | 56.1% |
Household Income (n, %) | ||||||
<4000 USD/month | 79 | 35.6% | 40 | 37.0% | 39 | 34.2% |
≥4000 USD/month | 93 | 41.9% | 41 | 38.0% | 52 | 45.6% |
Don’t know | 50 | 22.5% | 27 | 25.0% | 23 | 20.2% |
Phylum | Genus | |||||
---|---|---|---|---|---|---|
Taxa 3 | Coefficient | p-Value | Taxa 3 | Coefficient | p-Value 4 | p-Valueadj4 |
F/B ratio | 0.237 | 0.0004 | ||||
Bacteroidetes | −0.170 | 0.012 | Coenonia | −0.271 | 0.0001 | 0.003 |
Prevotella | −0.222 | 0.001 | 0.006 | |||
Tannerella | −0.215 | 0.002 | 0.007 | |||
Firmicutes5 | 0.079 | 0.249 | Lactobacillus | 0.228 | 0.0007 | 0.005 |
Ruminococcus | 0.214 | 0.002 | 0.007 | |||
Eubacterium | 0.202 | 0.003 | 0.008 | |||
Hydrogenoanaerobacterium | −0.268 | 0.0001 | 0.003 | |||
Desulfotomaculum | −0.257 | 0.0001 | 0.003 | |||
Alkalibaculum | −0.249 | 0.0002 | 0.003 | |||
Peptoniphilus | −0.248 | 0.0002 | 0.003 | |||
Lactonifactor | −0.248 | 0.0002 | 0.003 | |||
Acetivibrio | −0.247 | 0.0003 | 0.003 | |||
Peptostreptococcus | −0.242 | 0.0003 | 0.004 |
Prevotella | Bacteroides | Ruminococcus | p-Value | ||||
---|---|---|---|---|---|---|---|
Mean | IQR | Mean | IQR | Mean | IQR | ||
Weighted UniFrac | (n = 64, 28.8%) | (n = 81, 36.5%) | (n = 77, 34.7%) | ||||
Dietary pattern | |||||||
HiαDP score | −0.27 | −0.82–0.40 | 0.02 | −0.40–0.62 | 0.20 | −0.34–0.90 | 0.008 |
Food groups 2 | |||||||
Potatoes | 28.9 | 7.6–35.3 | 31.6 | 11.8–38.4 | 33.8 | 12.7–40.9 | 0.344 |
Vegetables | 125.5 | 57.3–162.8 | 159.1 | 74.3–201.9 | 177.8 | 66.2–221.0 | 0.039 |
Fermented vegetables | 86.6 | 33.7–151.9 | 81.6 | 31.2–110.8 | 99.7 | 29.1–154.0 | 0.250 |
Seaweeds | 1.0 | 0.4–1.3 | 1.5 | 0.6–2.1 | 1.7 | 0.4–1.8 | 0.003 |
Legumes | 33.6 | 12.1–39.0 | 51.3 | 17.2–65.1 | 46.8 | 16.2–57.2 | 0.030 |
Fermented legumes | 3.2 | 0.7–3.7 | 3.8 | 1.3–5.1 | 4.2 | 1.3–5.1 | 0.160 |
Fruit/Fruit juice | 214.5 | 45.1–248.8 | 194.7 | 52.1–250.6 | 217.3 | 65.4–196.9 | 0.525 |
Nuts/Seeds | 2.0 | 0.0–2.7 | 2.9 | 0.0–4.8 | 4.1 | 0.1–5.9 | 0.040 |
Dairy products | 121.6 | 49.5–178.2 | 158.0 | 50.0–193.1 | 140.1 | 53.2–178.8 | 0.645 |
Refined grains | 437.8 | 328.0–641.4 | 450.1 | 321.9–651.8 | 440.4 | 429.1–440.1 | 0.951 |
Multi/Whole grains | 3.6 | 0.0–6.0 | 3.8 | 0.0–6.0 | 5.2 | 0.0–7.2 | 0.238 |
Other cereal products | 81.7 | 43.4–98.5 | 78.4 | 44.5–103.0 | 71.6 | 38.4–100.4 | 0.665 |
Meats | 106.3 | 53.9–121.8 | 109.7 | 48.3–129.3 | 104.9 | 50.9–121.0 | 0.591 |
Processed meats | 7.3 | 1.5–8.6 | 8.4 | 1.7–10.0 | 5.8 | 0.7–8.6 | 0.060 |
Fish/Seashells | 31.1 | 14.2–38.1 | 37.9 | 17.0–49.9 | 36.5 | 17.0–44.6 | 0.430 |
Eggs | 22.5 | 9.4–31.1 | 25.4 | 9.2–41.7 | 24.4 | 11.4–40.3 | 0.928 |
Vegetable oils | 1.8 | 0.8–2.0 | 2.0 | 1.0–2.5 | 1.9 | 1.1–2.3 | 0.114 |
Other fats | 0.5 | 0.1–0.6 | 0.7 | 0.1–0.8 | 0.5 | 0.1–0.4 | 0.460 |
Sugar/Confectionary | 4.0 | 1.1–4.3 | 3.5 | 1.2–5.1 | 3.3 | 1.2–3.8 | 0.786 |
Cakes/Sweets | 16.1 | 3.5–13.4 | 18.3 | 4.3–22.3 | 16.1 | 4.6–21.2 | 0.247 |
Coffee | 4.0 | 0.2–5.4 | 2.4 | 0.2–2.7 | 2.7 | 0.2–5.4 | 0.432 |
Tea | 22.7 | 0.0–10.0 | 32.8 | 0.0–20.0 | 17.9 | 0.0–12.9 | 0.557 |
Other non-alcoholic Bev. | 120.5 | 19.2–115.2 | 97.6 | 20.8–117.8 | 55.8 | 16.7–55.3 | 0.238 |
Pizza/burgers | 16.8 | 6.7–16.7 | 19.2 | 6.7–25.0 | 17.6 | 6.7–25.0 | 0.511 |
Salty snacks | 7.5 | 0.0–6.4 | 8.1 | 1.0–12.9 | 7.4 | 1.2–6.4 | 0.467 |
Macronutrients 2 | |||||||
Plant protein | 34.7 | 24.5–39.2 | 36.1 | 26.6–41.6 | 36.3 | 27.1–43.0 | 0.083 |
Animal protein | 34.6 | 20.2–39.2 | 38.7 | 20.2–46.5 | 36.3 | 23.3–41.7 | 0.287 |
Carbohydrate | 313.0 | 222.0–333.1 | 312.5 | 231.0–373.2 | 301.7 | 224.7–349.7 | 0.903 |
Dietary fiber | 16.4 | 9.5–20.1 | 17.5 | 10.5–22.3 | 18.5 | 10.7–21.9 | 0.037 |
Plant fat | 17.4 | 9.0–21.5 | 17.9 | 10.6–21.0 | 17.3 | 11.0–22.3 | 0.343 |
Animal fat | 30.4 | 15.6–32.8 | 30.5 | 15.4–37.4 | 28.8 | 17.2–33.5 | 0.619 |
SFA | 12.1 | 6.4–14.0 | 11.4 | 6.6–13.1 | 11.6 | 6.9–14.3 | 0.365 |
MUFA | 12.5 | 6.6–14.0 | 11.6 | 6.2–13.4 | 12.0 | 7.0–14.9 | 0.290 |
PUFA | 5.4 | 3.1–5.8 | 5.5 | 3.1–6.4 | 5.7 | 3.5–7.2 | 0.059 |
Alcohol | 11.1 | 1.1–11.5 | 9.5 | 0.5–8.3 | 8.6 | 0.7–12.7 | 0.465 |
Bray-Curtis | (n = 71, 25.7%) | (n = 57, 32.0%) | (n = 94, 42.3%) | ||||
Dietary pattern | |||||||
HiαDP score | −0.23 | −0.80–0.37 | −0.15 | −0.87–0.45 | 0.26 | −0.31–0.94 | 0.005 |
Food groups 2 | |||||||
Potatoes | 27.7 | 8.9–30.1 | 28.2 | 11.8–41.7 | 36.6 | 12.7–40.9 | 0.148 |
Vegetables | 123.4 | 58.1–163.7 | 132.3 | 57.4–151.9 | 194.7 | 74.3–242.0 | 0.004 |
Fermented vegetables | 82.6 | 29.6–130.1 | 78.5 | 27.6–104.2 | 101.0 | 34.4–139.3 | 0.485 |
Seaweeds | 1.0 | 0.4–1.3 | 1.3 | 0.4–1.6 | 1.8 | 0.6–2.6 | 0.000 |
Legumes | 32.6 | 12.5–39.0 | 37.2 | 13.4–52.6 | 58.3 | 18.8–74.8 | 0.001 |
Fermented legumes | 3.1 | 0.7–4.0 | 3.2 | 0.7–3.4 | 4.6 | 1.3–5.1 | 0.007 |
Fruit/Fruit juice | 204.9 | 51.9–237.7 | 175.1 | 55.2–202.5 | 230.9 | 68.3–255.3 | 0.241 |
Nuts/Seeds | 2.0 | 0.0–3.5 | 2.4 | 0.0–3.3 | 4.2 | 0.1–6.0 | 0.041 |
Dairy products | 122.5 | 45.6–178.8 | 135.4 | 48.0–178.8 | 159.0 | 52.1–187.4 | 0.938 |
Refined grains | 418.3 | 220.1–440.0 | 470.2 | 331.1–643.8 | 445.6 | 426.1–643.6 | 0.319 |
Multi/Whole grains | 3.6 | 0.0–5.7 | 3.9 | 0.0–5.3 | 4.9 | 0.0–7.2 | 0.347 |
Other cereal products | 79.4 | 43.6–95.3 | 85.3 | 50.5–112.3 | 70.2 | 34.4–96.2 | 0.172 |
Meats | 103.0 | 51.5–125.9 | 99.7 | 47.3–123.3 | 114.6 | 55.3–126.5 | 0.642 |
Processed meats | 7.2 | 1.3–8.6 | 8.5 | 1.7–8.6 | 6.4 | 0.7–8.6 | 0.087 |
Fish/Seashells | 29.9 | 12.6–37.8 | 31.1 | 14.1–36.5 | 42.4 | 18.3–54.2 | 0.035 |
Eggs | 22.5 | 11.0–30.8 | 22.5 | 7.1–29.7 | 26.6 | 9.9–41.9 | 0.667 |
Vegetable oils | 1.7 | 0.8–2.0 | 1.9 | 1.2–2.5 | 2.1 | 1.0–2.5 | 0.101 |
Other fats | 0.5 | 0.1–0.6 | 0.6 | 0.1–0.7 | 0.6 | 0.1–0.7 | 0.815 |
Sugar/Confectionary | 4.2 | 1.1–6.0 | 3.3 | 1.1–4.0 | 3.2 | 1.2–4.4 | 0.347 |
Cakes/Sweets | 15.7 | 3.7–13.8 | 19.3 | 4.3–25.6 | 16.3 | 4.3–20.9 | 0.579 |
Coffee | 3.7 | 0.2–5.4 | 2.1 | 0.1–2.7 | 2.9 | 0.6–5.4 | 0.962 |
Tea | 20.5 | 0.0–12.9 | 14.7 | 0.0–10.0 | 34.0 | 0.0–25.7 | 0.188 |
Other non-alcoholic Bev. | 112.4 | 20.8–112.5 | 96.3 | 21.7–110.7 | 68.6 | 16.7–75.0 | 0.053 |
Pizza/burgers | 16.2 | 6.7–16.7 | 20.9 | 6.7–25.0 | 17.6 | 6.7–25.0 | 0.714 |
Salty snacks | 7.2 | 0.0–6.4 | 10.8 | 0.5–12.9 | 6.2 | 1.0–7.5 | 0.733 |
Macronutrients 2 | |||||||
Plant protein | 33.4 | 22.9–37.2 | 35.5 | 25.6–39.2 | 37.7 | 28.6–44.4 | 0.001 |
Animal protein | 33.7 | 19.7–38.0 | 34.6 | 21.0–40.0 | 40.2 | 22.7–45.6 | 0.208 |
Carbohydrate | 301.3 | 210.1–322.7 | 314.1 | 234.1–351.7 | 311.4 | 235.3–365.2 | 0.401 |
Dietary fiber | 15.9 | 9.3–19.7 | 16.3 | 9.8–19.9 | 19.5 | 11.9–23.7 | 0.002 |
Plant fat | 16.7 | 8.6–21.2 | 18.3 | 11.1–20.7 | 17.7 | 10.9–23.8 | 0.202 |
Animal fat | 29.6 | 15.3–33.0 | 28.0 | 15.9–35.2 | 31.2 | 17.3–37.4 | 0.848 |
Saturated fatty acids | 11.8 | 6.3–13.9 | 10.5 | 6.9–13.1 | 12.3 | 6.6–14.8 | 0.516 |
Monounsaturated fatty acids | 12.2 | 6.3–13.9 | 10.5 | 6.2–13.4 | 12.7 | 6.7–15.0 | 0.401 |
Polyunsaturated fatty acids | 5.2 | 3.1–5.7 | 5.0 | 3.2–6.2 | 6.1 | 3.5–7.6 | 0.011 |
Alcohol | 10.3 | 0.5–11.0 | 8.1 | 0.7–9.4 | 10.1 | 0.7–9.8 | 0.591 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, H.; Jang, H.-H.; Kim, G.; Zouiouich, S.; Cho, S.-Y.; Kim, H.-J.; Kim, J.; Choe, J.-S.; Gunter, M.J.; Ferrari, P.; et al. Taxonomic Composition and Diversity of the Gut Microbiota in Relation to Habitual Dietary Intake in Korean Adults. Nutrients 2021, 13, 366. https://doi.org/10.3390/nu13020366
Noh H, Jang H-H, Kim G, Zouiouich S, Cho S-Y, Kim H-J, Kim J, Choe J-S, Gunter MJ, Ferrari P, et al. Taxonomic Composition and Diversity of the Gut Microbiota in Relation to Habitual Dietary Intake in Korean Adults. Nutrients. 2021; 13(2):366. https://doi.org/10.3390/nu13020366
Chicago/Turabian StyleNoh, Hwayoung, Hwan-Hee Jang, Gichang Kim, Semi Zouiouich, Su-Yeon Cho, Hyeon-Jeong Kim, Jeongseon Kim, Jeong-Sook Choe, Marc J. Gunter, Pietro Ferrari, and et al. 2021. "Taxonomic Composition and Diversity of the Gut Microbiota in Relation to Habitual Dietary Intake in Korean Adults" Nutrients 13, no. 2: 366. https://doi.org/10.3390/nu13020366
APA StyleNoh, H., Jang, H.-H., Kim, G., Zouiouich, S., Cho, S.-Y., Kim, H.-J., Kim, J., Choe, J.-S., Gunter, M. J., Ferrari, P., Scalbert, A., & Freisling, H. (2021). Taxonomic Composition and Diversity of the Gut Microbiota in Relation to Habitual Dietary Intake in Korean Adults. Nutrients, 13(2), 366. https://doi.org/10.3390/nu13020366