Associations between Feeding Patterns and Infant Health in China: A Propensity Score Matching Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Outcome Variables
2.3. Exposure Variables
- Breastfeeding infants were those whose source of milk was only breast milk (inclusive of mother’s own milk by bottle);
- Formula feeding were those whose source of milk was only formula.
2.4. Potential Confounders
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gartner, L.M.; Morton, J.; Lawrence, R.A.; Naylor, A.J.; O’Hare, D.; Schanler, R.J.; Eidelman, A.I. Breastfeeding and the use of human milk. Pediatrics 2005, 115, 496–506. [Google Scholar]
- Fewtrell, M.; Wilson, D.C.; Booth, I.; Lucas, A. Six months of exclusive breast feeding: How good is the evidence? BMJ 2010, 342, c5955. [Google Scholar] [CrossRef] [Green Version]
- Arifeen, S.; Black, R.E.; Antelman, G.; Baqui, A.; Caulfield, L.; Becker, S. Exclusive breastfeeding reduces acute respiratory infection and diarrhea deaths among infants in Dhaka slums. Pediatrics 2001, 108, E67. [Google Scholar] [CrossRef] [Green Version]
- Davisse-Paturet, C.; Adel-Patient, K.; Divaret-Chauveau, A.; Pierson, J.; Lioret, S.; Cheminat, M.; Dufourg, M.; Charles, M.; de Lauzon-Guillain, B. Breastfeeding Status and Duration and Infections, Hospitalizations for Infections, and Antibiotic Use in the First Two Years of Life in the ELFE Cohort. Nutrients 2019, 11, 1607. [Google Scholar] [CrossRef] [Green Version]
- Victora, C.G.; Bahl, R.; Barros, A.J.; França, G.V.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Quesada, J.A.; Méndez, I.; Martín-Gil, R. The economic benefits of increasing breastfeeding rates in Spain. Int. Breastfeed. J. 2020, 15, 34. [Google Scholar] [CrossRef]
- Field, C.J. The immunological components of human milk and their effect on immune development in infants. J. Nutr. 2005, 135, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Eiwegger, T.; Stahl, B.; Schmitt, J.; Boehm, G.; Gerstmayr, M.; Pichler, J.; Dehlink, E.; Loibichler, C.; Urbanek, R.; Szépfalusi, Z. Human milk—Derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr. Res. 2004, 56, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Hunt, K.M.; Foster, J.A.; Forney, L.J.; Schütte, U.; Beck, D.L.; Zaid, A.; Fox, L.K.; Williams, J.E.; Mcguire, M.K.; Mcguire, M.A. Characterization of the Diversity and Temporal Stability of Bacterial Communities in Human Milk. PLoS ONE 2011, 6, e21313. [Google Scholar] [CrossRef] [Green Version]
- Assembly, W. Global Strategy for Infants and Young Child Feeding; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Xu, F.; Qiu, L.; Binns, C.W.; Liu, X. Breastfeeding in China: A review. Int. Breastfeed. J. 2009, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.H.; Zhang, Y.Q.; Zong, X.N.; Li, H. Changes of feeding patterns in Chinese city children under 2 years from 1985 to 2015: Results from a series of national cross-sectional surveys. World J. Pediatr. 2019, 15, 176–181. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, Z.; Lai, J.; Yu, D.; Chang, S.; Pang, X.; Jiang, S.; Zhang, H.; Bi, Y.; Wang, J.; et al. Exclusive Breastfeeding Rate and Complementary Feeding Indicators in China: A National Representative Survey in 2013. Nutrients 2018, 10, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Druet, C.; Stettler, N.; Sharp, S.; Simmons, R.K.; Ong, K.K. Prediction of childhood obesity by infancy weight gain: An individual-level meta-analysis. Paediatr. Perinat Epidemiol. 2011, 26, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, L.; Zhu, Y.; Huang, G.; Wang, P.P. The association between breastfeeding and childhood obesity: A meta-analysis. BMC Public Health 2014, 14, 1267. [Google Scholar] [CrossRef] [Green Version]
- Bell, K.A.; Wagner, C.L.; Feldman, H.A.; Shypailo, R.J.; Belfort, M.B. Associations of infant feeding with trajectories of body composition and growth. Am. J. Clin. Nutr. 2017, 106, 491–498. [Google Scholar] [CrossRef]
- Fall, C.H.; Borja, J.B.; Osmond, C.; Richter, L.; Bhargava, S.K.; Martorell, R.; Stein, A.D.; Barros, F.C.; Victora, C.G. Infant-feeding patterns and cardiovascular risk factors in young adulthood: Data from five cohorts in low- and middle-income countries. Int. J. Epidemiol. 2011, 40, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Graulau, R.E.; Banna, J.; Campos, M.; Gibby, C.; Palacios, C. Amount, Preparation and Type of Formula Consumed and Its Association with Weight Gain in Infants Participating in the WIC Program in Hawaii and Puerto Rico. Nutrients 2019, 11, 695. [Google Scholar] [CrossRef] [Green Version]
- Patro-Gołąb, B.; Zalewski, B.M.; Polaczek, A.; Szajewska, H. Duration of Breastfeeding and Early Growth: A Systematic Review of Current Evidence. Breastfeed. Med. 2019, 14, 218–229. [Google Scholar] [CrossRef]
- Bernardo, H.; Cesar, V.; World Health Organization. Long-Term Effects of Breastfeeding a Systematic Review; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Arora, A.; Manohar, N.; Hayen, A.; Bhole, S.; Eastwood, J.; Levy, S.; Scott, J.A. Determinants of breastfeeding initiation among mothers in Sydney, Australia: Findings from a birth cohort study. Int. Breastfeed J. 2017, 12, 39. [Google Scholar] [CrossRef] [Green Version]
- Hayashida, K.; Nakatsuka, M. Promoting factors of physical and mental development in early infancy: A comparison of preterm delivery/low birth weight infants and term infants. Environ. Health Prev. Med. 2014, 19, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.P.; Wachs, T.D.; Gardner, J.M.; Lozoff, B.; Wasserman, G.A.; Pollitt, E.; Carter, J.A. Child development: Risk factors for adverse outcomes in developing countries. Lancet 2007, 369, 145–157. [Google Scholar] [CrossRef]
- Black, R.E. Patterns of Growth in Early Childhood and Infectious Disease and Nutritional Determinants. Nestle Nutr. Inst. Workshop Ser. 2017, 87, 63–72. [Google Scholar] [PubMed]
- El, H.C.; Nunes, M.L. Sleep and weight-height development. J. Pediatr. 2019, 95 (Suppl. S1), S2–S9. [Google Scholar]
- Chaput, J.P.; Gray, C.E.; Poitras, V.J.; Carson, V.; Gruber, R.; Birken, C.S.; MacLean, J.E.; Aubert, S.; Sampson, M.; Tremblay, M.S. Systematic review of the relationships between sleep duration and health indicators in the early years (0–4 years). BMC Public Health 2017, 17, 855. [Google Scholar] [CrossRef]
- Gross, R.S.; Mendelsohn, A.L.; Yin, H.S.; Tomopoulos, S.; Gross, M.B.; Scheinmann, R.; Messito, M.J. Randomized controlled trial of an early child obesity prevention intervention: Impacts on infant tummy time. Obesity 2017, 25, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Grote, V.; Theurich, M.; Luque, V.; Gruszfeld, D.; Verduci, E.; Xhonneux, A.; Koletzko, B. Complementary Feeding, Infant Growth, and Obesity Risk: Timing, Composition, and Mode of Feeding. Nestle Nutr. Inst. Workshop Ser. 2018, 89, 93–103. [Google Scholar] [PubMed]
- Vehapoglu, A.; Yazıcı, M.; Demir, A.D.; Turkmen, S.; Nursoy, M.; Ozkaya, E. Early infant feeding practice and childhood obesity: The relation of breast-feeding and timing of solid food introduction with childhood obesity. J. Pediatric Endocrinol. Metab. 2014, 27, 1181–1187. [Google Scholar] [CrossRef]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.; Boyle, J.A.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; Rode, L.; et al. Association of Gestational Weight Gain With Maternal and Infant Outcomes: A Systematic Review and Meta-analysis. JAMA 2017, 317, 2207–2225. [Google Scholar] [CrossRef]
- Kattula, D.; Sarkar, R.; Sivarathinaswamy, P.; Velusamy, V.; Venugopal, S.; Naumova, E.N.; Muliyil, J.; Ward, H.; Kang, G. The first 1000 days of life: Prenatal and postnatal risk factors for morbidity and growth in a birth cohort in southern India. BMJ Open 2014, 4, e5404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenja, A.; Demissie, T.; Yohannes, B.; Yohannis, M. Determinants of exclusive breastfeeding practice to infants aged less than six months in Offa district, Southern Ethiopia: A cross-sectional study. Int. Breastfeed. J. 2016, 11, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Child Growth Standards based on lengthheight, weight and age. Acta Paediatr. 2006, 95, 76–85. [Google Scholar]
- Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age; World Health Organization: Geneva, Switzerland, 2019.
- Rasmussen, K.; Yaktine, A. Committee to Reexamine IOM Pregnancy Weight Guidelines; National Academies Press (US): Washington, DC, USA, 2009. [Google Scholar]
- Morgan, C.J. Reducing bias using propensity score matching. J. Nucl. Cardiol. 2018, 25, 404–406. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Guendelman, S.; Kosa, J.L.; Pearl, M.; Graham, S.; Goodman, J.; Kharrazi, M. Juggling Work and Breastfeeding: Effects of Maternity Leave and Occupational Characteristics. Pediatrics 2009, 123, 38–46. [Google Scholar] [CrossRef]
- Steurer, L.M. Maternity Leave Length and Workplace Policies’ Impact on the Sustainment of Breastfeeding: Global Perspectives. Public Health Nurs. 2017, 34, 286–294. [Google Scholar] [CrossRef]
- Abou-ElWafa, H.S.; El-Gilany, A.H. Maternal work and exclusive breastfeeding in Mansoura, Egypt. Fam. Pract. 2019, 36, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Ickes, S.B.; Oddo, V.M.; Sanders, H.K.; Nduati, R.; Denno, D.M.; Myhre, J.A.; Kinyua, J.; Iannotti, L.L.; Singa, B.; Farquhar, C.; et al. Formal maternal employment is associated with lower odds of exclusive breastfeeding by 14 weeks postpartum: A cross-sectional survey in Naivasha, Kenya. Am. J. Clin. Nutr. 2021, 113, 562–573. [Google Scholar] [CrossRef]
- Baker, M.; Milligan, K. Maternal employment, breastfeeding, and health: Evidence from maternity leave mandates. J. Health Econ. 2008, 27, 871–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbuanu, C.; Glover, S.; Probst, J.; Liu, J.; Hussey, J. The effect of maternity leave length and time of return to work on breastfeeding. Pediatrics 2011, 127, e1414–e1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gay, M.C.L.; Koleva, P.T.; Slupsky, C.M.; Toit, E.D.; Eggesbo, M.; Johnson, C.C.; Wegienka, G.; Shimojo, N.; Campbell, D.E.; Prescott, S.L.; et al. Worldwide Variation in Human Milk Metabolome: Indicators of Breast Physiology and Maternal Lifestyle? Nutrients 2018, 10, 1151. [Google Scholar] [CrossRef] [Green Version]
- Zong, X.; Li, H.; Zhang, Y.; Wu, H. Growth performance comparison of exclusively breastfed infants with partially breastfed and formula fed infants. PLoS ONE 2020, 15, e237067. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.L.; Loret, D.M.C.; Victora, C.G. Long-term consequences of breastfeeding on cholesterol, obesity, systolic blood pressure and type 2 diabetes: A systematic review and meta-analysis. Acta Paediatr. 2015, 104, 30–37. [Google Scholar] [CrossRef]
- Yadanar; Mya, K.S.; Witvorapong, N. Determinants of breastfeeding practices in Myanmar: Results from the latest nationally representative survey. PLoS ONE 2020, 15, e239515. [Google Scholar] [CrossRef]
- Gianni, M.L.; Roggero, P.; Mosca, F. Human milk protein vs. formula protein and their use in preterm infants. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Quigley, M.A.; Kelly, Y.J.; Sacker, A. Breastfeeding and hospitalization for diarrheal and respiratory infection in the United Kingdom Millennium Cohort Study. Pediatrics 2007, 119, e837–e842. [Google Scholar] [CrossRef]
- Diallo, A.F.; McGlothen-Bell, K.; Lucas, R.; Walsh, S.; Allen, C.; Henderson, W.A.; Cong, X.; McGrath, J. Feeding modes, duration, and diarrhea in infancy: Continued evidence of the protective effects of breastfeeding. Public Health Nurs. 2020, 37, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Horta, B.L.; Victora, C.G.; World Health Organization. Short-Term Effects of Breastfeeding: A Systematic Review on the Benefits of Breastfeeding on Diarrhoea and Pneumonia Mortality; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Hosea, B.H.; Cicalo, M.C.; Holland, C.D.; Field, C.J. The immunological components of human milk. Adv. Food Nutr. Res. 2008, 54, 45–80. [Google Scholar]
- Dalili, H.; Baghersalimi, A.; Dalili, S.; Pakdaman, F.; Hassanzadeh, R.A.; Abbasi, K.M.; Rezvany, S.M.; Koohmanaei, S. Is there any relation between Duration of breastfeeding and anemia? Iran J. Ped. Hematol. Oncol. 2015, 5, 218–226. [Google Scholar]
- Wang, F.; Liu, H.; Wan, Y.; Li, J.; Chen, Y.; Zheng, J.; Huang, T.; Li, D. Prolonged Exclusive Breastfeeding Duration Is Positively Associated with Risk of Anemia in Infants Aged 12 Months. J. Nutr. 2016, 146, 1707–1713. [Google Scholar] [CrossRef] [Green Version]
- Clark, K.M.; Li, M.; Zhu, B.; Liang, F.; Shao, J.; Zhang, Y.; Ji, C.; Zhao, Z.; Kaciroti, N.; Lozoff, B. Breastfeeding, Mixed, or Formula Feeding at 9 Months of Age and the Prevalence of Iron Deficiency and Iron Deficiency Anemia in Two Cohorts of Infants in China. J. Pediatr. 2017, 181, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, S.; Dai, Y.; Zhang, S.; Jian, H.; Yang, Z.; Huo, J.; Chen, C. Implementation of a programme to market a complementary food supplement (Ying Yang Bao) and impacts on anaemia and feeding practices in Shanxi, China. Matern. Child Nutr. 2011, 7, 96–111. [Google Scholar]
Covariates | Before Matching | After Matching | ||||
---|---|---|---|---|---|---|
Breastfeeding | Formula Feeding | p-Value | Breastfeeding | Formula Feeding | p-Value | |
N | 2892 | 1082 | 941 | 941 | ||
Age (day) | 177.4 ± 90.4 | 247.6 ± 88.9 | <0.001 | 235.7 ± 89.8 | 236.5 ± 89.0 | 0.888 |
Age group | <0.001 | 1.000 | ||||
0–2 months | 549 (19.0) | 71(6.6) | 71 (7.6) | 71 (7.6) | ||
3–5 months | 1081 (37.4) | 206(19.0) | 204 (20.7) | 204 (20.7) | ||
6–8 months | 716 (24.8) | 290(26.8) | 278 (29.5) | 278 (29.5) | ||
9–11 months | 546 (18.9) | 515 (47.6) | 388 (41.2) | 388 (41.2) | ||
Sex | 0.811 | 0.782 | ||||
Boys | 1469 (50.8) | 545 (50.4) | 472 (50.2) | 478 (50.8) | ||
Girls | 1423 (49.2) | 537 (49.6) | 469 (49.8) | 463 (49.2) | ||
Area | <0.001 | 0.670 | ||||
Big city | 673 (23.3) | 334 (30.9) | 288 (30.6) | 292 (31.0) | ||
Medium and small city | 807 (27.9) | 412 (38.1) | 307 (32.6) | 327 (34.8) | ||
Normal rural | 1043 (36.1) | 245 (22.6) | 246 (26.1) | 231 (24.5) | ||
Poor rural | 369 (12.8) | 91 (8.4) | 100 (10.6) | 91 (9.7) | ||
Annual income per capita | <0.001 | 0.973 | ||||
Low | 997 (34.5) | 290 (26.8) | 271 (28.8) | 275 (29.2) | ||
Medium | 851 (29.4) | 284 (26.2) | 247 (26.2) | 242 (25.7) | ||
High | 781 (27.0) | 384 (35.5) | 322 (34.2) | 318 (33.8) | ||
Unknown | 263 (9.1) | 124 (11.5) | 101 (10.7) | 106 (11.3) | ||
Born to term | 0.002 | 1.000 | ||||
Term | 2598 (89.8) | 935 (86.4) | 823 (87.5) | 823 (87.5) | ||
Preterm | 294(10.2) | 147(13.6) | 118(12.5) | 118(12.5) | ||
Birth weight | <0.001 | 0.545 | ||||
<2500 g | 50(1.7) | 66(6.1) | 35(3.7) | 44(4.7) | ||
2500–4000 g | 2682(92.7) | 970(89.6) | 865(91.9) | 853(90.6) | ||
>4000 g | 160(5.5) | 46(4.3) | 41(4.4) | 44(4.7) | ||
Sleep duration | 0.013 | 0.886 | ||||
Sufficient | 1727(59.7) | 693(64.0) | 598(63.5) | 595(63.2) | ||
Insufficient | 1165(40.3) | 389(36.0) | 343(36.5) | 346(36.8) | ||
Physical activity time | <0.001 | 0.806 | ||||
High | 1390 (48.1) | 761 (70.3) | 633 (67.3) | 628 (66.7) | ||
Low | 1502 (51.9) | 321 (29.7) | 308 (32.7) | 313 (33.3) | ||
Types of complementary food | 4.2 ± 2.2 | 3.0 ± 2.4 | <0.001 | 3.8 ± 2.4 | 4.0 ± 2.2 | 0.201 |
Maternal age | 0.057 | 0.979 | ||||
<20 years old | 118 (4.1) | 32 (3) | 30 (3.2) | 29 (3.1) | ||
20–35 years old | 2572 (88.9) | 956 (88.4) | 831 (88.3) | 830 (88.2) | ||
>35 years old | 202 (7.0) | 94 (8.7) | 80 (8.5) | 82 (8.7) | ||
Gestational weight gain | 0.560 | 0.872 | ||||
Insufficient | 784 (27.1) | 278 (25.7) | 231 (24.5) | 236 (25.1) | ||
Appropriate | 1051 (36.3) | 391 (36.1) | 345 (36.7) | 351 (37.3) | ||
Excessive | 1057 (36.5) | 413 (38.2) | 365 (38.8) | 354 (37.6) | ||
Mother’s education | <0.001 | 0.995 | ||||
Elementary school or below | 258 (8.9) | 74 (6.8) | 68(7.2) | 69 (7.3) | ||
Junior school | 1396 (48.3) | 391 (36.1) | 362(38.5) | 361 (38.4) | ||
High school | 579 (20.0) | 266 (24.6) | 222(23.6) | 218 (23.2) | ||
College and above | 659 (22.8) | 351 (32.4) | 289 (30.7) | 293 (31.1) | ||
Mother’s occupation | <0.001 | 0.827 | ||||
Professionals | 614 (21.2) | 349 (32.3) | 259 (27.5) | 271 (28.8) | ||
Agricultural industry | 334 (11.5) | 86 (7.9) | 77 (8.2) | 76 (8.1) | ||
Others | 1944 (67.2) | 647 (59.8) | 605 (64.3) | 594 (63.1) |
Breast Feeding | Formula Feeding | |
---|---|---|
0–2 months | ||
weight-for-age z score | 1.3 ± 1.6 | 1.5 ± 2.4 |
length-for-age z score | 0.4 ± 2.1 | 0.7 ± 3.1 |
weight-for-length z score | 1.1 ± 1.8 | 1.0 ± 1.9 |
3–5 months | ||
weight-for-age z score | 1.2 ± 1.1 | 1.0 ± 1.6 |
length-for-age z score | 0.7 ± 1.2 | 0.6 ± 1.7 |
weight-for-length z score | 0.9 ± 1.3 | 0.6 ± 1.7 |
6–8 months | ||
weight-for-age z score | 1.3 ± 1.2 | 1.1 ± 1.0 |
length-for-age z score | 0.7 ± 1.6 | 0.7 ± 1.7 |
weight-for-length z score | 0.9 ± 1.4 | 0.6 ± 1.4 * |
9–11 months | ||
weight-for-age z score | 1.1 ± 1.1 | 0.9 ± 1.3 * |
length-for-age z score | 0.3 ± 1.3 | 0.3 ± 1.3 |
weight-for-length z score | 1.0 ± 1.3 | 0.7 ± 1.4 ** |
N | Respiratory Diseases | OR (95% CI) | Diarrhea | OR (95% CI) | |
---|---|---|---|---|---|
0–2 months | |||||
Formula feeding | 71 | 8 (11.3) | ref | 10 (14.1) | ref |
Breastfeeding | 71 | 3 (4.2) | 0.35 (0.09, 1.37) | 3(4.2) | 0.27 (0.07, 1.02) |
3–5 months | |||||
Formula feeding | 191 | 38 (18.6) | ref | 29 (14.2) | ref |
Breastfeeding | 191 | 23 (11.3) | 0.56 (0.32, 0.97) * | 23 (11.3) | 0.77 (0.43, 1.38) |
6–8 months | |||||
Formula feeding | 278 | 65 (23.4) | ref | 42 (15.1) | ref |
Breastfeeding | 278 | 61 (21.9) | 0.92 (0.62, 1.37) | 25 (9.0) | 0.56 (0.33, 0.94) * |
9–11 months | |||||
Formula feeding | 388 | 105 (27.1) | ref | 53 (13.7) | ref |
Breastfeeding | 388 | 93 (24.3) | 0.85 (0.61, 1.17) | 53 (13.7) | 1.00 (0.66, 1.51) |
Total | |||||
Formula feeding | 928 | 216 (23.3) | ref | 134 (14.4) | ref |
Breastfeeding | 928 | 180 (19.4) | 0.79 (0.64, 0.99) * | 104 (11.2) | 0.75 (0.57, 0.98) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Lian, Y.; Yang, Z.; Duan, Y.; He, Y. Associations between Feeding Patterns and Infant Health in China: A Propensity Score Matching Approach. Nutrients 2021, 13, 4518. https://doi.org/10.3390/nu13124518
Fang Y, Lian Y, Yang Z, Duan Y, He Y. Associations between Feeding Patterns and Infant Health in China: A Propensity Score Matching Approach. Nutrients. 2021; 13(12):4518. https://doi.org/10.3390/nu13124518
Chicago/Turabian StyleFang, Yuehui, Yiyao Lian, Zhenyu Yang, Yifan Duan, and Yuna He. 2021. "Associations between Feeding Patterns and Infant Health in China: A Propensity Score Matching Approach" Nutrients 13, no. 12: 4518. https://doi.org/10.3390/nu13124518
APA StyleFang, Y., Lian, Y., Yang, Z., Duan, Y., & He, Y. (2021). Associations between Feeding Patterns and Infant Health in China: A Propensity Score Matching Approach. Nutrients, 13(12), 4518. https://doi.org/10.3390/nu13124518