A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cardiovascular Clinical Trials
3.1.1. Individual Cardiovascular Clinical Trials with Hass Avocados
- Healthy Overweight or Obese Subjects
- Overweight or Obese Type 2 Diabetic (T2D) Patients
- Normal Weight Subjects
3.1.2. Acute Postprandial Clinical Trials of Cardiovascular Health Biomarkers
- Hass Avocado vs. Animal Fat (hamburger) and Other Foods
- Hass Avocado vs. Carbohydrates
3.2. Body Weight Management
3.2.1. Observation Studies
- National Health and Nutrition Examination Surveys (NHANES)
- Australian Health Survey’s National Nutrition and Physical Activity Survey (NNPAS)
- Prospective Studies
3.2.2. Clinical Trials
- Weight Loss Diets
- Regular Diets
- Hunger, Appetite, and Satiety
3.3. Cognitive Function
3.3.1. Older Adults with Normal Weight
3.3.2. Young to Middle-Aged Overweight and Obese Adults
3.4. Colonic Microbiota
3.4.1. Regular Diets
3.4.2. Weight-Loss Diets
3.5. Carotenoid Bioavailability
4. Discussion
4.1. Biological Mechanisms
4.1.1. High Unsaturated to Saturated Fatty Acid Ratio
4.1.2. Viscous and Prebiotic
4.1.3. Low Energy Density (ED)
4.1.4. Highly Bioavailable Carotenoids
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- US Department of Agriculture and Health and Human Services. Dietary Guidelines for Americans 2020–2025, 9th ed.; US Department of Agriculture and Health and Human Services: Washington, DC, USA, 2020.
- Dreher, L.M. Whole fruits and fruit fiber emerging health effects. Nutrients 2018, 10, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, L.A.; Laska, M.N.; Larson, N.; Story, M. Review of the nutritional implications of farmers markets and community gardens: A call for evaluation and research efforts. Am. J. Diet. Assoc. 2010, 110, 399–408. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, C.E.O.; Nicklas, T.A.; Fulgoni, V.L. Avocado consumption by adults is associated with better nutrient intake, diet quality, and some measures of adiposity: National Health and Nutrition Examination Survey, 2001–2012. Intern. Med. Rev. 2017, 3, 1–23. [Google Scholar]
- Dreher, M.L.; Davenport, A.J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Ford, N.A.; Liu, A.G. The forgotten fruit: A case for the consuming avocado within the traditional Mediterranean diet. Front. Nutr. 2020, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Avocados, Raw, California and Florida, US Department of Agriculture Food Data Central, Legacy 1717069038. 2019. Available online: fdc.nal.usda.gov (accessed on 11 June 2021).
- Yanty, N.A.M.; Marikkar, J.M.N.; Long, K. Effect of variety differences on composition and thermal characteristic of avocado oil. J. Am. Oil Chem. Soc. 2011, 881, 997–2008. [Google Scholar]
- Peou, S.; Peou, S.; Millard-Hasting, B.; Shah, S.A. Impact of avocado-enriched diets on plasma lipoproteins: A meta-analysis. J. Clin. Lipidol. 2016, 10, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Caldas, A.P.S.; Chaves, L.O.; da Silva, L.L.; de Castro Morais, D.; de Cassia Goncalves Alfenas, R. Mechanisms involved in the cardioprotective effect of avocado consumption: A Systematic review. Int. J. Food Prop. 2017, 20, 1675–1685. [Google Scholar]
- Mahmassani, H.A.; Avendano, E.E.; Raman, G.; Johnson, E.J. Avocado consumption and risk factors for heart disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 523–536. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Bordi, P.L.; Fleming, J.A.; Hill, A.M.; Kris-Etherton, P.M. Effect of a moderate fat diet with and without avocados on lipoprotein particle number, size and subclasses in overweight and obese adults: A randomized, controlled trial. J. Am. Heart Assoc. 2015, 4, e001355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Tao, L.; Stanley, T.H.; Huang, K.-H.; Lambert, J.D.; Kris-Etherton, P.M. A moderate-fat diet with one avocado per day increases plasma antioxidants and decreases the oxidation of small, dense LDL in adults with overweight and obesity: A randomized controlled trial. J. Nutr. 2020, 150, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Carranza-Madrigal, J.; Herrera-Abarca, J.E.; Alvizouri-Munoz, M.; Del Rosario Alvarado-Jimenez, M.; Chavez-Carbajal, F. Effects of a vegetarian diet vs. a vegetarian diet enriched with avocado in hypercholesterolemic patients. Arch. Med. Res. 1997, 28, 537–541. [Google Scholar]
- Carranza, J.; Alvizouri, M.; Alvarado, M.; Chavez, F.; Gomez, M.; Herrera, J.E. Effects of avocado on serum lipids levels in patients with dyslipidemia phenotypes II and IV. Arch. Inst. Cardiol. Mex. 1995, 65, 342–348. (in Spanish). [Google Scholar] [PubMed]
- Lerman-Garber, I.; Ichazo-Cerro, S.; Zamora-Gonzalez, J.; Posadas-Romero, C. Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 1994, 17, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Carranza-Madrigal, J.C.; Alvizouri, M.A.; Herrera Abarca, J.E.; Chavez Carbajal, F.C. Efectos del Aguacate como fuente de acidos grasos monoinsaturados en lipidos sericos, metabolismo de la glucosa y reologia en pacientes con diabetes tipo 2 [Effects of avocado as a source of monounsaturated fatty acids on serum lipids, glucose metabolism, and rheology in patients with type 2 diabetes]. Med. Intern. Mex. 2008, 24, 267–272. [Google Scholar]
- Scott, T.M.; Rasmussen, H.M.; Chen, O.; Johnson, E.J. Avocado consumption increases macular pigment density in older adults: A randomized, controlled trial. Nutrients 2016, 9, 919. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wong, A.; Henning, S.M.; Zhang, Y.; Jones, A.; Zerlin, A.; Thames, G.; Bowerman, S.; Tseng, C.-H.; Heber, D. Hass avocado modulates postprandial vascular reactivity and postprandial inflammatory responses to a hamburger meal in volunteers. J. Food Funct. 2013, 4, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Raya-Farías, A.; Carranza-Madrigal, J.; Campos-Pérez, Y.; Cortés-Rojo, C.; Sánchez- Pérez, T.A. El aguacate inhibe el estrés oxidativo y la disfunción endotelial inducida por el consumo de una hamburguesa en pacientes con syndrome metabólico (Avocado inhibits oxidative stress and endothelial dysfunction induced by the intake of a hamburger in patients with metabolic syndrome). Med. Int. Méx. 2018, 34, 840–847. [Google Scholar]
- Prado-Zavala, L.M.; Campos-Pérez, Y.; Ayala-Aceves, F.; Carranza-Madrigal, J. Avocado has better endothelial effects than other foods in apparently healthy young men. Med. Int. Méx 2020, 36, 476–484. [Google Scholar]
- Park, E.; Edirisinghe, I.; Burton-Freeman, B. Avocado fruit on postprandial markers of cardio-metabolic risk: A randomized controlled dose response trial in overweight and obese men and women. Nutrients 2018, 10, 1287. [Google Scholar] [CrossRef] [Green Version]
- Fulgoni, V.L.; Dreher, M.; Davenport, J. Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001–2008. Nutr. J. 2013, 12, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertoia, M.L.; Mukamal, K.J.; Cahill, L.E.; Hou, T.; Ludwig, D.S.; Mozaffarian, D.; Willett, W.C.; Hu, F.B. Changes in intake of fruits and vegetables and weight change in United States men and women followed for up to 24 years: Analysis from three prospective cohort studies. PLoS Med. 2015, 12, e1001878. [Google Scholar] [CrossRef]
- Heskey, C.; Oda, K.; Sabate, J. Avocado intake and longitudinal weight and body mass index changes in an adult cohort. Nutrients 2019, 11, 691. [Google Scholar] [CrossRef] [Green Version]
- Henning, S.M.; Yang, J.; Woo, S.L.; Lee, R.-P.; Huang, J.; Rasmusen, A.; Carpenter, C.L.; Thames, G.; Gilbuena, I.; Tseng, C.-H.; et al. Hass avocado inclusion in a weight-loss diet supported weight loss and altered gut microbiota: A 12-week randomized, parallel-controlled trial. Curr. Dev. Nutr. 2019, 3, nzz068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.A.; Edwards, C.G.; Thompson, S.V.; Hannon, B.A.; Burke, S.K.; Walk, A.D.M.; Mackenzie, R.W.A.; Reeser, G.E.; Fiese, B.H.; Burd, N.A.; et al. Avocado consumption, abdominal adiposity, and oral glucose tolerance among persons with overweight and obesity. J. Nutr. 2021, 151, 2513–2521. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, Y.; Edirisinghe, I.; Park, E.; Burton-Freeman, B. Using the avocado to test the satiety effects of a fat-fiber combination in place of carbohydrate energy in a breakfast meal in overweight and obese men and women: A randomized clinical trial. Nutrients 2019, 11, 952. [Google Scholar] [CrossRef] [Green Version]
- Wien, M.; Haddad, E.; Oda, K.; Sabate, J. A randomized 3 × 3 crossover study to evaluate the effects of Hass avocado intake on post-ingestive satiety, glucose and insulin levels, and subsequent energy intake in overweight adults. Nutr. J. 2013, 12, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddad, E.; Wien, M.; Oda, K.; Sabate, J. Postprandial gut hormone responses to Hass avocado meals and their association with visual analog scores in overweight adults: A randomized 3 × 3 crossover trial. Eating Behav. 2018, 31, 35–40. [Google Scholar] [CrossRef]
- Edwards, C.G.; Walk, A.M.; Thompson, S.V.; Reeser, G.E.; Erdman, J.W.; Burd, N.A.; Holscher, H.D.; Khan, N.A. Effects of 12-week avocado consumption on cognitive function among adults with overweight and obesity. Int. J. Psychophysiol. 2020, 148, 13–24. [Google Scholar] [CrossRef]
- Guan, V.; Neale, E.; Probst, Y. Consumption of avocado and associations with nutrient, food, and anthropometric measures in a representative survey of Australians: A secondary analysis of the 2011–2012 National Nutrition and Physical Activity Survey. Br. J. Nutr. 2021, 1–19. [Google Scholar] [CrossRef]
- Cheng, F.W.; Ford, N.A.; Taylor, M. US older adults that consume avocado or guacamole have better cognition than non-consumers: National Health and Nutrition Examination Survey 2011–2014. Front. Nutr. 2021. [Google Scholar] [CrossRef]
- Thompson, S.V.; Bailey, M.A.; Taylor, A.M.; Kaczmarek, J.L.; Mysonhimer, A.R.; Edwards, C.G.; Reeser, G.E.; Burd, N.A.; Khan, N.A.; Holscher, H.D. Avocado consumption alters gastrointestinal bacteria abundance and microbial metabolite concentrations among adults with overweight or obesity: A randomized controlled trial. J. Nutr. 2021, 151, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Unlu, N.Z.; Bohn, T.; Clinton, S.K.; Schwartz, S.J. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J. Nutr. 2005, 135, 431–436. [Google Scholar] [CrossRef]
- Kopec, R.E.; Cooperstone, J.L.; Schweiggert, R.M.; Young, G.S.; Harrison, E.H.; Francis, D.M.; Clinton, S.K.; Schwartz, S.J. Avocado consumption enhances human postprandial provitamin A absorption and conversion from a novel high-β-carotene tomato sauce and from carrots. J. Nutr. 2014, 144, 1158–1166. [Google Scholar] [CrossRef] [Green Version]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.L.; et al. Dietary fats and cardiovascular disease a presidential advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, S.; Des Rosiers, C.; Gayda, M.; Nozza, A.; Thorin, E.; Tardif, J.-C.; Nigam, A. A single Mediterranean meal does not impair postprandial flow-mediated dilation in healthy mean with subclinical metabolic dysregulations. Appl. Physiol. Nutr. Metab. 2016, 41, 888–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tentolouris, N.; Arapostathi, C.; Perrea, D.; Kyriaki, D.; Revenas, C.; Katsilambros, N. Differential effects of two isoenergetic meals rich in saturated or monounsaturated fat on endothelial function in subjects with type 2 diabetes. Diabetes Care 2008, 31, 2276–2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newens, K.J.; Thompson, A.K.; Jackson, K.G.; Wright, J.; Williams, C.M. Acute effects of elevated NEFA on vascular function: A comparison of SFA and MUFA. Br. J Nutr. 2011, 105, 1343–1351. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.A.; Lopez-Miranda, J.; Perez-Martinez, P.; Marin, C.; Moreno, R.; Gomez, P.; Paniagua, J.A.; Perez-Jimenez, F. A monounsaturated fatty acid-rich diet reduces macrophage uptake of plasma oxidized low-density lipoprotein in healthy young men. Br. J. Nutr. 2008, 100, 569–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradinaru, D.; Borsa, C.; Ionescu, C.; Prada, G.; Oxidized, I. LDL and NO synthesis—Biomarkers of endothelial dysfunction and aging. Mech. Aging Develop. 2015, 151, 101–113. [Google Scholar] [CrossRef]
- Joris, P.J.; Mensink, R.P. Role of cis-monounsaturated fatty acids in the prevention of coronary heart disease. Curr. Atheroscler. Rep. 2016, 18, 281–287. [Google Scholar] [CrossRef] [Green Version]
- DiNicolontonio, J.J.; O’Keefe, J.H. Good fats versus bad fats: A comparison of fatty acids in the promotion of insulin resistance, inflammation, and obesity. Mo. Med. 2017, 114, 303–307. [Google Scholar]
- Tutunchi, H.; Ostadrahimi, A.; Saghafi-Asl, M. The effects of diets enriched in monounsaturated oleic acid on the management and prevention of obesity: A systematic review of human intervention studies. Adv. Nutr. 2020, 11, 864–877. [Google Scholar] [CrossRef]
- Sihag, J.; Jones, P.J.H. Oleoylethanolamide: The role of a bioactive lipid amide in modulating eating behaviour. Obes. Rev. 2018, 19, 178–197. [Google Scholar] [CrossRef]
- Piers, L.S.; Walker, K.Z.; Stoney, R.M.; Soares, M.J.; O’Dea, K. Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br. J. Nutr. 2003, 90, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Kris-Etherton, P.M.; West, S.G.; Lamarche, B.; Jenkins, D.J.A.; Fleming, J.A.; McCrea, C.E.; Pu, S.; Couture, P.; Connelly, P.W.; et al. Effects of canola and high-oleic acid canola oils on abdominal fat mass in individuals with central obesity. Obesity 2016, 24, 2261–2268. [Google Scholar] [CrossRef] [Green Version]
- Lehert, P.; Villaseca, P.; Hogervorst, E.; Maki, P.M.; Henderson, V.W. Individually modifiable risk factors to ameliorate cognitive aging: A systematic review and meta-analysis. Climacteric 2015, 18, 678–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Brink, A.C.; Brouwer-Brolsma, E.M.; Berendsen, A.A.; van de Rest, M. The Mediterranean, dietary approaches to stop hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease-a review. Adv. Nutr. 2019, 10, 1040–1065. [Google Scholar] [CrossRef]
- Martinez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; San Julian, B.; Sanchez-Tainta, A.; Corella, D.; Lamuela-Raventos, R.M.; Martinez, J.A.; Martinez-Gonzalez, M.A. Virgin olive oil supplementation and long-term cognition: The Predimed-Navarra randomized, trial. J. Nutr. Health Aging 2013, 17, 544–552. [Google Scholar] [CrossRef]
- Sakura, K.; Shen, C.; Shiraishi, I.; Hisatsune, T. Consumption of oleic acid on the preservation of cognitive functions in Japanese elderly individuals. Nutrients 2021, 13, 284. [Google Scholar] [CrossRef]
- Cao, G.-Y.; Li, M.; Han, L.; Tayic, F.; Yao, S.-S.; Huang, Z.; Ai, P.; Liu, Y.-Z.; HU, Y.-H.; Xu, B. Dietary fat intake and cognitive function among older populations: A systematic review and meta-analysis. J. Prev. Alz. Dis. 2019, 3, 204–211. [Google Scholar] [CrossRef]
- Keogh, J.B.; Grieger, J.A.; Noakes, M.; Clifton, P.M. Flow-mediated dilatation is impaired by a high-saturated fat diet but not by high-carbohydrate diet. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1278–1279. [Google Scholar] [CrossRef] [Green Version]
- Nooyens, A.C.J.; Yildiz, B.; Hendriks, L.G.; Bas, S.; van Boxtel, M.P.J.; Picavet, H.S.J.; Boer, J.M.A.; Verschuren, W.M.M. Adherence to dietary guidelines and cognitive decline from middle age: The Doetinchem Cohort Study. Am. J. Clin. Nutr. 2021, 114, 871–881. [Google Scholar]
- Naiberg, M.R.; Newton, D.F.; Goldstein, B.I. Flow-mediated dilation and neurocognition: Systematic review and future directions. Psychosom Med. 2016, 78, 192–207. [Google Scholar] [CrossRef]
- Csipo, T.; Lipecz, A.; Fulop, G.A.; Hand, R.A.; Ngo, B.-T.N.; Dzialendzik, M.; Tarantini, S.; Balasubramanian, P.; Kiss, T.; Yabluchanska, V.; et al. Age-related decline in peripheral vascular health predicts cognitive impairment. GeroScience 2019, 41, 125–136. [Google Scholar] [CrossRef]
- National Cholesterol Education Program; National Heart, Lung and Blood Institute; National Institutes of Health. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on the Detection, Evaluation and Treatment of High Blood Cholesterol in Adults; NIH Publication No.02-5215; National Institutes of Health: Bethesda, MD, USA, 2002; p. 116.
- Brown, L.; Rosner, B.R.; Willet, W.W.; Sacks, F.M. Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr. 1999, 69, 30–42. [Google Scholar] [CrossRef]
- Wu, H.; Dwyer, K.M.; Fan, Z.; Shircore, A.; Fan, J.; Dwyer, J.H. Dietary fiber and progression of atherosclerosis: The Los Angeles Atherosclerosis Study. Am. J. Clin. Nutr. 2003, 78, 1085–1089. [Google Scholar] [CrossRef] [Green Version]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.L.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013, 347, 6879. [Google Scholar] [CrossRef] [Green Version]
- Schoeler, M.; Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, A.L.; Backhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 2017, 14, 79–87. [Google Scholar] [CrossRef]
- Liu, S.; Willett, W.C.; Manson, J.E.; Hu, F.B.; Rosner, B.; Coldit, G. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am. J. Clin. Nutr. 2003, 78, 920–927. [Google Scholar]
- Romaguera, D.; Angquist, L.; Du, H.; Jakobsen, M.U.; Forouhi, N.G.; Halkjaer, J.; Feskens, E.J.; Masala, G.; Steffen, A. Dietary determinants of changes in waist circumference adjusted for body mass index—A proxy measure of visceral adiposity. PLoS ONE 2010, 5, e11588. [Google Scholar] [CrossRef] [Green Version]
- Ferdowsian, H.R.; Barnard, N.D.; Hoover, V.I.; Katcher, H.I.; Levin, S.M.; Green, A.A.; Cohen, J.L. A multi-component intervention reduced body weight and cardiovascular risk at a GEICO corporate site. Am. J. Health Promt. 2010, 24, 384–387. [Google Scholar] [CrossRef]
- Bajerska, J.; Chmurzynska, A.; Muzsik, A.; Krzyzanowska, P.; Madry, E.; Malinowska, A.M.; Walkowiak, J. Weight loss and metabolic health effects from energy-restricted Mediterranean and Central-European diets in postmenopausal women: A randomized controlled trial. Sci. Rep. 2018, 8, 11170. [Google Scholar] [CrossRef]
- Miketinas, D.; Bray, G.A.; Beyl, R.A.; Ryan, D.H.; Sacks, F.M.; Champagne, C.M. Fiber intake predicts weight loss and dietary adherence in adults consuming calorie-restricted diets: The POUNDS lost (preventing overweight using novel dietary strategies) study. J. Nutr. 2019, 149, 1742–1748. [Google Scholar] [CrossRef]
- Jovanovski, E.; Mazhar, N.; Komishon, A.; Khayyat, R.; Li, D.; Mejia, A.B.; Khan, T.; Jenkins, A.L.; Smirvic-Duvnjak, L.; Vuksan, V. Can dietary viscous fiber affect body weight independently of an energy-restricted diet? A systematic review and meta- analysis of randomized controlled trials. Am. J. Clin. Nutr. 2020, 111, 471–485. [Google Scholar] [CrossRef]
- Jovanovski, E.; Mazhar, N.; Komishon, A.; Khayyat, R.; Li, D.; Mejia, A.B.; Khan, T.; Jenkins, A.L.; Smirvic-Duvnjak, L.; Vuksan, V. Effect of viscous fiber supplementation on obesity indicators in individuals consuming calorie-restricted diets: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Nutr. 2021, 60, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.L.; Ford, N.A. A comprehensive critical assessment of increased fruit and vegetable intake on weight loss in women. Nutrients 2020, 12, 1919. [Google Scholar] [CrossRef]
- Seganfredo, F.B.; Blume, C.A.; Moehlecke, M.; Giongo, M.; Casagrande, D.S.; Spolidoro, J.V.N.; Padoin, A.V.; Schaan, B.D.; Mottin, C.C. Weight-loss interventions and gut microbiota change in overweight and obese patients: A systematic review. Obes. Rev. 2017, 18, 832–851. [Google Scholar] [CrossRef]
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microb. 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Cui, J.; Lan, Y.; Zhao, C.; Du, H.; Han, Y.; Gao, W.; Xiao, H.; Zheng, J. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1514–1532. [Google Scholar] [CrossRef] [Green Version]
- Noble, E.E.; Hsu, T.M.; Kanoski, S.E. Gut to brain dysbiosis: Mechanisms linking Western diet consumption, the microbiome, and cognitive impairment. Front. Behav. Neurosci. 2017, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bourassa, M.W.; Alim, I.; Bultman, S.J.; Ratan, R.R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci. Lett. 2016, 625, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, M.C.; Nocera, J.R.; Kelleher, J.L.; Addison, O. Prebiotic intake in older adults: Effects on brain function and behavior. Curr. Nutr. Rep. 2019, 8, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Chen, C.; Xun, P.; Daviglus, M.L.; Steffen, L.M.; Jacobs, D.R.; Van Horn, L.; Sidney, S.; Zhu, N.; Qin, B.; et al. Intake of vegetables and fruits through young adulthood is associated with better cognitive function in middle in the US general population. J. Nutr. 2019, 149, 1424–1433. [Google Scholar] [CrossRef]
- Brunstrom, J.M.; Drake, A.C.L.; Forde, C.G.; Rogers, P.J. Undervalued and ignored: Are humans poorly adapted to energy dense foods? Appetite 2018, 120, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K.; Graubard, B.I. Energy density of diets reported by American adults: Association with food group intake and body weight. Int. J. Obes. (Lond.) 2005, 29, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Savage, J.S.; Marini, M.; Birch, L.L. Dietary energy density predicts women’s weight change over 6 y. Am. J. Clin. Nutr. 2008, 88, 677–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leermakers, E.T.M.; Darweesh, S.K.L.; Baena, C.P.; Moreira, E.M.; van Lent, D.M.; Tielemans, M.J.; Muka, T.; Vitezova, A.; Chowdhury, R.; Bramer, W.M.; et al. The effects of lutein on cardiometabolic health across the life course: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2016, 103, 481–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, D.; Witztum, J.L. Oxidized low-density lipoprotein and atherosclerosis. Arterioscler. Thromb. Vac. Biol. 2010, 30, 2311–2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.-R.; Zou, Z.-Y.; Huang, Y.-M.; Xiao, L.; Lin, X.-M. Serum carotenoids in relation to risk factors for development of atherosclerosis. Clin. Biochem. 2012, 45, 1357–1361. [Google Scholar] [CrossRef]
- Zou, Z.-Y.; Xu, X.-R.; Lin, X.-M.; Zhang, H.-B.; Xiao, X.; Ouyang, L.; Huang, Y.-M.; Wang, X.; Liu, Y.-Q. Effects of lutein and lycopene on carotid-media thickness in Chinese subjects with subclinical atherosclerosis: A randomised, double blind, placebo-controlled trial. Br. J. Clin. Nutr. 2014, 111, 474–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.M.; Koutsidis, G.; Lodge, J.K.; Ashor, A.; Siervo, M.; Lara, J. Tomato and lycopene supplementation and cardiovascular risk factors; a systematic review and meta-analysis. Atherosclerosis 2017, 257, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Yagi, A.; Nouchi, R.; Butler, L.; Kawashima, R. Lutein has a positive impact on brain health in healthy older adults: A systematic review of randomized controlled trials and cohort studies. Nutrients 2021, 13, 1746. [Google Scholar] [CrossRef]
- Nouchi, R.; Suiko, T.; Kimura, E.; Takenaka, H.; Murakoshi, M.; Uchiyama, A.; Aono, M.; Kawashima, R. Effects of lutein and astaxanthin intake on the improvement of cognitive functions among healthy adults: A systematic review of randomized controlled trials. Nutrients 2020, 12, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.H.; Lee, J.C.-Y.; Leung, H.H.; Lam, W.C.; Fu, Z.; Lo, A.C.Y. Lutein supplementation for eye diseases. Nutrients 2020, 12, 1721. [Google Scholar] [CrossRef]
- Vishwanathan, R.; Iannaccone, A.; Scott, T.M.; Kritchevsky, S.B.; Jennings, B.J.; Carboni, G.; Forma, G.; Satterfield, S.; Harris, T.; Johnson, K.C.; et al. Macular pigment optical density is related to cognitive function in older people. Age Aging 2014, 43, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Moran, N.E.; Mohn, E.S.; Hason, N.; Erdman, J.W.; Johnson, E.J. intrinsic and extrinsic factors impacting absorption, metabolism, and health effects of dietary carotenoids. Adv. Nutr. 2018, 9, 465–492. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.J.; McDonald, K.; Caldarella, S.M.; Chung, H.-Y.; Troen, A.M.; Snodderly, D.M. Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr. Neurosci. 2008, 11, 75–83. [Google Scholar] [CrossRef] [PubMed]
Fresh Fruit and Vegetables | Pooled 4 Year Weight Change (kg) per Serving (95% CI) |
---|---|
Blueberries | −0.63 (−0.76, −0.50) |
Prunes | −0.58 (−1.04, −0.13) |
Apples or Pears | −0.56 (−0.74, −0.27) |
Strawberries | −0.39 (−0.64, −0.01) |
Grapes | −0.32 (−0.45, −0.18) |
Hass Avocados | −0.21 (−0.59, 0.17) |
Grapefruit | −0.21 (−0.29, −0.12) |
Melon | −0.13 (−0.41, 0.15) |
Bananas | −0.10 (−0.22, 0.02) |
Oranges | −0.07 (−0.17, 0.04) |
Cauliflower | −0.62 (−1.03, −0.21) |
String beans | −0.44 (−0.73, −0.15) |
Peppers | −0.35 (−0.52, −0.18) |
Broccoli | −0.39 (−0.34, −0.20) |
Greeny leafy vegatables | −0.24 (−0.38, −0.10) |
Carrots | −0.19 (−0.23, 0.15) |
Beans | −0.18 (−0.36, −0.005) |
Mixed vegetables | −0.15 (−0.31, 0.01) |
Cabbage | 0.18 (−0.10, 0.45) |
Potatoes | 0.34 (0.09, 0.59) |
Peas | 0.59 (0.17, 0.86) |
Corn | 0.93 (0.43, 1.43) |
Flanker Test | Baseline | Post-Testing | ||
---|---|---|---|---|
Control Diet | Avocado Diet | Control Diet | Avocado Diet | |
Overall accuracy % | 93.5 (4.7) | 93.4 (5.3) | 92.5 (5.9) | 95.6 (3.5) ** |
Congruent accuracy % | 97.2 (3.5) | 96.5 (5.3) | 95.7 (4.9 | 97.8 (2.9) * |
Incongruent accuracy % | 89.4 (7.6) | 90.4 (6.3) | 89.2(8.2) | 93.4 (4.7) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dreher, M.L.; Cheng, F.W.; Ford, N.A. A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms. Nutrients 2021, 13, 4376. https://doi.org/10.3390/nu13124376
Dreher ML, Cheng FW, Ford NA. A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms. Nutrients. 2021; 13(12):4376. https://doi.org/10.3390/nu13124376
Chicago/Turabian StyleDreher, Mark L., Feon W. Cheng, and Nikki A. Ford. 2021. "A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms" Nutrients 13, no. 12: 4376. https://doi.org/10.3390/nu13124376
APA StyleDreher, M. L., Cheng, F. W., & Ford, N. A. (2021). A Comprehensive Review of Hass Avocado Clinical Trials, Observational Studies, and Biological Mechanisms. Nutrients, 13(12), 4376. https://doi.org/10.3390/nu13124376