Prospective Association of the Portfolio Diet with All-Cause and Cause-Specific Mortality Risk in the Mr. OS and Ms. OS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Ascertainment of Mortality Outcomes
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Characteristics of OS Study Participants
3.2. Portfolio Diet Score and Mortality Outcomes
3.3. Sensitivity Analysis and Competing Risk Analysis
4. Discussion
4.1. Summary of Findings
4.2. Comparison with Previous Literature
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landberg, R.; Hanhineva, K. Biomarkers of a Healthy Nordic Diet-From Dietary Exposure Biomarkers to Microbiota Signatures in the Metabolome. Nutrients 2019, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Abiemo, E.E.; Alonso, A.; Nettleton, J.A.; Steffen, L.M.; Bertoni, A.G.; Jain, A.; Lutsey, P.L. Relationships of the Mediterranean dietary pattern with insulin resistance and diabetes incidence in the Multi-Ethnic Study of Atherosclerosis (MESA). Br. J. Nutr. 2013, 109, 1490–1497. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.Q.; Yang, Z.; Duan, M.L. Dietary approach to stop hypertension diet and risk of coronary artery disease: A meta-analysis of prospective cohort studies. Int. J. Food Sci. Nutr. 2019, 70, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Jones, P.J.; Lamarche, B.; Kendall, C.W.; Faulkner, D.; Cermakova, L.; Gigleux, I.; Ramprasath, V.; de Souza, R.; Ireland, C.; et al. Effect of a dietary portfolio of cholesterol-lowering foods given at 2 levels of intensity of dietary advice on serum lipids in hyperlipidemia: A randomized controlled trial. JAMA 2011, 306, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Chiavaroli, L.; Wong, J.M.; Kendall, C.; Lewis, G.F.; Vidgen, E.; Connelly, P.W.; Leiter, L.A.; Josse, R.G.; Lamarche, B. Adding monounsaturated fatty acids to a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia. CMAJ 2010, 182, 1961–1967. [Google Scholar] [CrossRef] [Green Version]
- Expert Panel on Detection Evaluation. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, L.; Nishi, S.K.; Khan, T.A.; Braunstein, C.R.; Glenn, A.J.; Mejia, S.B.; Rahelic, D.; Kahleova, H.; Salas-Salvado, J.; Jenkins, D.J.A.; et al. Portfolio Dietary Pattern and Cardiovascular Disease: A Systematic Review and Meta-analysis of Controlled Trials. Prog. Cardiovasc. Dis. 2018, 61, 43–53. [Google Scholar] [CrossRef]
- Glenn, A.J.; Boucher, B.A.; Kavcic, C.C.; Khan, T.A.; Paquette, M.; Kendall, C.W.C.; Hanley, A.J.; Jenkins, D.J.A.; Sievenpiper, J.L. Development of a Portfolio Diet Score and Its Concurrent and Predictive Validity Assessed by a Food Frequency Questionnaire. Nutrients 2021, 13, 2850. [Google Scholar] [CrossRef]
- Glenn, A.J.; Hernandez-Alonso, P.; Kendall, C.W.C.; Martinez-Gonzalez, M.A.; Corella, D.; Fito, M.; Martinez, J.A.; Alonso-Gomez, A.M.; Warnberg, J.; Vioque, J.; et al. Longitudinal changes in adherence to the portfolio and DASH dietary patterns and cardiometabolic risk factors in the PREDIMED-Plus study. Clin. Nutr. 2021, 40, 2825–2836. [Google Scholar] [CrossRef]
- Glenn, A.J.; Lo, K.; Jenkins, D.J.; Boucher, B.A.; Hanley, A.J.; Kendall, C.; Manson, J.; Vitolins, M.Z.; Snetselaar, L.; Liu, S.; et al. Relationship Between a Plant-Based Dietary Portfolio and Risk of Cardiovascular Disease: Findings From the Women’s Health Initiative Prospective Cohort Study. J. Am. Heart Assoc. 2021, 10, e021515. [Google Scholar] [CrossRef]
- Wong, I.O.; Lam, Y.T.; Lam, K.F.; Cowling, B.J.; Leung, G.M. Demographic and Epidemiological Contributions to Recent Trends in Cancer Incidence in Hong Kong. Cancer 2021, 13, 5727. [Google Scholar] [CrossRef]
- Chan, R.; Leung, J.; Tang, N.; Woo, J. Dietary patterns and telomere length in community-dwelling Chinese older men and women: A cross-sectional analysis. Eur. J. Nutr. 2020, 59, 3303–3311. [Google Scholar] [CrossRef]
- Liu, Z.M.; Tse, L.A.; Chan, D.; Wong, C.; Wong, S.Y.S. Dietary sugar intake was associated with increased body fatness but decreased cardiovascular mortality in Chinese elderly: An 11-year prospective study of Mr and Ms OS of Hong Kong. Int. J. Obes. 2018, 42, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Leung, S.; Ho, S.; Lam, T.; Janus, E. A food frequency questionnaire for use in the Chinese population in Hong Kong: Description and examination of validity. Nutr. Res. 1997, 17, 1633–1641. [Google Scholar] [CrossRef]
- Kaartinen, N.; Tapanainen, H.; Reinivuo, H.; Pakkala, H.; Aalto, S.; Raulio, S.; Männistö, S.; Korhonen, T.; Virtanen, S.; Borodulin, K.; et al. The Finnish National Dietary Survey in Adults and Elderly (FinDiet 2017). EFSA Supporting Publ. 2020, 17, 1914E. [Google Scholar] [CrossRef]
- Ras, R.T.; van der Schouw, Y.T.; Trautwein, E.A.; Sioen, I.; Dalmeijer, G.W.; Zock, P.L.; Beulens, J.W. Intake of phytosterols from natural sources and risk of cardiovascular disease in the European Prospective Investigation into Cancer and Nutrition-the Netherlands (EPIC-NL) population. Eur. J. Prev. Cardiol. 2015, 22, 1067–1075. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Sur, P.; Fay, K.; Huntley, B.; Salama, J.; Lee, A.; Cornaby, L.; Horino, M.; Murray, C.; Afshin, A. The Global Nutrient Database: Availability of macronutrients and micronutrients in 195 countries from 1980 to 2013. Lancet Planet Health 2018, 2, e353–e368. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Huang, W.; Hu, Y.; Zhang, L.; Shao, Y.; Wang, M.; Zhang, F.; Zhao, Z.; Mei, X.; Li, T.; et al. Phytosterol Profiles of Common Foods and Estimated Natural Intake of Different Structures and Forms in China. J. Agric. Food Chem. 2018, 66, 2669–2676. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Yang, Y.X.; Feng, M.Y. Contents of phytosterols in vegetables and fruits commonly consumed in China. Biomed. Environ. Sci. 2008, 21, 449–453. [Google Scholar] [CrossRef]
- Han, J.; Yang, Y.; Feng, M.; Wang, G. Analysis of phytosterol contents in Chinese plant food and primary estimation of its intake of people. Wei Sheng Yan Jiu J. Hyg. Res. 2007, 36, 301–305. [Google Scholar]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The Physical Activity Scale for the Elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Austin, P.C.; Lee, D.S.; Fine, J.P. Introduction to the Analysis of Survival Data in the Presence of Competing Risks. Circulation 2016, 133, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Gary, R.J. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann. Stat. 1988, 16, 1141–1154. [Google Scholar] [CrossRef]
- Viguiliouk, E.; Glenn, A.J.; Nishi, S.K.; Chiavaroli, L.; Seider, M.; Khan, T.; Bonaccio, M.; Iacoviello, L.; Mejia, S.B.; Jenkins, D.J.A.; et al. Associations between Dietary Pulses Alone or with Other Legumes and Cardiometabolic Disease Outcomes: An Umbrella Review and Updated Systematic Review and Meta-analysis of Prospective Cohort Studies. Adv. Nutr. 2019, 10, S308–S319. [Google Scholar] [CrossRef]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Mayhew, A.J.; de Souza, R.J.; Meyre, D.; Anand, S.S.; Mente, A. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality. Br. J. Nutr. 2016, 115, 212–225. [Google Scholar] [CrossRef]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef]
- Orlich, M.J.; Singh, P.N.; Sabate, J.; Jaceldo-Siegl, K.; Fan, J.; Knutsen, S.; Beeson, W.L.; Fraser, G.E. Vegetarian dietary patterns and mortality in Adventist Health Study 2. JAMA Intern. Med. 2013, 173, 1230–1238. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Marchie, A.; Faulkner, D.A.; Wong, J.M.; de Souza, R.; Emam, A.; Parker, T.L.; Vidgen, E.; Lapsley, K.G.; et al. Effects of a dietary portfolio of cholesterol-lowering foods vs lovastatin on serum lipids and C-reactive protein. JAMA 2003, 290, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.H.; Ziegler, R.G.; Nomura, A.M.; West, D.W.; Kolonel, L.N.; Horn-Ross, P.L.; Hoover, R.N.; Pike, M.C. Soy intake and risk of breast cancer in Asians and Asian Americans. Am. J. Clin. Nutr. 1998, 68, 1437S–1443S. [Google Scholar] [CrossRef]
Male (n = 1996) | Female (n = 1995) | p Value | |
---|---|---|---|
Mean (SD)/n (%) | |||
Age | 72.39 ± 5.01 | 72.59 ± 5.36 | 0.23 |
Post-secondary Education | 286 (14.3%) | 130 (6.5%) | <0.01 |
Physical activity (PASE score) | 97.37 ± 50.29 | 85.29 ± 33.12 | <0.01 |
Smoking habit | <0.01 | ||
● Former smoker | 1036 (51.9%) | 153 (7.7%) | |
● Current smoker | 237 (11.9%) | 37 (1.9%) | |
Drink > 12 alcoholic drinks in the past year | 471 (23.6%) | 51 (2.6%) | <0.01 |
Dietary energy (kcal) | 2099.09 ± 586.70 | 1582.87 ± 461.70 | <0.01 |
Plant protein sources (serving) | 5.19 ± 4.42 | 4.03 ± 3.54 | <0.01 |
Viscous fiber sources (serving) | 3.61 ± 3.41 | 4.25 ± 2.86 | <0.01 |
Nuts (serving) | 0.09 ± 0.18 | 0.06 ± 0.16 | <0.01 |
Plant sterols (mg) | 361.50 ± 160.51 | 320.56 ± 168.87 | <0.01 |
MUFAs sources (serving) | 0.07 ± 0.18 | 0.08 ± 0.17 | <0.01 |
Saturated fat/cholesterol sources (serving) | 2.26 ± 1.63 | 1.27 ± 1.10 | <0.01 |
Systolic blood pressure (mmHg) | 141.85 ± 19.81 | 143.41 ± 18.36 | 0.01 |
Body mass index (kg/m2) | 23.45 ± 3.13 | 23.92 ± 3.45 | <0.01 |
History of diabetes | 293 (14.7%) | 286 (14.3%) | 0.76 |
History of hypertension | 834 (41.8%) | 869 (43.6%) | 0.26 |
History of stroke | 108 (5.4%) | 65 (3.3%) | <0.01 |
History of heart attack | 200 (10.0%) | 192 (9.6%) | 0.67 |
History of angina | 205 (10.3%) | 147 (7.4%) | <0.01 |
History of congestive heart failure | 73 (3.7%) | 78 (3.9%) | 0.68 |
History of cancer | 87 (4.4%) | 89 (4.5%) | 0.88 |
Mean (SD)/n (%) | |||||
---|---|---|---|---|---|
Q1 (<14, n = 1168) | Q2 (14–16, n = 944) | Q3 (17–19, n = 1080) | Q4 (≥20, n = 799) | p Value | |
Age | 72.76 ± 5.36 | 72.69 ± 5.08 | 72.39 ± 5.20 | 71.99 ± 5.02 | <0.01 |
Male | 548 (46.9%) | 539 (57.1%) | 504 (46.7%) | 404 (50.6%) | 0.01 |
Post-secondary Education | 87 (7.4%) | 79 (8.4%) | 123 (11.4%) | 127 (15.9%) | <0.01 |
Physical activity (PASE score) | 86.31 ± 39.83 | 90.22 ± 42.63 | 94.02 ± 44.84 | 96.34 ± 44.57 | <0.01 |
Smoking habit | <0.01 | ||||
● Former smoker | 378 (32.4%) | 246 (26.1%) | 340 (31.5%) | 225 (28.2%) | |
● Current smoker | 123 (10.5%) | 69 (7.3%) | 62 (5.7%) | 20 (2.5%) | |
Drink > 12 alcoholic drinks in the past year | 165 (14.1%) | 121 (12.8%) | 151 (14.0%) | 85 (10.6%) | 0.11 |
Dietary energy (kcal) | 1682.50 ± 518.81 | 1767.53 ± 574.63 | 1932.87 ± 587.90 | 2035.57 ± 618.66 | <0.01 |
Plant protein sources (serving) | 2.83 ± 2.08 | 4.19 ± 3.22 | 5.23 ± 3.62 | 6.90 ± 5.92 | <0.01 |
Viscous fiber sources (serving) | 2.29 ± 1.85 | 3.55 ± 3.23 | 4.52 ± 2.75 | 5.98 ± 3.68 | <0.01 |
Nuts (serving) | 0.03 ± 0.07 | 0.06 ± 0.10 | 0.09 ± 0.14 | 0.16 ± 0.30 | <0.01 |
Plant sterols (mg) | 231.05 ± 95.01 | 314.37 ± 135.89 | 390.92 ± 158.44 | 465.88 ± 176.85 | <0.01 |
MUFAs sources (serving) | 0.01 ± 0.03 | 0.03 ± 0.10 | 0.08 ± 0.16 | 0.24 ± 0.26 | <0.01 |
Saturated fat/cholesterol sources (serving) | 1.92 ± 1.49 | 1.70 ± 1.50 | 1.60 ± 1.37 | 1.77 ± 1.47 | <0.01 |
Systolic blood pressure (mmHg) | 142.68 ± 18.78 | 142.82 ± 19.08 | 142.91 ± 19.82 | 141.97 ± 19.11 | 0.73 |
Body mass index (kg/m2) | 23.60 ± 3.50 | 23.89 ± 3.31 | 23.62 ± 3.17 | 23.67 ± 3.14 | 0.18 |
History of diabetes | 162 (13.9%) | 145 (15.4%) | 162 (15.0%) | 110 (13.8%) | <0.01 |
History of hypertension | 504 (43.2%) | 408 (43.2%) | 447 (41.4%) | 344 (43.1%) | 0.80 |
History of stroke | 46 (3.9%) | 46 (4.9%) | 48 (4.4%) | 33 (4.1%) | 0.75 |
History of heart attack | 123 (10.5%) | 84 (8.9%) | 91 (8.4%) | 94 (11.8%) | 0.06 |
History of angina | 110 (9.4%) | 83 (8.8%) | 86 (8.0%) | 73 (9.1%) | 0.66 |
History of congestive heart failure | 42 (3.6%) | 40 (4.2%) | 44 (4.1%) | 25 (3.1%) | 0.61 |
History of cancer | 47 (4.0%) | 46 (4.9%) | 45 (4.2%) | 38 (4.8%) | 0.74 |
All-Cause Mortality | CVD Mortality | Cancer Mortality | |||||
---|---|---|---|---|---|---|---|
Person-Years | No. of Deaths | HR (95% CI) | No. of Deaths | HR (95% CI) | No. of Deaths | HR (95% CI) | |
Overall | |||||||
Q1 (n = 1168) | 13,895 | 458 (39.2%) | 1.00 | 100 (8.6%) | 1.00 | 162 (13.9%) | 1.00 |
Q2 (n = 944) | 11,772 | 311 (32.9%) | 0.87 (0.75, 1.01) | 71 (7.5%) | 0.91 (0.67, 1.24) | 107 (11.3%) | 0.84 (0.66, 1.08) |
Q3 (n = 1080) | 13,424 | 388 (35.9%) | 0.96 (0.84, 1.10) | 84 (7.8%) | 0.98 (0.73, 1.31) | 128 (11.9%) | 0.90 (0.71, 1.14) |
Q4 (n = 799) | 10,317 | 213 (26.7%) | 0.72 (0.61, 0.86) * | 59 (7.4%) | 0.90 (0.64, 1.26) | 72 (9.0%) | 0.72 (0.54, 0.96) * |
p-value for trend | <0.01 | 0.64 | 0.05 | ||||
p-value for non-linearity | 0.16 | 0.30 | 0.64 | ||||
Male | |||||||
Q1 (n = 620) | 7119 | 300 (48.4%) | 1.00 | 58 (9.4%) | 1.00 | 103 (16.6%) | 1.00 |
Q2 (n = 405) | 4892 | 173 (42.7%) | 0.94 (0.78, 1.14) | 38 (9.4%) | 1.10 (0.73, 1.66) | 68 (16.8%) | 1.04 (0.76, 1.42) |
Q3 (n = 576) | 6936 | 259 (45.0%) | 1.02 (0.86, 1.20) | 56 (9.7%) | 1.14 (0.79, 1.66) | 93 (16.1%) | 1.09 (0.82, 1.46) |
Q4 (n = 395) | 5113 | 120 (30.4%) | 0.63 (0.51, 0.79) * | 36 (9.1%) | 0.90 (0.58, 1.39) | 35 (8.9%) | 0.59 (0.39, 0.87) * |
p-value for trend | <0.01 | 0.85 | 0.08 | ||||
p-value for non-linearity | 0.01 | 0.07 | 0.05 | ||||
Female | |||||||
Q1 (n = 548) | 6776 | 158 (28.8%) | 1.00 | 42 (7.7%) | 1.00 | 59 (10.8%) | 1.00 |
Q2 (n = 539) | 6880 | 138 (25.6%) | 0.81 (0.64, 1.02) | 33 (6.1%) | 0.75 (0.47, 1.18) | 39 (7.2%) | 0.65 (0.43, 0.98) * |
Q3 (n = 504) | 6488 | 129 (25.6%) | 0.84 (0.66, 1.08) | 28 (5.6%) | 0.78 (0.48, 1.28) | 35 (6.9%) | 0.62 (0.40, 0.95) * |
Q4 (n = 404) | 5204 | 93 (23.0%) | 0.88 (0.67, 1.15) | 23 (5.7%) | 0.92 (0.54, 1.56) | 37 (9.2%) | 0.87 (0.57, 1.34) |
p-value for trend | 0.34 | 0.65 | 0.35 | ||||
p-value for non-linearity | 0.25 | 0.54 | <0.01 |
All-Cause Mortality | CVD Mortality | Cancer Mortality | |
---|---|---|---|
HR (95% CI) | HR (95% CI) | HR (95% CI) | |
Male | |||
Plant protein sources | 0.77 (0.62, 0.95) * | 0.50 (0.30, 0.81) * | 0.98 (0.69, 1.39) |
Viscous fiber sources | 0.78 (0.62, 0.98) * | 1.16 (0.73, 1.85) | 0.71 (0.48, 1.04) |
Nuts | 0.73 (0.58, 0.91) * | 0.91 (0.57, 1.46) | 0.77 (0.54, 1.12) |
Plant sterols | 0.87 (0.68, 1.10) | 0.88 (0.53, 1.47) | 0.91 (0.61, 1.34) |
MUFAs sources | 0.94 (0.78, 1.13) | 1.14 (0.79, 1.65) | 0.84 (0.60, 1.18) |
Saturated fat/cholesterol sources | 0.93 (0.74, 1.18) | 1.06 (0.64, 1.75) | 0.85 (0.56, 1.29) |
Female | |||
Plant protein sources | 0.90 (0.68, 1.19) | 1.03 (0.57, 1.84) | 0.70 (0.43, 1.13) |
Viscous fiber sources | 0.81 (0.61, 1.07) | 1.17 (0.67, 2.05) | 0.81 (0.50, 1.32) |
Nuts | 0.97 (0.72, 1.30) | 0.63 (0.33, 1.19) | 0.97 (0.59, 1.61) |
Plant sterols | 0.99 (0.72, 1.36) | 1.36 (0.72, 2.58) | 0.76 (0.44, 1.29) |
MUFAs sources | 1.12 (0.91, 1.40) | 0.83 (0.51, 1.34) | 1.18 (0.82, 1.70) |
Saturated fat/cholesterol sources | 1.18 (0.86, 1.61) | 1.53 (0.76, 3.08) | 1.08 (0.63, 1.84) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, K.; Glenn, A.J.; Yeung, S.; Kendall, C.W.C.; Sievenpiper, J.L.; Jenkins, D.J.A.; Woo, J. Prospective Association of the Portfolio Diet with All-Cause and Cause-Specific Mortality Risk in the Mr. OS and Ms. OS Study. Nutrients 2021, 13, 4360. https://doi.org/10.3390/nu13124360
Lo K, Glenn AJ, Yeung S, Kendall CWC, Sievenpiper JL, Jenkins DJA, Woo J. Prospective Association of the Portfolio Diet with All-Cause and Cause-Specific Mortality Risk in the Mr. OS and Ms. OS Study. Nutrients. 2021; 13(12):4360. https://doi.org/10.3390/nu13124360
Chicago/Turabian StyleLo, Kenneth, Andrea J. Glenn, Suey Yeung, Cyril W. C. Kendall, John L. Sievenpiper, David J. A. Jenkins, and Jean Woo. 2021. "Prospective Association of the Portfolio Diet with All-Cause and Cause-Specific Mortality Risk in the Mr. OS and Ms. OS Study" Nutrients 13, no. 12: 4360. https://doi.org/10.3390/nu13124360
APA StyleLo, K., Glenn, A. J., Yeung, S., Kendall, C. W. C., Sievenpiper, J. L., Jenkins, D. J. A., & Woo, J. (2021). Prospective Association of the Portfolio Diet with All-Cause and Cause-Specific Mortality Risk in the Mr. OS and Ms. OS Study. Nutrients, 13(12), 4360. https://doi.org/10.3390/nu13124360