The Association between 25-Hydroxyvitamin D Concentration and Telomere Length in the Very-Old: The Newcastle 85+ Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Sample
2.2. Ethical Approval
2.3. Circulating 25(OH)D Assay and Definition of Vitamin D Status
2.4. Telomere Length
2.5. HbA1c Measurement
2.6. Other Health and Lifestyle Variables
2.6.1. Health and Morbidity
2.6.2. Lifestyle
2.7. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Predictors of Telomere Length
Low (n = 193) | Moderate (n = 302) | High (n = 283) | All (n = 778) | p | |
---|---|---|---|---|---|
Women % (n) | 64.4 (123) | 53.8 (162) | 65.7 (186) | 60.8 (471) | 0.007 |
BMI | 0.015 | ||||
Underweight % (n) | 22.2 (39) | 30.0 (86) | 35.5 (91) | 30.0 (216) | |
Normal weight % (n) | 43.8 (77) | 46.0 (132) | 41.0 (105) | 43.7 (314) | |
Overweight % (n) | 19.9 (35) | 14.6 (42) | 17.2 (44) | 16.8 (121) | |
Obese % (n) | 14.2 (25) | 14.2 (25) | 6.3 (16) | 9.5 (68) | |
PA | 0.001 | ||||
Low % (n) | 28.6 (54) | 15.4 (46) | 24.8 (70) | 22.1 (170) | |
Moderate % (n) | 48.1 (91) | 131 (44) | 38.3 (108) | 42.9 (330) | |
High % (n) | 23.3 (44) | 40.6 (121) | 36.9 (104) | 35.0 (269) | |
Alcohol drinkers | 0.056 | ||||
Never % (n) | 42.9 (81) | 40.1 (120) | 40.7 (113) | 41.0 (314) | |
Moderate % (n) | 30.2 (57) | 39.5 (118) | 41.0 (114) | 37.7 (289) | |
Heavy % (n) | 11.6 (22) | 10.7 (32) | 9.4 (26) | 10.4 (80) | |
Smoking | 0.447 | ||||
Never % (n) | 36.6 (70) | 33.3 (100) | 36.2 (102) | 35.2 (272) | |
Occasional % (n) | 4.2 (8) | 6.3 (19) | 4.6 (13) | 5.1 (40) | |
Regular % (n) | 59.2 (113) | 60.3 (181) | 59.2 (167) | 59.6 (461) | |
Vitamin D containing medication % (n) | 0.0 (1) | 6 (17) | 38 (108) | 16.5 (126) | <0.001 |
Supplement users % (n) | 4.7 (9) | 16.9 (51) | 32.5 (92) | 19.5 (152) | <0.001 |
Self-rated health | 0.006 | ||||
Very good % (n) | 37.7 (72) | 40.5 (122) | 41.7 (118) | 40.3 (312) | |
Good % (n) | 53.9 (103) | 56.1 (169) | 55.1 (156) | 55.2 (428) | |
Poor % (n) | 6.3 (12) | 2.1 (6) | 2.1 (6) | 3.0 (23) | |
Disease count mean (SD) | 4.9 (1.8) | 4.7 (1.6) | 4.8 (1.9) | 4.8 (1.8) | 0.675 |
Telomere length sample % (n) | 0.678 | ||||
At baseline | 44.7 (190) | 42.3 (291) | 42.3 (271) | 42.9 (752) | |
At 18 months | 32.2 (137) | 32.6 (224) | 33.7 (216) | 32.9 (577) | |
At 36 months | 23.0 (98) | 25.0 (172) | 23.9 (153) | 24.1 (423) | |
Telomere length (kb) Median (IQR) | 0.006 | ||||
At baseline | 3827.1 (1641) | 3721.0 (1094) | 4009.5 (1021) | 4034.6 (800.1) | |
At 18 months | 3809.2 (236) | 3811.8 (542) | 3678.5 (487) | 3785.2 (415.5) | |
At 36 months | 2702.1 (1184) | 2718.9 (1142) | 2781.3 (842) | 2832.7 (741.2) | |
HbA1c (%) mean (SD) | 6.1 (1.1) | 6.0 (0.7) | 5.8 (0.6) | 5.9 (0.7) | 0.025 |
3.3. Circulating 25(OH)D Concentration and Telomere Length among the Very-Old Adults at Baseline
3.4. Circulating 25(OH)D Concentration and Telomere Length by Sex
3.5. Circulating 25(OH)D Concentration and Telomere Length among the Very-Old Adults at 18 Months
3.6. Circulating 25(OH)D Concentration and Telomere Length by Sex at 18 Months
3.7. Circulating 25(OH)D Concentration and Telomere Length among the Very-Old Adults at 36 Months
4. Discussion
4.1. Main Findings
4.2. Evidence from Other Studies
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pusceddu, I.; Farrell, C.-J.L.; Di Pierro, A.M.; Jani, E.; Herrmann, W.; Herrmann, M. The role of telomeres and vitamin D in cellular aging and age-related diseases. Clin. Chem. Lab. Med. CCLM 2015, 53, 1661–1678. [Google Scholar] [CrossRef] [Green Version]
- Shammas, M.A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Muzumdar, R.; Atzmon, G. Telomere length and aging. In Reviews on Selected Topics of Telomere Biology; InTech: London, UK, 2012. [Google Scholar]
- Beilfuss, J.; Camargo, C.A., Jr.; Kamycheva, E. Serum 25-Hydroxyvitamin D Has a Modest Positive Association with Leukocyte Telomere Length in Middle-Aged US Adults. J. Nutr. 2017, 147, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Morgan, G. Telomerase regulation and the intimate relationship with ageing. Res. Rep. Biochem. 2013, 3, 71–78. [Google Scholar]
- Cawthon, R.M.; Smith, K.R.; O’Brien, E.; Sivatchenko, A.; Kerber, R.A. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003, 361, 393–395. [Google Scholar] [CrossRef]
- Paul, L. Diet, Nutrition and Telomere Length. J. Nutr. Biochem. 2011, 10, 855–901. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Michos, E.D.; Banach, M. The association of telomere length and serum 25-hydroxyvitamin D levels in US adults: The National Health and Nutrition Examination Survey. Arch. Med Sci. AMS 2017, 13, 61. [Google Scholar] [CrossRef] [Green Version]
- Zarei, M.; Najafi, M.; Movahedi, E.; Javanbakht, M.H.; Choi, Y.-H.; Yaseri, M.; Shirvani, A.; Sellke, F.W.; Stranges, S. The predictive role of circulating telomerase and vitamin D for long-term survival in patients undergoing coronary artery bypass grafting surgery (CABG). PLoS ONE 2020, 15, e0237477. [Google Scholar] [CrossRef]
- Richards, J.B.; Valdes, A.M.; Gardner, J.P.; Paximadas, D.; Kimura, M.; Nessa, A.; Lu, X.; Surdulescu, G.L.; Swaminathan, R.; Spector, T.D. Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am. J. Clin. Nutr. 2007, 86, 1420–1425. [Google Scholar] [CrossRef]
- Liu, J.J.; Prescott, J.; Giovannucci, E.; Hankinson, S.E.; Rosner, B.; Han, J.; De Vivo, I. Plasma Vitamin D Biomarkers and Leukocyte Telomere Length. Am. J. Epidemiol. 2013, 177, 1411–1417. [Google Scholar] [CrossRef]
- Julin, B.; Shui, I.M.; Prescott, J.; Giovannucci, E.L.; De Vivo, I. Plasma vitamin D biomarkers and leukocyte telomere length in men. Eur. J. Nutr. 2017, 56, 501–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.J.; Cahoon, E.K.; Linet, M.S.; Little, M.P.; Dagnall, C.L.; Higson, H.; Savage, S.A.; Freedman, D.M. Relationship between plasma 25-hydroxymitamin D and leucocyte telomere length by sex and race in a US study. Br. J. Nutr. 2016, 116, 953–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.; Guo, D.; Li, K.; Pedersen-White, J.; Stallmann-Jorgensen, I.S.; Huang, Y.; Parikh, S.; Liu, K.; Dong, Y. Increased telomerase activity and vitamin D supplementation in overweight African Americans. Int. J. Obes. 2012, 36, 805–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, D.M.; Palaniswamy, S.; Sebert, S.; Buxton, J.L.; Blakemore, A.I.F.; Hyppönen, E.; Jarvelin, M.-R. 25-Hydroxyvitamin D Concentration and Leukocyte Telomere Length in Young Adults: Findings From the Northern Finland Birth Cohort 1966. Am. J. Epidemiol. 2016, 183, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffecker, B.M.; Raffield, L.M.; Kamen, D.L.; Nowling, T.K. Systemic lupus erythematosus and vitamin D deficiency are associated with shorter telomere length among African Americans: A case-control study. PLoS ONE 2013, 8, e63725. [Google Scholar] [CrossRef]
- Hill, T.R.; Mendonca, N.; Granic, A.; Siervo, M.; Jagger, C.; Seal, C.J.; Kerse, N.; Wham, C.; Adamson, A.J.; Mathers, J.C. What do we know about the nutritional status of the very old? Insights from three cohorts of advanced age from the UK and New Zealand. Proc. Nutr. Soc. 2016, 75, 420–430. [Google Scholar] [CrossRef] [Green Version]
- Collerton, J.; Davies, K.; Jagger, C.; Kingston, A.; Bond, J.; Eccles, M.P.; Robinson, L.A.; Martin-Ruiz, C.; von Zglinicki, T.; James, O.F.W.; et al. Health and disease in 85 year olds: Baseline findings from the Newcastle 85+ cohort study. BMJ 2009, 339, b4904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Ruiz, C.; Jagger, C.; Kingston, A.; Collerton, J.; Catt, M.; Davies, K.; Dunn, M.; Hilkens, C.; Keavney, B.; Pearce, S.H.S.; et al. Assessment of a large panel of candidate biomarkers of ageing in the Newcastle 85+ study. Mech. Ageing Dev. 2011, 132, 496–502. [Google Scholar] [CrossRef]
- SACN (Scientific Advisory Committee on Nutrition). Vitamin D and Health. 2016. Available online: https://www.gov.uk/government/publications/sacn-vitamin-d-and-health-report (accessed on 5 July 2021).
- Aviv, A.; Valdes, A.M.; Spector, T.D. Human telomere biology: Pitfalls of moving from the laboratory to epidemiology. Int. J. Epidemiol. 2006, 35, 1424–1429. [Google Scholar] [CrossRef] [Green Version]
- Innerd, P.; Catt, M.; Collerton, J.; Davies, K.; Trenell, M.; Kirkwood, T.B.L.; Jagger, C. A comparison of subjective and objective measures of physical activity from the Newcastle 85+ study. Age Ageing 2015, 44, 691–694. [Google Scholar] [CrossRef] [Green Version]
- Gielen, M.; Hageman, G.J.; Antoniou, E.E.; Nordfjall, K.; Mangino, M.; Balasubramanyam, M.; de Meyer, T.; Hendricks, A.E.; Giltay, E.J.; Hunt, S.C.; et al. Body mass index is negatively associated with telomere length: A collaborative cross-sectional meta-analysis of 87 observational studies. Am. J. Clin. Nutr. 2018, 108, 453–475. [Google Scholar] [CrossRef]
- Mendonça, N.; Hill, T.; Granic, A.; Mathers, J.; Wrieden, W.; Siervo, M.; Seal, C.; Jagger, C.; Adamson, A. Micronutrient intake and food sources in the very old. Proc. Nutr. Soc. 2015, 74, E232. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.; Granic, A.; Davies, K.; Collerton, J.; Martin-Ruiz, C.; Siervo, M.; Mathers, J.; Adamson, A.; Francis, R.; Pearce, S. Serum 25-hydroxyvitamin D concentration and its determinants in the very old: The Newcastle 85+ Study. Osteoporos. Int. 2016, 27, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; De Vivo, I.; Liu, Y.; Han, J.; Prescott, J.; Hunter, D.J.; Rimm, E.B. Associations between diet, lifestyle factors, and telomere length in women. Am. J. Clin. Nutr. 2010, 91, 1273–1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, E.L.; Richardson, D.S. Sex differences in telomeres and lifespan. Aging Cell 2011, 10, 913–921. [Google Scholar] [CrossRef] [PubMed]
- Aviv, A.; Valdes, A.; Gardner, J.P.; Swaminathan, R.; Kimura, M.; Spector, T.D. Menopause modifies the association of leukocyte telomere length with insulin resistance and inflammation. J. Clin. Endocrinol. Metab. 2006, 91, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Zarei, M.; Zarezadeh, M.; Kalajahi, F.H.; Javanbakht, M.H. The Relationship Between Vitamin D and Telomere/Telomerase: A Comprehensive Review. J. Frailty Aging 2020, 10, 2–9. [Google Scholar] [CrossRef] [PubMed]
Model | 25(OH)D | β Coefficient | Adj. R Square | 95% CI | p |
---|---|---|---|---|---|
Model 1 | Low | 84.8 | 0.007 | −67.7, 237.5 | 0.275 |
Moderate | (ref) | (ref) | (ref) | ||
High | 63.9 | 17.8, 109.9 | 0.007 | ||
Model 2 | Low | 89.8 | 0.007 | −63.9, 243.6 | 0.252 |
Moderate | (ref) | (ref) | (ref) | ||
High | 67.8 | 21.6, 114.1 | 0.004 | ||
Model 3 | Low | 88.5 | 0.004 | −76.0, 253.2 | 0.291 |
Moderate | (ref) | (ref) | (ref) | ||
High | 64.4 | 15.5, 113.2 | 0.010 | ||
Model 4 | Low | 77.2 | 0.004 | −88.3, 242.8 | 0.360 |
Moderate | (ref) | (ref) | (ref) | ||
High | 61.2 | 12.0, 110.3 | 0.015 |
Sex | Model | 25(OH)D | β Coefficient | Adj. R Square | 95% CI | p |
---|---|---|---|---|---|---|
Men (n = 304) | Model 1 | Low | 237.7 | 0.009 | 1.9, 473.4 | 0.048 |
Moderate | (ref) | (ref) | (ref) | |||
High | 56.6 | −13.6, 126.9 | 0.114 | |||
Model 2 | Low | 267.5 | 0.007 | 29.2, 505.7 | 0.028 | |
Moderate | (ref) | (ref) | (ref) | |||
High | 63.4 | −7.6, 134.6 | 0.080 | |||
Model 3 | Low | 262.2 | 0.004 | 10.8, 513.5 | 0.041 | |
Moderate | (ref) | (ref) | (ref) | |||
High | 68.4 | −5.8, 142.7 | 0.071 | |||
Model 4 | Low | 268.3 | 0.004 | 14.9, 521.6 | 0.038 | |
Moderate | (ref) | (ref) | (ref) | |||
High | 71.4 | −3.6, 146.4 | 0.062 | |||
Women (n = 471) | Model 1 | Low | 28.8 | 0.011 | −172.1, 229.7 | 0.778 |
Moderate | (ref) | (ref) | (ref) | |||
High | 76.4 | 15.6, 137.3 | 0.014 | |||
Model 2 | Low | 20.8 | 0.009 | −181.2, 223 | 0.839 | |
Moderate | (ref) | (ref) | (ref) | |||
High | 79.9 | 18.8, 141.0 | 0.010 | |||
Model 3 | Low | −5.8 | 0.010 | −225.2, 213.6 | 0.958 | |
Moderate | (ref) | (ref) | (ref) | |||
High | 72.4 | 6.8, 138.1 | 0.030 | |||
Model 4 | Low | −23.3 | 0.011 | −243.0, 196.3 | 0.835 | |
Moderate | (ref) | (ref) | (ref) | |||
High | 65.1 | −0.7, 131.1 | 0.053 |
Model | 25(OH)D | β Coefficient | Adj. R Square | 95% CI | p |
---|---|---|---|---|---|
Model 1 | Low | −1.1 | 0.012 | −86.3, 84.1 | 0.979 |
Moderate | (ref) | (ref) | (ref) | ||
High | −30.9 | −55.9, −5.8 | 0.016 | ||
Model 2 | Low | −2.2 | 0.022 | −87.1, 82.7 | 0.959 |
Moderate | (ref) | (ref) | (ref) | ||
High | −32.2 | −57.2, −7.3 | 0.011 | ||
Model 3 | Low | −8.5 | 0.022 | −97.9, 80.8 | 0.851 |
Moderate | (ref) | (ref) | (ref) | ||
High | −34.2 | −60.0, −8.3 | 0.010 | ||
Model 4 | Low | −8.1 | 0.020 | −98.4, 82.0 | 0.859 |
Moderate | (ref) | (ref) | (ref) | ||
High | −33.7 | −59.9, −7.5 | 0.012 |
Sex | Model | 25(OH)D | β Coefficient | Adj. R Square | 95% CI | p |
---|---|---|---|---|---|---|
Men (n = 304) | Model 1 | Low | −3.9 | 0.041 | −147.2, 139.3 | 0.957 |
Moderate | (ref) | (ref) | (ref) | |||
High | −66.2 | −107.3, −25.5 | 0.002 | |||
Model 2 | Low | −11.5 | 0.036 | −156.8, 133.6 | 0.875 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −69.0 | −110.4, −27.7 | 0.001 | |||
Model 3 | Low | −16.7 | 0.037 | −167.8, 134 | 0.827 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −70.3 | −112.3, −28.3 | 0.001 | |||
Model 4 | Low | −17.6 | 0.038 | −167.6, 132.4 | 0.817 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −65.2 | −107.0, −23.3 | 0.002 | |||
Women (n = 471) | Model 1 | Low | 33.3 | −0.004 | −73.2, 139.8 | 0.539 |
Moderate | (ref) | (ref) | (ref) | |||
High | −2.3 | −34.0, 29.3 | 0.883 | |||
Model 2 | Low | 38.2 | 0.011 | −67.4, 143.8 | 0.477 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −2.8 | −34.4, 28.6 | 0.857 | |||
Model 3 | Low | 21.8 | 0.004 | −90.9, 134.6 | 0.704 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −4.9 | −38.2, 28.3 | 0.770 | |||
Model 4 | Low | 24.7 | 0.001 | −90.2, 139.6 | 0.672 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −6.5 | −40.6, 27.5 | 0.707 |
Model | 25(OH)D | β Coefficient | Adj. R Square | 95% CI | p |
---|---|---|---|---|---|
Model 1 | Low | −12.6 | −0.002 | −205.4–180.2 | 0.898 |
Moderate | (ref) | (ref) | (ref) | ||
High | −28.6 | -85.3–28.1 | 0.322 | ||
Model 2 | Low | −18.4 | −0.007 | −213.3–176.4 | 0.853 |
Moderate | (ref) | (ref) | (ref) | ||
High | −29.6 | −86.8–27.6 | 0.310 | ||
Model 3 | Low | −5.7 | −0.003 | −209.5–198.1 | 0.956 |
Moderate | (ref) | (ref) | (ref) | ||
High | −38.1 | −96.5–20.1 | 0.199 | ||
Model 4 | Low | 16.2 | −0.004 | −189.8–222.3 | 0.877 |
Moderate | (ref) | (ref) | (ref) | ||
High | −36.8 | −96.3–22.6 | 0.225 |
Sex | Model | 25(OH)D | B Coefficient | Adj. R Square | 95% CI | p |
---|---|---|---|---|---|---|
Men (n = 304) | Model 1 | Low | 12.7 | −0.013 | −295.0–320.5 | 0.935 |
Moderate | (ref) | (ref) | (ref) | |||
High | −1.1 | −89.7–87.4 | 0.980 | |||
Model 2 | Low | −2.1 | −0.025 | −315.1–310.8 | 0.989 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −4.7 | −94.5–84.9 | 0.916 | |||
Model 3 | Low | −10.9 | −0.018 | −33.9–317.1 | 0.948 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −11.9 | −103.3–79.4 | 0.797 | |||
Model 4 | Low | −12.1 | −0.015 | −103.3–82.7 | 0.827 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −10.2 | −173.3–89.5 | 0.530 | |||
Women (n = 471) | Model 1 | Low | −34.0 | −0.002 | −286.9–218.9 | 0.791 |
Moderate | (ref) | (ref) | (ref) | |||
High | −45.1 | −120.1–29.8 | 0.237 | |||
Model 2 | Low | −33.5 | −0.010 | −288.1–221.0 | 0.795 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −44.5 | −120.2–31.0 | 0.247 | |||
Model 3 | Low | −32.3 | −0.009 | −300.0–235.4 | 0.812 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −53.3 | −131.0–24.2 | 0.177 | |||
Model 4 | Low | −0.8 | −0.008 | −271.3–269.6 | 0.995 | |
Moderate | (ref) | (ref) | (ref) | |||
High | −50.5 | −129.8–28.8 | 0.211 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakeem, S.; Mendonça, N.; Aspray, T.; Kingston, A.; Martin-Ruiz, C.; Robinson, L.; Hill, T.R. The Association between 25-Hydroxyvitamin D Concentration and Telomere Length in the Very-Old: The Newcastle 85+ Study. Nutrients 2021, 13, 4341. https://doi.org/10.3390/nu13124341
Hakeem S, Mendonça N, Aspray T, Kingston A, Martin-Ruiz C, Robinson L, Hill TR. The Association between 25-Hydroxyvitamin D Concentration and Telomere Length in the Very-Old: The Newcastle 85+ Study. Nutrients. 2021; 13(12):4341. https://doi.org/10.3390/nu13124341
Chicago/Turabian StyleHakeem, Sarah, Nuno Mendonça, Terry Aspray, Andrew Kingston, Carmen Martin-Ruiz, Louise Robinson, and Tom R. Hill. 2021. "The Association between 25-Hydroxyvitamin D Concentration and Telomere Length in the Very-Old: The Newcastle 85+ Study" Nutrients 13, no. 12: 4341. https://doi.org/10.3390/nu13124341
APA StyleHakeem, S., Mendonça, N., Aspray, T., Kingston, A., Martin-Ruiz, C., Robinson, L., & Hill, T. R. (2021). The Association between 25-Hydroxyvitamin D Concentration and Telomere Length in the Very-Old: The Newcastle 85+ Study. Nutrients, 13(12), 4341. https://doi.org/10.3390/nu13124341