Using Nature to Nurture: Breast Milk Analysis and Fortification to Improve Growth and Neurodevelopmental Outcomes in Preterm Infants
Abstract
:1. Introduction
2. Human Milk Analysis
2.1. Crematocrit
2.2. Biochemical Methods
2.3. Spectroscopy
2.4. Breast Milk Content
3. Breast Milk Fortification
3.1. Standardized Fortification
3.2. Individualized Fortification
4. Growth Outcomes
4.1. Standardized Fortification
4.2. Individualized Fortification
5. Neurodevelopment
5.1. Standardized Fortification
5.2. Individualized Fortification
5.3. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poindexter, B.B.; Denne, S.C. Protein Needs of the Preterm Infant. NeoReviews 2003, 4, e52–e59. [Google Scholar] [CrossRef]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; Darmaun, D.; Decsi, T.; Domellof, M.; Ebleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; Goulet, O.; et al. Enteral nutrient supply for preterm infants: Commentary from the European society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Haggarty, P. Fatty acid supply to the human fetus. Annu. Rev. Nutr. 2010, 30, 237–255. [Google Scholar] [CrossRef] [PubMed]
- Clouchoux, C.; Guizard, N.; Evans, A.C.; du Plessis, A.J.; Limperopoulos, C. Normative fetal brain growth by quantitative in vivo magnetic resonance imaging. Am. J. Obstet. Gynecol. 2012, 206, 173.e1–173.e8. [Google Scholar] [CrossRef] [PubMed]
- Horbar, J.D.; Ehrenkranz, R.A.; Badger, G.J.; Edwards, E.M.; Morrow, K.A.; Soll, R.F.; Buzas, J.S.; Bertino, E.; Gagliardi, L.; Bellù, R. Weight growth velocity and postnatal growth failure in infants 501 to 1500 grams: 2000–2013. Pediatrics 2015, 136, e84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramel, S.E.; Demerath, E.W.; Gray, H.L.; Younge, N.; Boys, C.; Georgieff, M.K. The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants. Neonatology 2012, 102, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Latal-Hajnal, B.; von Siebenthal, K.; Kovari, H.; Bucher, H.U.; Largo, R.H. Postnatal growth in VLBW infants: Significant association with neurodevelopmental outcome. J. Pediatr. 2003, 143, 63–170. [Google Scholar] [CrossRef] [Green Version]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef] [Green Version]
- Sammallahti, S.; Kajantie, E.; Matinolli, H.-M.; Pyhälä, R.; Lahti, J.; Heinonen, K.; Lahti, M.; Pesonen, A.-K.; Eriksson, J.G.; Hovi, P.; et al. Nutrition after preterm birth and adult neurocognitive outcomes. PLoS ONE 2017, 12, e0185632. [Google Scholar] [CrossRef] [Green Version]
- Moro, G.E.; Minoli, I.; Ostrom, M.; Jacobs, J.R.; Picone, T.A.; Räihä, N.C.; Ziegler, E.E. Fortification of human milk: Evaluation of a novel fortification scheme and of a new fortifier. J. Pediatr. Gastroenterol. Nutr. 1995, 20, 162–172. [Google Scholar] [CrossRef]
- Chetta, K.E.; Schulz, E.V.; Wagner, C.L. Outcomes improved with human milk intake in preterm and full-term infants. Semin. Perinatol. 2021, 45, 151384. [Google Scholar] [CrossRef]
- Ottolini, K.M.; Andescavage, N.; Keller, S.; Limperopoulos, C. Nutrition and the developing brain: The road to optimizing early neurodevelopment: A systematic review. Pediatr. Res. 2020, 87, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Arslanoglu, S.; Boquien, C.-Y.; King, C.; Lamireau, D.; Tonetto, P.; Barnett, D.; Bertino, E.; Gaya, A.; Gebauer, C.; Grovslien, A.; et al. Fortification of human milk for preterm infants: Update and recommendations of the European Milk Bank Association (EMBA) working group on human milk fortification. Front. Pediatr. 2019, 7, 76. [Google Scholar] [CrossRef] [PubMed]
- De Curtis, M.; Rigo, J. The nutrition of preterm infants. Early Hum. Dev. 2012, 88, S5–S7. [Google Scholar] [CrossRef]
- Lucas, A.; Gibbs, J.A.; Lyster, R.L.; Baum, J.D. Creamatocrit: Simple clinical technique for estimating fat concentration and energy value of human milk. Br. Med. J. 1978, 1, 1018–1020. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, E.F.; Radmacher, P.G.; Sparks, B.; Adamkin, D.H. Creamatocrit analysis of human milk overestimates fat and energy content when compared to a human milk analyzer using mid-infrared spectroscopy. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Lemons, J.A.; Schreiner, R.L.; Gresham, E.L. Simple method for determining the caloric and fat content of human milk. Pediatrics 1980, 66, 626–628. [Google Scholar]
- Fusch, G.; Rochow, N.; Choi, A.; Fusch, S.; Poeschl, S.; Ubah, A.O.; Lee, S.-Y.; Raja, P.; Fusch, C. Rapid measurement of macronutrients in breast milk: How reliable are infrared milk analyzers? Clin. Nutr. 2015, 34, 465–476. [Google Scholar] [CrossRef] [Green Version]
- Casadio, Y.S.; Williams, T.M.; Lai, C.T.; Olsson, S.E.; Hepworth, A.R.; Hartmann, P.E. Evaluation of a mid-infrared analyzer for the determination of the macronutrient composition of human milk. J. Hum. Lact. 2010, 26, 376–383. [Google Scholar] [CrossRef]
- Menjo, A.; Mizuno, K.; Murase, M.; Nishida, Y.; Taki, M.; Itabashi, K.; Shimono, T.; Namba, K. Bedside analysis of human milk for adjustable nutrition strategy. Acta Paediatr. 2009, 98, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, D.; Fraga, M.; Gormaz, M.; Torres, E.; Vento, M. Comparison of mid-infrared transmission spectroscopy with biochemical methods for the determination of macronutrients in human milk. Matern. Child Nutr. 2014, 10, 373–382. [Google Scholar] [CrossRef]
- Bosset, J.; Blanc, B.; Plattner, E. New method of automatic photometric determination of proteins in whole milk. I. theoretical basis and improvements in the principle parameters of the test. Anal. Chim. Acta 1974, 70, 327–329. [Google Scholar] [CrossRef]
- Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949, 177, 751–766. [Google Scholar] [CrossRef]
- Mlcek, J.; Dvorak, L.; Sustova, K.; Szwedziak, K. Accuracy of the FT-NIR method in evaluating the fat content of milk using calibration models developed for the reference methods according to röse-gottlieb and gerber. J. AOAC Int. 2016, 99, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Feitosa Teles, F.F.; Young, C.K.; Still, J.W. A method for rapid determination of lactose. J. Dairy Sci. 1978, 61, 506–508. [Google Scholar] [CrossRef]
- Michaelsen, K.F.; Pedersen, S.B.; Skafte, L.; Jaeger, P.; Peitersen, B. Infrared analysis for determining macronutrients in human milk. J. Pediatr. Gastroenterol. Nutr. 1988, 7, 229–235. [Google Scholar] [CrossRef]
- Food and drug administration. FDA Permits Marketing of a Diagnostic Test to Aid in Measuring Nutrients in Breast Milk. 21 December 2018. Available online: https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-diagnostic-test-aid-measuring-nutrients-breast-milk (accessed on 15 October 2021).
- Sauer, C.W.; Kim, J.H. Human milk macronutrient analysis using point-of-care near-infrared spectrophotometry. J. Perinatol. 2011, 31, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.M.; Barbano, D.M.; Schweisthal, M.; Fleming, J.R. Precalibration evaluation procedures for mid-infrared milk analyzers. J. Dairy Sci. 2006, 89, 2761–2774. [Google Scholar] [CrossRef]
- Perrin, M.T.; Festival, J.; Starks, S.; Mondeaux, L.; Brownell, E.A.; Vickers, A. Accuracy and reliability of infrared analyzers for measuring human milk macronutrients in a milk bank setting. Curr. Dev. Nutr. 2019, 3, nzz116. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, Z.; Ren, Y.; Duan, Y.; Gao, H.; Liu, B.; Ye, W.; Wang, J.; Yin, S. Comparison of macronutrient contents in human milk measured using mid-infrared human milk analyser in a field study vs. chemical reference methods. Matern. Child Nutr. 2017, 13. [Google Scholar] [CrossRef]
- Giuffrida, F.; Austin, S.; Cuany, D.; Sanchez-Bridge, B.; Longet, K.; Bertschy, E.; Sauser, J.; Thakkar, S.K.; Lee, L.Y.; Affolter, M. Comparison of macronutrient content in human milk measured by mid-infrared human milk analyzer and reference methods. J. Perinatol. 2019, 39, 497–503. [Google Scholar] [CrossRef]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [Green Version]
- Fischer Fumeaux, C.J.; Garcia-Rodenas, C.L.; De Castro, C.A.; Courtet-Compondu, M.C.; Thakkar, S.K.; Beauport, L.; Tolsa, J.F.; Affolter, M. Longitudinal analysis of macronutrient composition in preterm and term human milk: A prospective cohort study. Nutrients 2019, 11, 1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, S.; Ozdemir, T.; Katipoglu, N.; Akcan, A.B.; Kaynak Turkmen, M. Comparison of changes in breast milk macronutrient content during the first month in preterm and term infants. Breastfeed. Med. 2020, 15, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Adamkin, D.H.; Radmacher, P.G. Fortification of human milk in very low birth weight infants (VLBW <1500 g birth weight). Clin. Perinatol. 2014, 41, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Piemontese, P.; Mallardi, D.; Liotto, N.; Tabasso, C.; Menis, C.; Perrone, M.; Roggero, P.; Mosca, F. Macronutrient content of pooled donor human milk before and after holder pasteurization. BMC Pediatr. 2019, 19, 58. [Google Scholar] [CrossRef]
- Updegrove, K.; Festival, J.; Hackney, R. HMBANA Standards for Donor Human Milk Banking: An Overview, Public Version 1.0. September 2020. Available online: https://www.hmbana.org/our-work/publications.html (accessed on 15 October 2021).
- García-Lara, N.R.; Vieco, D.E.; De la Cruz-Bértolo, J.; Lora-Pablos, D.; Velasco, N.U.; Pallás-Alonso, C.R. Effect of holder pasteurization and frozen storage on macronutrients and energy content of breast milk. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 77–382. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.A.; Soares, F.V.; Pimenta, H.P.; Abranches, A.D.; Moreira, M.E. Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk’s macronutrient concentrations. Early Hum. Dev. 2011, 87, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Zachariassen, G.; Fenger-Gron, J.; Hviid, M.V.; Halken, S. The content of macronutrients in milk from mothers of very preterm infants is highly variable. Dan. Med. J. 2013, 60, A4631. [Google Scholar]
- Henriksen, C.; Westerberg, A.C.; Rønnestad, A.; Nakstad, B.; Veierød, M.B.; Drevon, C.A.; Iversen, P.O. Growth and nutrient intake among very-low-birth-weight infants fed fortified human milk during hospitalisation. Br. J. Nutr. 2009, 102, 1179–1186. [Google Scholar] [CrossRef] [Green Version]
- Rochow, N.; Fusch, G.; Ali, A.; Bhatia, A.; So, H.Y.; Iskander, R.; Chessell, L.; El Helou, S.; Fusch, C. Individualized target fortification of breast milk with protein, carbohydrates, and fat for preterm infants: A double-blind randomized controlled trial. Clin. Nutr. 2021, 40, 54–63. [Google Scholar] [CrossRef]
- Ramey, S.R.; Merlino Barr, S.; Moore, K.A.; Groh-Wargo, S. Exploring innovations in human milk analysis in the neonatal intensive care unit: A survey of the United States. Front. Nutr. 2021, 8, 692600. [Google Scholar] [CrossRef] [PubMed]
- Hair, A.B.; Blanco, C.L.; Moreira, A.G.; Hawthorne, K.M.; Lee, M.L.; Rechtman, D.J.; Abrams, S.A. Randomized trial of human milk cream as a supplement to standard fortification of an exclusive human milk-based diet in infants 750–1250 g birth weight. J. Pediatr. 2014, 165, 915–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morlacchi, L.; Mallardi, D.; Giannì, M.L.; Roggero, P.; Amato, O.; Piemontese, P.; Consonni, D.; Mosca, F. Is targeted fortification of human breast milk an optimal nutrition strategy for preterm infants? an interventional study. J. Transl. Med. 2016, 14, 195. [Google Scholar] [CrossRef] [Green Version]
- Salas, A.A.; Jerome, M.; Finck, A.; Razzaghy, J.; Chandler-Laney, P.; Carlo, W.A. Body composition of extremely preterm infants fed protein-enriched, fortified milk: A randomized trial. Pediatr. Res. 2021, 1–7. [Google Scholar] [CrossRef]
- Agakidou, E.; Karagiozoglou-Lampoudi, T.; Parlapani, E.; Fletouris, D.J.; Sarafidis, K.; Tzimouli, V.; Diamanti, E.; Agakidis, C. Modifications of own mothers’ milk fortification protocol affect early plasma IGF-I and ghrelin levels in preterm infants. A randomized clinical trial. Nutrients 2019, 11, 3056. [Google Scholar] [CrossRef] [Green Version]
- McLeod, G.; Sherriff, J.; Hartmann, P.E.; Nathan, E.; Geddes, D.; Simmer, K. Comparing different methods of human breast milk fortification using measured v. assumed macronutrient composition to target reference growth: A randomised controlled trial. Br. J. Nutr. 2016, 115, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Rochow, N.; Fusch, G.; Zapanta, B.; Ali, A.; Barui, S.; Fusch, C. Target fortification of breast milk: How often should milk analysis be done? Nutrients 2015, 7, 2297–2310. [Google Scholar] [CrossRef] [Green Version]
- Alan, S.; Atasay, B.; Cakir, U.; Yildiz, D.; Kilic, A.; Kahvecioglu, D.; Erdeve, O.; Arsan, S. An intention to achieve better postnatal in-hospital-growth for preterm infants: Adjustable protein fortification of human milk. Early Hum. Dev. 2013, 89, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Ergenekon, E.; Soysal, Ş.; Hirfanoğlu, İ.; Baş, V.; Gücüyener, K.; Turan, Ö.; Beken, S.; Kazancı, E.; Türkyılmaz, C.; Önal, E.; et al. Short- and long-term effects of individualized enteral protein supplementation in preterm newborns. Turk. J. Pediatr. 2013, 55, 365–370. [Google Scholar] [PubMed]
- Picaud, J.C.; Houeto, N.; Buffin, R.; Loys, C.M.; Godbert, I.; Haÿs, S. Additional protein fortification is necessary in extremely low-birth-weight infants fed human milk. J. Pediatr. Gastroenterol. Nutr. 2016, 63, 103–105. [Google Scholar] [CrossRef]
- Biasini, A.; Monti, F.; Laguardia, M.C.; Stella, M.; Marvulli, L.; Neri, E. High protein intake in human/maternal milk fortification for ≤1250 gr infants: Intrahospital growth and neurodevelopmental outcome at two years. Acta Biomed. 2018, 88, 470–476. [Google Scholar] [CrossRef]
- Mariani, E.; Biasini, A.; Marvulli, L.; Martini, S.; Aceti, A.; Faldella, G.; Corvaglia, L.; Sansavini, A.; Savini, S.; Agostini, F.; et al. Strategies of increased protein intake in ELBW infants fed by human milk lead to long term benefits. Front. Public Health 2018, 6, 272. [Google Scholar] [CrossRef] [PubMed]
- Arslanoglu, S.; Moro, G.E.; Ziegler, E.E. Adjustable fortification of human milk fed to preterm infants: Does it make a difference? J. Perinatol. 2006, 26, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Mathes, M.; Maas, C.; Bleeker, C.; Vek, J.; Bernhard, W.; Peter, A.; Poets, C.F.; Franz, A.R. Effect of increased enteral protein intake on plasma and urinary urea concentrations in preterm infants born at <32 weeks gestation and <1500 g birth weight enrolled in a randomized controlled trial—A secondary analysis. BMC Pediatr. 2018, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Quan, M.; Wang, D.; Gou, L.; Sun, Z.; Ma, J.; Zhang, L.; Wang, C.; Schibler, K.; Li, Z. Individualized human milk fortification to improve the growth of hospitalized preterm infants. Nutr. Clin. Pract. 2020, 35, 680–688. [Google Scholar] [CrossRef]
- Brown, J.V.; Embleton, N.D.; Harding, J.E.; McGuire, W. Multi-nutrient fortification of human milk for preterm infants. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, K.; Narnag, A.; Mahajan, R. Effect of human milk fortification in appropriate for gestation and small for gestation preterm babies: A randomized controlled trial. Indian Pediatr. 2007, 44, 286–290. [Google Scholar]
- North, K.; Marx Delaney, M.; Bose, C.; Lee, A.C.C.; Vesel, L.; Adair, L.; Semrau, K. The effect of milk type and fortification on the growth of low-birthweight infants: An umbrella review of systematic reviews and meta-analyses. Matern. Child. Nutr. 2021, 17, e13176. [Google Scholar] [CrossRef]
- Fleig, L.; Hagan, J.; Lee, M.L.; Abrams, S.A.; Hawthorne, K.M.; Hair, A.B. Growth outcomes of small for gestational age preterm infants before and after implementation of an exclusive human milk-based diet. J. Perinatol. 2021, 41, 1859–1864. [Google Scholar] [CrossRef]
- Ananthan, A.; Balasubramanian, H.; Rao, S.; Patole, S. Human milk-derived fortifiers compared with bovine milk-derived fortifiers in preterm infants: A systematic review and meta-analysis. Adv. Nutr. 2020, 11, 1325–1333. [Google Scholar] [CrossRef]
- O′Connor, D.L.; Kiss, A.; Tomlinson, C.; Bando, N.; Bayliss, A.; Campbell, D.M.; Daneman, A.; Francis, J.; Kotsopoulos, K.; Shah, P.S.; et al. Nutrient enrichment of human milk with human and bovine milk-based fortifiers for infants born weighing <1250 g: A randomized clinical trial. Am. J. Clin. Nutr. 2018, 108, 108–116. [Google Scholar] [CrossRef]
- Huston, R.K.; Markell, A.M.; McCulley, E.A.; Gardiner, S.K.; Sweeney, S.L. Improving growth for infants ≤1250 grams receiving an exclusive human milk diet. Nutr. Clin. Pract. 2018, 33, 671–678. [Google Scholar] [CrossRef]
- Sullivan, S.; Schanler, R.J.; Kim, J.H.; Patel, A.L.; Trawöger, R.; Kiechl-Kohlendorfer, U.; Chan, G.M.; Blanco, C.L.; Abrams, S.; Cotton, C.M.; et al. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J. Pediatr. 2010, 156, 562–567.e1. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.D.; Dereddy, N.; Jones, T.L.; Dhanireddy, R.; Talati, A.J. Early versus delayed human milk fortification in very low birth weight infants-A randomized controlled trial. J. Pediatr. 2016, 174, 126–131. [Google Scholar] [CrossRef]
- Alizadeh Taheri, P.; Sajjadian, N.; Asgharyan Fargi, M.; Shariat, M. Is early breast milk fortification more effective in preterm infants?: A clinical trial. J. Perinat. Med. 2017, 45, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Aimone, A.; Rovet, J.; Ward, W.; Jefferies, A.; Campbell, D.M.; Asztalos, E.; Feldman, M.; Vaughan, J.; Westall, C.; Whyte, H.; et al. Growth and body composition of human milk-fed premature infants provided with extra energy and nutrients early after hospital discharge: 1-year follow-up. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Marino, L.V.; Fudge, C.; Pearson, F.; Johnson, M.J. Home use of breast milk fortifier to promote postdischarge growth and breast feeding in preterm infants: A quality improvement project. Arch. Dis. Child 2019, 104, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Zachariassen, G.; Faerk, J.; Grytter, C.; Esberg, B.H.; Hjelmborg, J.; Mortensen, S.; Thybo Christesen, H.; Halken, S. Nutrient enrichment of mother’s milk and growth of very preterm infants after hospital discharge. Pediatrics 2011, 127, e995–e1003. [Google Scholar] [CrossRef] [PubMed]
- Fabrizio, V.; Trzaski, J.M.; Brownell, E.A.; Esposito, P.; Lainwala, S.; Lussier, M.M.; Hagadorn, J.I. Individualized versus standard diet fortification for growth and development in preterm infants receiving human milk. Cochrane Database Syst. Rev. 2020, 11, CD013465. [Google Scholar] [CrossRef]
- Bulut, Ö.; Çoban, A.; İnce, Z. Macronutrient analysis of preterm human milk using mid-infrared spectrophotometry. J. Perinat. Med. 2019, 47, 785–791. [Google Scholar] [CrossRef]
- Kadıoğlu Şimşek, G.; Alyamaç Dizdar, E.; Arayıcı, S.; Canpolat, F.E.; Sarı, F.N.; Uraş, N.; Oguz, S.S. Comparison of the effect of three different fortification methods on growth of very low birth weight infants. Breastfeed. Med. 2019, 14, 63–68. [Google Scholar] [CrossRef]
- Lucas, A.; Fewtrell, M.S.; Morley, R.; Lucas, P.J.; Baker, B.A.; Lister, G.; Bishop, N.J. Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am. J. Clin. Nutr. 1996, 64, 142–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kashaki, M.; Samghabadi, F.M.; Bordbar, A. Effect of fortification of breast milk in conjugation with protein supplement on neurodevelopment of preterm low birth weight infants at 3 years. Med. Arch. 2019, 73, 344–350. [Google Scholar] [CrossRef]
- Hopperton, K.E.; O′Connor, D.L.; Bando, N.; Conway, A.M.; Ng, D.V.; Kiss, A.; Jackson, J.; Ly, L.; OptiMoMFeeding Group Unger, S.L. Nutrient enrichment of human milk with human and bovine milk-based fortifiers for infants born <1250 g: 18-month neurodevelopmental follow-up of a randomized clinical trial. Curr. Dev. Nutr. 2019, 3, nzz129. [Google Scholar] [CrossRef] [PubMed]
- Carome, K.; Rahman, A.; Parvez, B. Exclusive human milk diet reduces incidence of severe intraventricular hemorrhage in extremely low birth weight infants. J. Perinatol. 2021, 41, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Colacci, M.; Murthy, K.; DeRegnier, R.O.; Khan, J.Y.; Robinson, D.T. Growth and development in extremely low birth weight infants after the introduction of exclusive human milk feedings. Am. J. Perinatol. 2017, 34, 130–137. [Google Scholar] [CrossRef]
- O′Connor, D.L.; Weishuhn, K.; Rovet, J.; Mirabella, G.; Jefferies, A.; Campbell, D.M.; Asztalos, E.; Feldman, M.; Whyte, H.; Westall, C. Visual development of human milk-fed preterm infants provided with extra energy and nutrients after hospital discharge. JPEN J. Parenter. Enter. Nutr. 2012, 36, 349–353. [Google Scholar] [CrossRef]
- da Cunha, R.D.; Lamy Filho, F.; Rafael, E.V.; Lamy, Z.C.; de Queiroz, A.L. Breast milk supplementation and preterm infant development after hospital discharge: A randomized clinical trial. J. Pediatr (Rio J). 2016, 92, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, L.J.; Tate, A.R.; Dezateux, C. Millennium Cohort Study Child Health Group. Do early infant feeding practices vary by maternal ethnic group? Public Health Nutr. 2007, 10, 957–964. [Google Scholar] [CrossRef] [Green Version]
- Ottolini, K.M.; Andescavage, A.; Kapse, K.; Jacobs, M.; Limperopoulos, C. Improved brain growth and microstructural development in breast milk-fed very low birth weight premature infants. Acta Paediatr. 2020, 109, 580–1587. [Google Scholar] [CrossRef] [PubMed]
- Ottolini, K.M.; Andescavage, N.; Kapse, K.; Jacobs, M.; Murnick, J.; VanderVeer, R.; Basu, S.; Said, M.; Limperopoulos, C. Early lipid intake improves cerebellar growth in very low-birth-weight preterm infants. J. Parenter. Enter. Nutr. 2021, 45, 587–595. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ottolini, K.M.; Schulz, E.V.; Limperopoulos, C.; Andescavage, N. Using Nature to Nurture: Breast Milk Analysis and Fortification to Improve Growth and Neurodevelopmental Outcomes in Preterm Infants. Nutrients 2021, 13, 4307. https://doi.org/10.3390/nu13124307
Ottolini KM, Schulz EV, Limperopoulos C, Andescavage N. Using Nature to Nurture: Breast Milk Analysis and Fortification to Improve Growth and Neurodevelopmental Outcomes in Preterm Infants. Nutrients. 2021; 13(12):4307. https://doi.org/10.3390/nu13124307
Chicago/Turabian StyleOttolini, Katherine Marie, Elizabeth Vinson Schulz, Catherine Limperopoulos, and Nickie Andescavage. 2021. "Using Nature to Nurture: Breast Milk Analysis and Fortification to Improve Growth and Neurodevelopmental Outcomes in Preterm Infants" Nutrients 13, no. 12: 4307. https://doi.org/10.3390/nu13124307
APA StyleOttolini, K. M., Schulz, E. V., Limperopoulos, C., & Andescavage, N. (2021). Using Nature to Nurture: Breast Milk Analysis and Fortification to Improve Growth and Neurodevelopmental Outcomes in Preterm Infants. Nutrients, 13(12), 4307. https://doi.org/10.3390/nu13124307