Urinary Concentrations of (+)-Catechin and (-)-Epicatechin as Biomarkers of Dietary Intake of Flavan-3-ols in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary and Lifestyle Information
2.3. Samples and Analytical Method
2.4. Statistical Analyses
3. Results
3.1. Urinary Flavanol Concentrations
3.2. Intake of Flavan-3-ols and Food Sources
3.3. Correlations between Urinary and Dietary Flavan-3-ols
3.4. Correlations between Urinary Flavan-3-ols and Food Source Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vogiatzoglou, A.; Mulligan, A.A.; Luben, R.N.; Lentjes, M.A.H.; Heiss, C.; Kelm, M.; Merx, M.W.; Spencer, J.P.E.; Schroeter, H.; Kuhnle, G.G.C. Assessment of the dietary intake of total flavan-3-ols, monomeric flavan-3-ols, proanthocyanidins and theaflavins in the European Union. Br. J. Nutr. 2014, 111, 1463–1473. [Google Scholar] [CrossRef]
- Knaze, V.; Zamora-Ros, R.; Luján-Barroso, L.; Romieu, I.; Scalbert, A.; Slimani, N.; Riboli, E.; van Rossum, C.T.M.; Bueno-de-Mesquita, H.B.; Trichopoulou, A.; et al. Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2012, 108, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef]
- Márquez Campos, E.; Stehle, P.; Simon, M.-C. Microbial Metabolites of Flavan-3-Ols and Their Biological Activity. Nutrients 2019, 11, 2260. [Google Scholar] [CrossRef] [PubMed]
- Koch, W. Theaflavins, Thearubigins, and Theasinensins. In Handbook of Dietary Phytochemicals; Xiao, J., Sarker, S.D., Asakawa, Y., Eds.; Springer: Singapore, 2020; pp. 1–29. ISBN 978-981-13-1745-3. [Google Scholar]
- Monagas, M.; Urpi-Sarda, M.; Sánchez-Patán, F.; Llorach, R.; Garrido, I.; Gómez-Cordovés, C.; Andres-Lacueva, C.; Bartolomé, B. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 2010, 1, 233–253. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Li, D.; Ho, C.-T.; Li, J.; Wan, X. The absorption, distribution, metabolism and excretion of procyanidins. Food Funct. 2016, 7, 1273–1281. [Google Scholar] [CrossRef]
- Martín, M.Á.; Ramos, S. Impact of Dietary Flavanols on Microbiota, Immunity and Inflammation in Metabolic Diseases. Nutrients 2021, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Raman, G.; Avendano, E.E.; Chen, S.; Wang, J.; Matson, J.; Gayer, B.; Novotny, J.A.; Cassidy, A. Dietary intakes of flavan-3-ols and cardiometabolic health: Systematic review and meta-analysis of randomized trials and prospective cohort studies. Am. J. Clin. Nutr. 2019, 110, 1067–1078. [Google Scholar] [CrossRef]
- Lei, L.; Yang, Y.; He, H.; Chen, E.; Du, L.; Dong, J.; Yang, J. Flavan-3-ols consumption and cancer risk: A meta-analysis of epidemiologic studies. Oncotarget 2016, 7, 73573–73592. [Google Scholar] [CrossRef]
- Knaze, V.; Rothwell, J.A.; Zamora-Ros, R.; Moskal, A.; Kyrø, C.; Jakszyn, P.; Skeie, G.; Weiderpass, E.; Santucci de Magistris, M.; Agnoli, C.; et al. A new food-composition database for 437 polyphenols in 19,899 raw and prepared foods used to estimate polyphenol intakes in adults from 10 European countries. Am. J. Clin. Nutr. 2018, 108, 517–524. [Google Scholar] [CrossRef]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary assessment methods in epidemiological research: Current state of the art and future prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef] [PubMed]
- Edmands, W.M.; Ferrari, P.; Rothwell, J.A.; Rinaldi, S.; Slimani, N.; Barupal, D.K.; Biessy, C.; Jenab, M.; Clavel-Chapelon, F.; Fagherazzi, G.; et al. Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am. J. Clin. Nutr. 2015, 102, 905–913. [Google Scholar] [CrossRef]
- Riboli, E.; Kaaks, R. The EPIC Project: Rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int. J. Epidemiol. 1997, 26 (Suppl. 1), S6–S14. [Google Scholar] [CrossRef]
- Riboli, E.; Hunt, K.J.; Slimani, N.; Ferrari, P.; Norat, T.; Fahey, M.; Charrondière, U.R.; Hémon, B.; Casagrande, C.; Vignat, J.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC): Study populations and data collection. Public Health Nutr. 2002, 5, 1113–1124. [Google Scholar] [CrossRef]
- Slimani, N.; Ferrari, P.; Ocké, M.; Welch, A.; Boeing, H.; Liere, M.; Pala, V.; Amiano, P.; Lagiou, A.; Mattisson, I.; et al. Standardization of the 24-hour diet recall calibration method used in the european prospective investigation into cancer and nutrition (EPIC): General concepts and preliminary results. Eur. J. Clin. Nutr. 2000, 54, 900–917. [Google Scholar] [CrossRef]
- Slimani, N.; Kaaks, R.; Ferrari, P.; Casagrande, C.; Clavel-Chapelon, F.; Lotze, G.; Kroke, A.; Trichopoulos, D.; Trichopoulou, A.; Lauria, C.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: Rationale, design and population characteristics. Public Health Nutr. 2002, 5, 1125–1145. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Unwin, I.; Southgate, D.A.T.; Vignat, J.; Skeie, G.; Salvini, S.; Parpinel, M.; Møller, A.; Ireland, J.; et al. The EPIC nutrient database project (ENDB): A first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur. J. Clin. Nutr. 2007, 61, 1037–1056. [Google Scholar] [CrossRef]
- Achaintre, D.; Buleté, A.; Cren-Olivé, C.; Li, L.; Rinaldi, S.; Scalbert, A. Differential Isotope Labeling of 38 Dietary Polyphenols and Their Quantification in Urine by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry. Anal. Chem. 2016, 88, 2637–2644. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Hubert, J.; Hooper, L.; Cassidy, A.; Manach, C.; Williamson, G.; Scalbert, A. Urinary metabolites as biomarkers of polyphenol intake in humans: A systematic review. Am. J. Clin. Nutr. 2010, 92, 801–809. [Google Scholar] [CrossRef]
- Wiese, S.; Esatbeyoglu, T.; Winterhalter, P.; Kruse, H.-P.; Winkler, S.; Bub, A.; Kulling, S.E. Comparative biokinetics and metabolism of pure monomeric, dimeric, and polymeric flavan-3-ols: A randomized cross-over study in humans. Mol. Nutr. Food Res. 2015, 59, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.; Auger, C.; Mullen, W.; Bornet, A.; Rouanet, J.-M.; Crozier, A.; Teissedre, P.-L. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br. J. Nutr. 2005, 94, 170–181. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Moreno-Rojas, J.M.; Brindani, N.; Del Rio, D.; Lean, M.E.J.; Hara, Y.; Crozier, A. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism. J. Agric. Food Chem. 2017, 65, 5365–5374. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; de Bruijn, W.J.C.; Bruins, M.E.; Vincken, J.-P. Microbial Metabolism of Theaflavin-3,3′-digallate and Its Gut Microbiota Composition Modulatory Effects. J. Agric. Food Chem. 2021, 69, 232–245. [Google Scholar] [CrossRef]
- Ottaviani, J.I.; Fong, R.; Kimball, J.; Ensunsa, J.L.; Gray, N.; Vogiatzoglou, A.; Britten, A.; Lucarelli, D.; Luben, R.; Grace, P.B.; et al. Evaluation of (-)-epicatechin metabolites as recovery biomarker of dietary flavan-3-ol intake. Sci. Rep. 2019, 9, 13108. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, J.I.; Fong, R.; Kimball, J.; Ensunsa, J.L.; Britten, A.; Lucarelli, D.; Luben, R.; Grace, P.B.; Mawson, D.H.; Tym, A.; et al. Evaluation at scale of microbiome-derived metabolites as biomarker of flavan-3-ol intake in epidemiological studies. Sci. Rep. 2018, 8, 9859. [Google Scholar] [CrossRef]
- Ottaviani, J.I.; Borges, G.; Momma, T.Y.; Spencer, J.P.E.; Keen, C.L.; Crozier, A.; Schroeter, H. The metabolome of [2-(14)C](-)-epicatechin in humans: Implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Sci. Rep. 2016, 6, 29034. [Google Scholar] [CrossRef] [PubMed]
- Hollands, W.J.; Philo, M.; Perez-Moral, N.; Needs, P.W.; Savva, G.M.; Kroon, P.A. Monomeric Flavanols Are More Efficient Substrates for Gut Microbiota Conversion to Hydroxyphenyl-γ-Valerolactone Metabolites Than Oligomeric Procyanidins: A Randomized, Placebo-Controlled Human Intervention Trial. Mol. Nutr. Food Res. 2020, 64, e1901135. [Google Scholar] [CrossRef]
- Commisso, M.; Bianconi, M.; Poletti, S.; Negri, S.; Munari, F.; Ceoldo, S.; Guzzo, F. Metabolomic Profiling and Antioxidant Activity of Fruits Representing Diverse Apple and Pear Cultivars. Biology 2021, 10, 380. [Google Scholar] [CrossRef]
- Ulaszewska, M.M.; Koutsos, A.; Trošt, K.; Stanstrup, J.; Garcia-Aloy, M.; Scholz, M.; Fava, F.; Natella, F.; Scaccini, C.; Vrhovsek, U.; et al. Two apples a day modulate human:microbiome co-metabolic processing of polyphenols, tyrosine and tryptophan. Eur. J. Nutr. 2020, 59, 3691–3714. [Google Scholar] [CrossRef]
- Redondo, D.; Arias, E.; Oria, R.; Venturini, M.E. Thinned stone fruits are a source of polyphenols and antioxidant compounds. J. Sci. Food Agric. 2017, 97, 902–910. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants 2021, 10, 234. [Google Scholar] [CrossRef]
- Liu, J.; Hefni, M.E.; Witthöft, C.M. Characterization of Flavonoid Compounds in Common Swedish Berry Species. Foods 2020, 9, 358. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, C.C.J.R.; Almanza-Aguilera, E.; Brouwer-Brolsma, E.M.; Urpi-Sarda, M.; Afman, L.A. Biomarkers of food intake for cocoa and liquorice (products): A systematic review. Genes Nutr. 2018, 13, 22. [Google Scholar] [CrossRef]
- Ellinger, S.; Reusch, A.; Henckes, L.; Ritter, C.; Zimmermann, B.F.; Ellinger, J.; Galensa, R.; Stehle, P.; Helfrich, H.-P. Low Plasma Appearance of (+)-Catechin and (-)-Catechin Compared with Epicatechin after Consumption of Beverages Prepared from Nonalkalized or Alkalized Cocoa-A Randomized, Double-Blind Trial. Nutrients 2020, 12, 231. [Google Scholar] [CrossRef] [PubMed]
- Stahl, L.; Miller, K.B.; Apgar, J.; Sweigart, D.S.; Stuart, D.A.; McHale, N.; Ou, B.; Kondo, M.; Hurst, W.J. Preservation of cocoa antioxidant activity, total polyphenols, flavan-3-ols, and procyanidin content in foods prepared with cocoa powder. J. Food Sci. 2009, 74, C456–C461. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Madrid-Gambin, F.; Garcia-Aloy, M.; Andres-Lacueva, C.; Logue, C.; Gallagher, A.M.; Mack, C.; Kulling, S.E.; Gao, Q.; Praticò, G.; et al. Biomarkers of intake for coffee, tea, and sweetened beverages. Genes Nutr. 2018, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Rabassa, M.; Llorach, R.; González, C.A.; Andres-Lacueva, C. Application of Dietary Phenolic Biomarkers in Epidemiology: Past, Present, and Future. J. Agric. Food Chem. 2012, 60, 6648–6657. [Google Scholar] [CrossRef]
- Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Breda, C.; Barros, A.I. Characterization and Discrimination of Commercial Portuguese Beers Based on Phenolic Composition and Antioxidant Capacity. Foods 2021, 10, 1144. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Yue, T.; Yuan, Y. Evolution of polyphenols and organic acids during the fermentation of apple cider. J. Sci. Food Agric. 2014, 94, 2951–2957. [Google Scholar] [CrossRef]
- Noh, H.; Freisling, H.; Assi, N.; Zamora-Ros, R.; Achaintre, D.; Affret, A.; Mancini, F.; Boutron-Ruault, M.-C.; Flögel, A.; Boeing, H.; et al. Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries. Nutrients 2017, 9, 796. [Google Scholar] [CrossRef] [PubMed]
- Margetts, B.M.; Pietinen, P. European Prospective Investigation into Cancer and Nutrition: Validity studies on dietary assessment methods. Int. J. Epidemiol. 1997, 26 (Suppl. 1), S1–S5. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordoñez, M.; Llorach, R.; Farran-Codina, A.; Barupal, D.K.; Neveu, V.; Manach, C.; Andres-Lacueva, C.; Scalbert, A. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol. Nutr. Food Res. 2016, 60, 203–211. [Google Scholar] [CrossRef]
(+)-Catechin | (-)-Epicatechin | Sum of (+)-Catechin + (-)-Epicatechin | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Characteristics | N a | n b | Median | P10 | P90 | n b | Median | P10 | P90 | Median | P10 | P90 |
All | 419 | 22 | 0.12 | 0.03 | 0.39 | 18 | 0.23 | 0.08 | 0.58 | 0.34 | 0.12 | 0.93 |
Center | ||||||||||||
Paris (FRA) | 67 | 2 | 0.14 | 0.05 | 0.41 | 2 | 0.28 | 0.10 | 0.61 | 0.45 | 0.17 | 0.97 |
Florence (ITA) | 45 | 3 | 0.10 | 0.02 | 0.26 | 3 | 0.18 | 0.05 | 0.34 | 0.25 | 0.07 | 0.55 |
Varese (ITA) | 51 | 2 | 0.13 | 0.03 | 0.31 | 3 | 0.21 | 0.10 | 0.45 | 0.33 | 0.12 | 0.74 |
Ragusa (ITA) | 17 | 1 | 0.08 | 0.03 | 0.25 | 3 | 0.19 | 0.08 | 0.35 | 0.27 | 0.05 | 0.51 |
Turin (ITA) | 42 | 0 | 0.15 | 0.04 | 0.67 | 2 | 0.25 | 0.10 | 0.61 | 0.45 | 0.17 | 1.47 |
Naples (ITA) | 20 | 1 | 0.06 | 0.03 | 0.39 | 0 | 0.17 | 0.06 | 0.36 | 0.20 | 0.09 | 0.63 |
Heidelberg (GER) | 59 | 7 | 0.15 | 0.04 | 0.48 | 1 | 0.29 | 0.09 | 0.87 | 0.41 | 0.10 | 1.18 |
Potsdam (GER) | 118 | 6 | 0.10 | 0.03 | 0.36 | 4 | 0.26 | 0.10 | 0.58 | 0.35 | 0.15 | 0.85 |
Sex | ||||||||||||
Men | 171 | 10 | 0.15 | 0.04 | 0.42 | 5 | 0.27 | 0.10 | 0.61 | 0.40 | 0.16 | 1.05 |
Women | 248 | 12 | 0.10 | 0.03 | 0.38 | 13 | 0.21 | 0.08 | 0.53 | 0.32 | 0.11 | 0.86 |
Age (y) | ||||||||||||
<50 | 135 | 6 | 0.10 | 0.03 | 0.37 | 6 | 0.22 | 0.08 | 0.63 | 0.32 | 0.12 | 0.98 |
50–60 | 188 | 8 | 0.12 | 0.03 | 0.42 | 7 | 0.23 | 0.08 | 0.58 | 0.36 | 0.12 | 0.94 |
>60 | 96 | 8 | 0.12 | 0.04 | 0.42 | 5 | 0.23 | 0.12 | 0.56 | 0.35 | 0.16 | 0.85 |
BMI (kg/m2) | ||||||||||||
<25 | 201 | 15 | 0.12 | 0.03 | 0.39 | 10 | 0.21 | 0.08 | 0.58 | 0.34 | 0.10 | 0.90 |
25 to <30 | 160 | 5 | 0.12 | 0.04 | 0.43 | 7 | 0.25 | 0.09 | 0.59 | 0.37 | 0.15 | 0.98 |
≥30 | 58 | 2 | 0.09 | 0.04 | 0.33 | 1 | 0.23 | 0.09 | 0.57 | 0.32 | 0.14 | 0.88 |
Smoking status c | ||||||||||||
Never smoked | 211 | 12 | 0.11 | 0.03 | 0.36 | 9 | 0.23 | 0.09 | 0.61 | 0.33 | 0.13 | 0.95 |
Former smoker | 120 | 4 | 0.15 | 0.03 | 0.42 | 5 | 0.23 | 0.09 | 0.53 | 0.37 | 0.12 | 0.89 |
Current smoker | 78 | 6 | 0.10 | 0.03 | 0.36 | 3 | 0.20 | 0.06 | 0.51 | 0.29 | 0.08 | 0.80 |
24-HDR total energy intake (kcal/day) | ||||||||||||
<1750 | 112 | 2 | 0.11 | 0.03 | 0.41 | 4 | 0.23 | 0.08 | 0.53 | 0.33 | 0.13 | 0.92 |
1750–2375 | 156 | 11 | 0.11 | 0.03 | 0.37 | 10 | 0.21 | 0.08 | 0.57 | 0.32 | 0.10 | 0.88 |
>2375 | 151 | 9 | 0.13 | 0.04 | 0.36 | 4 | 0.24 | 0.10 | 0.60 | 0.37 | 0.15 | 0.99 |
Variable | Acute Intake (24-HDR) | Habitual Intake (DQ) | ||||||
---|---|---|---|---|---|---|---|---|
Flavanols Intake (mg/day) | n a | Median | P10 | P90 | n a | Median | P10 | P90 |
Total flavan-3-ols | 2 | 833 | 81.2 | 2374 | 0 | 317 | 156 | 627 |
Total monomers | 2 | 106 | 21.0 | 685 | 0 | 54.1 | 18.6 | 249 |
(+)-Catechin | 2 | 29.8 | 7.03 | 103 | 0 | 14.0 | 5.59 | 31.8 |
(+)-Catechin 3-O-gallate | 222 | 0.00 | 0.00 | 41.9 | 16 | 0.90 | 0.00 | 17.8 |
(+)-Catechin 3-O-glucose | 408 | 0.00 | 0.00 | 0.00 | 45 | 0.05 | 0.01 | 0.44 |
(+)-Gallocatechin | 85 | 0.17 | 0.00 | 189 | 0 | 2.50 | 0.03 | 47.2 |
(+)-Gallocatechin 3-O-gallate | 225 | 0.00 | 0.00 | 6.76 | 7 | 0.19 | 0.00 | 2.82 |
(-)-Epicatechin | 2 | 50.5 | 6.07 | 151 | 0 | 18.1 | 7.61 | 38.5 |
(-)-Epicatechin 3-O-gallate | 41 | 3.44 | 0.00 | 78.3 | 0 | 3.58 | 0.37 | 33.0 |
(-)-Epigallocatechin | 63 | 0.52 | 0.00 | 109 | 0 | 1.99 | 0.06 | 31.4 |
(-)-Epigallocatechin 3-O-gallate | 205 | 0.06 | 0.00 | 93.4 | 1 | 2.55 | 0.01 | 39.8 |
(-)-Ec-Ec | 276 | 0.00 | 0.00 | 1.61 | 9 | 0.09 | 0.02 | 0.40 |
Total PA | 6 | 576 | 46.7 | 1723 | 0 | 216 | 98.7 | 427 |
PA dimers | 6 | 106 | 9.56 | 355 | 0 | 22.1 | 9.44 | 44.8 |
PA trimers | 10 | 48.5 | 5.18 | 171 | 0 | 18.2 | 7.65 | 36.7 |
PA tetramers-hexamers | 33 | 127 | 0.84 | 382 | 0 | 50.3 | 22.3 | 101 |
PA heptamers-decamers | 43 | 90.7 | 0.00 | 293 | 0 | 35.0 | 16.4 | 73.9 |
PA > decamers | 45 | 176 | 0.00 | 624 | 0 | 87.1 | 41.8 | 168 |
Total theaflavins | 314 | 0.00 | 0.00 | 135 | 133 | 8.93 | 0.50 | 56.8 |
Theaflavin | 314 | 0.00 | 0.00 | 44.1 | 133 | 2.34 | 0.13 | 14.9 |
Theaflavin 3,3′-O-digallate | 314 | 0.00 | 0.00 | 30.9 | 133 | 2.53 | 0.14 | 16.1 |
Theaflavin 3′-O-gallate | 314 | 0.00 | 0.00 | 43.3 | 133 | 2.92 | 0.16 | 18.6 |
Theaflavin 3-O-gallate | 314 | 0.00 | 0.00 | 16.8 | 133 | 1.13 | 0.06 | 7.21 |
Food intake (g/day) | ||||||||
Apple and pear | 222 | 0.00 | 0.00 | 374 | 16 | 51.8 | 6.40 | 182 |
Grape | 402 | 0.00 | 0.00 | 0.00 | 26 | 7.14 | 0.27 | 27.7 |
Stone fruits | 342 | 0.00 | 0.00 | 126 | 15 | 36.8 | 3.75 | 117 |
Berries | 381 | 0.00 | 0.00 | 0.00 | 24 | 7.14 | 0.41 | 28.6 |
Banana | 356 | 0.00 | 0.00 | 94.5 | 84 | 7.21 | 0.00 | 38.6 |
Chocolate and chocolate products | 313 | 0.00 | 0.00 | 27.0 | 94 | 3.28 | 0.00 | 20.0 |
Cakes and pastries | 243 | 0.00 | 0.00 | 160 | 20 | 30.1 | 3.29 | 102 |
Coffee | 53 | 175 | 0.00 | 769 | 29 | 150 | 17.1 | 600 |
Tea | 310 | 0.00 | 0.00 | 500 | 133 | 21.2 | 0.00 | 436 |
Herbal tea | 327 | 0.00 | 0.00 | 417 | 268 | 0.00 | 0.00 | 160 |
Wine | 234 | 0.00 | 0.00 | 375 | 51 | 55.3 | 0.00 | 357 |
Red wine | 303 | 0.00 | 0.00 | 267 | 291 | 0.00 | 0.00 | 222 |
Beer and cider | 355 | 0.00 | 0.00 | 324 | 133 | 5.52 | 0.00 | 283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almanza-Aguilera, E.; Ceballos-Sánchez, D.; Achaintre, D.; Rothwell, J.A.; Laouali, N.; Severi, G.; Katzke, V.; Johnson, T.; Schulze, M.B.; Palli, D.; et al. Urinary Concentrations of (+)-Catechin and (-)-Epicatechin as Biomarkers of Dietary Intake of Flavan-3-ols in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients 2021, 13, 4157. https://doi.org/10.3390/nu13114157
Almanza-Aguilera E, Ceballos-Sánchez D, Achaintre D, Rothwell JA, Laouali N, Severi G, Katzke V, Johnson T, Schulze MB, Palli D, et al. Urinary Concentrations of (+)-Catechin and (-)-Epicatechin as Biomarkers of Dietary Intake of Flavan-3-ols in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients. 2021; 13(11):4157. https://doi.org/10.3390/nu13114157
Chicago/Turabian StyleAlmanza-Aguilera, Enrique, Daniela Ceballos-Sánchez, David Achaintre, Joseph A Rothwell, Nasser Laouali, Gianluca Severi, Verena Katzke, Theron Johnson, Matthias B Schulze, Domenico Palli, and et al. 2021. "Urinary Concentrations of (+)-Catechin and (-)-Epicatechin as Biomarkers of Dietary Intake of Flavan-3-ols in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study" Nutrients 13, no. 11: 4157. https://doi.org/10.3390/nu13114157
APA StyleAlmanza-Aguilera, E., Ceballos-Sánchez, D., Achaintre, D., Rothwell, J. A., Laouali, N., Severi, G., Katzke, V., Johnson, T., Schulze, M. B., Palli, D., Gargano, G., de Magistris, M. S., Tumino, R., Sacerdote, C., Scalbert, A., & Zamora-Ros, R. (2021). Urinary Concentrations of (+)-Catechin and (-)-Epicatechin as Biomarkers of Dietary Intake of Flavan-3-ols in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients, 13(11), 4157. https://doi.org/10.3390/nu13114157