Substantial Intra-Individual Variability in Post-Prandial Time to Peak in Controlled and Free-Living Conditions in Children with Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Baseline Assessment
2.4. Run-In Period
2.5. Controlled-Living Period
2.6. Free-Living Period
2.7. Measures
2.8. Statistical Analyses
3. Results
3.1. Time to Peak Glucose
3.2. Within- and Between-Person Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Phelan, H.; Clapin, H.; Bruns, L.; Cameron, F.J.; Cotterill, A.M.; Couper, J.J.; Davis, E.A.; Donaghue, K.C.; Jefferies, C.A.; King, B.R.; et al. The Australasian Diabetes Data Network: First national audit of children and adolescents with type 1 diabetes. Med. J. Aust. 2017, 206, 121–125. [Google Scholar] [CrossRef]
- Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329, 977–986. [Google Scholar] [CrossRef]
- Gordin, D.; Ronnback, M.; Forsblom, C.; Heikkila, O.; Saraheimo, M.; Groop, P. Acute hyperglycaemia rapidly increases arterial stiffness in young patients with type 1 diabetes. Diabetologia 2007, 50, 1808–1814. [Google Scholar] [CrossRef] [Green Version]
- Danne, T.; Phillip, M.; Buckingham, B.A.; Jarosz-Chobot, P.; Saboo, B.; Urakami, T.; Battelino, T.; Hanas, R.; Codner, E. ISPAD Clinical Practice Consensus Guidelines 2018: Insulin treatment in children and adolescents with diabetes. Pediatr. Diabetes 2018, 19 (Suppl. 27), 115–135. [Google Scholar] [CrossRef] [PubMed]
- DiMeglio, L.A.; Acerini, C.L.; Codner, E.; Craig, M.E.; Hofer, S.E.; Pillay, K.; Maahs, D.M. ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes. Pediatr. Diabetes 2018, 19 (Suppl. 27), 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bode, B.W.; Schwartz, S.; Stubbs, H.A.; Block, J.E. Glycemic characteristics in continuously monitored patients with type 1 and type 2 diabetes: Normative values. Diabetes Care 2005, 28, 2361. [Google Scholar] [CrossRef] [Green Version]
- Cobry, E.; McFann, K.; Messer, L.; Gage, V.; VanderWel, B.; Horton, L.; Chase, H.P. Timing of meal insulin boluses to achieve optimal postprandial glycemic control in patients with type 1 diabetes. Diabetes Technol. Ther. 2010, 12, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, S.J.; Kulkarni, K.D.; Daly, A.E. Using carbohydrate counting in diabetes clinical practice. J. Am. Diet. Assoc. 1998, 98, 897–905. [Google Scholar] [CrossRef]
- Fu, S.; Li, L.; Deng, S.; Zan, L.; Liu, Z. Effectiveness of advanced carbohydrate counting in type 1 diabetes mellitus: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 37067. [Google Scholar] [CrossRef] [Green Version]
- Son, O.; Efe, B.; Son, N.E.; Akalin, A.; Kebapçi, N. Investigation on Carbohydrate Counting Method in Type 1 Diabetic Patients. BioMed Res. Int. 2014, 2014, 176564. [Google Scholar] [CrossRef] [Green Version]
- Bell, K.J.; Smart, C.E.; Steil, G.M.; Brand-Miller, J.C.; King, B.; Wolpert, H.A. Impact of fat, protein, and glycemic index on postprandial glucose control in type 1 diabetes: Implications for intensive diabetes management in the continuous glucose monitoring era. Diabetes Care 2015, 38, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Lopez, P.E.; Evans, M.; King, B.R.; Jones, T.W.; Bell, K.; McElduff, P.; Davis, E.A.; Smart, C.E. A randomized comparison of three prandial insulin dosing algorithms for children and adolescents with Type 1 diabetes. Diabet. Med. 2018, 35, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, H.A.; Atakov-Castillo, A.; Smith, S.A.; Steil, G.M. Dietary fat acutely increases glucose concentrations and insulin requirements in patients with type 1 diabetes: Implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care 2013, 36, 810–816. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.; Smart, C.E.M.; Paramalingam, N.; Smith, G.J.; Jones, T.W.; King, B.R.; Davis, E.A. Dietary protein affects both the dose and pattern of insulin delivery required to achieve postprandial euglycaemia in Type 1 diabetes: A randomized trial. Diabet. Med. 2018, 36, 499–504. [Google Scholar] [CrossRef]
- Keating, B.; Smart, C.E.M.; Harray, A.J.; Paramalingam, N.; Smith, G.; Jones, T.W.; King, B.R.; Davis, E.A. Additional insulin is required in both the early and late postprandial periods for meals high in protein and fat: A randomised trial. J. Clin. Endocrinol. Metab. 2021, 106, e3611–e3618. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.D.; Gjerløv, I.; Christiansen, J.S.; Hejlesen, O.K. Interindividual and intraindividual variations in postprandial glycemia peak time complicate precise recommendations for self-monitoring of glucose in persons with type 1 diabetes mellitus. J. Diabetes Sci. Technol. 2012, 6, 356–361. [Google Scholar] [CrossRef] [Green Version]
- Cichosz, S.L.; Fleischer, J.; Hoeyem, P.; Laugesen, E.; Poulsen, P.L.; Christiansen, J.S.; Ejskjaer, N.; Hansen, T.K. Assessment of postprandial glucose excursions throughout the day in newly diagnosed type 2 diabetes. Diabetes Technol. Ther. 2013, 15, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Daenen, S.; Sola-Gazagnes, A.; M’Bemba, J.; Dorange-Breillard, C.; Defer, F.; Elgrably, F.; Larger, É.; Slama, G. Peak-time determination of post-meal glucose excursions in insulin-treated diabetic patients. Diabetes Metab. 2010, 36, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.E.; Evans, M.; O’Connell, S.M.; McElduff, P.; Lopez, P.E.; Jones, T.W.; Davis, E.A.; King, B.R. Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care 2013, 36, 3897–3902. [Google Scholar] [CrossRef] [Green Version]
- Monnier, L. Is postprandial glucose a neglected cardiovascular risk factor in type 2 diabetes? Eur. J. Clin. Investig. 2000, 30 (Suppl. 2), 3–11. [Google Scholar]
- Tucholski, K.; Sokolowska, M.; Tucholska, D.; Kaminska, H.; Jarosz-Chobot, P. Assessment of optimal insulin administration timing for standard carbohydrates-rich meals using continuous glucose monitoring in children with type 1 diabetes: A cross-over randomized study. J. Diabetes Investig. 2019, 10, 1237–1245. [Google Scholar] [CrossRef]
- Taki, K.; Nishimura, R.; Morimoto, A.; Tsujino, D.; Miyashita, Y.; Tajima, N. Analysis of 24-hour glycemic excursions in patients with type 1 diabetes by using continuous glucose monitoring. Diabetes Technol. Ther. 2010, 12, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Wiesli, P.; Schmid, C.; Kerwer, O.; Nigg-Koch, C.; Klaghofer, R.; Seifert, B.; Spinas, G.A.; Schwegler, K. Acute psychological stress affects glucose concentrations in patients with type 1 diabetes following food intake but not in the fasting state. Diabetes Care 2005, 28, 1910–1915. [Google Scholar] [CrossRef] [Green Version]
- Surwit, R.S.; Schneider, M.S.; Feinglos, M.N. Stress and diabetes mellitus. Diabetes Care 1992, 15, 1413–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinemann, L. Variability of insulin absorption and insulin action. Diabetes Technol. Ther. 2002, 4, 673–682. [Google Scholar] [CrossRef]
- Heinemann, L.; Weyer, C.; Rauhaus, M.; Heinrichs, S.; Heise, T. Variability of the metabolic effect of soluble insulin and the rapid-acting insulin analog insulin aspart. Diabetes Care 1998, 21, 1910. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S. Puberty and type 1 diabetes. Indian J. Endocrinol. Metab. 2015, 19 (Suppl. 1), S51–S54. [Google Scholar] [CrossRef]
- Geffken, G.R.; Zelikovsky, N.; Clark-Rudman, J.E.; Silverstein, J.H.; Drobes, D. Brief report: Poor metabolic control during menstruation and sexual abuse issues in an adolescent with diabetes. Br. J. Med. Psychol. 2000, 73, 561–565. [Google Scholar] [CrossRef]
- Trout, K.K.; Rickels, M.R.; Schutta, M.H.; Petrova, M.; Freeman, E.W.; Tkacs, N.C.; Teff, K.L. Menstrual cycle effects on insulin sensitivity in women with type 1 diabetes: A pilot study. Diabetes Technol. Ther. 2007, 9, 176–182. [Google Scholar] [CrossRef]
- Lunt, H.; Brown, L.J. Self-reported changes in capillary glucose and insulin requirements during the menstrual cycle. Diabet. Med. 1996, 13, 525–530. [Google Scholar] [CrossRef]
- Korem, T.; Zeevi, D.; Zmora, N.; Weissbrod, O.; Bar, N.; Lotan-Pompan, M.; Avnit-Sagi, T.; Kosower, N.; Malka, G.; Rein, M.; et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 2017, 25, 1243–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized nutrition by prediction of glycemic responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marathe, C.S.; Rayner, C.K.; Wu, T.; Jones, K.L.; Horowitz, M. Gastric emptying and the personalized management of type 1 diabetes. J. Clin. Endocrinol. Metab. 2018, 103, 3503–3506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Russo, A.; Bound, M.; Rayner, C.K.; Jones, K.L.; Horowitz, M. A 25-year longitudinal evaluation of gastric emptying in diabetes. Diabetes Care 2012, 35, 2594–2596. [Google Scholar] [CrossRef] [Green Version]
Food Item | Quantity | Carbohydrate (g) | Fat (g) | Protein (g) | Energy (kJ) |
---|---|---|---|---|---|
Sanitarium Weet-Bix | 30 g (two biscuits) | 22.1 | 0.4 | 4.1 | 492 |
Devondale Semi Skim Long Life Milk | 150 mL | 7.8 | 3 | 4.8 | 325.5 |
Western Star Butter | 4 g | ˂1 | 3.2 | ˂1 | 120 |
Tip Top the One Wholemeal Bread | 1 slice | 13.7 | 1.2 | 3.6 | 361.5 |
TOTAL | NA | 43.6 | 7.8 | 12.5 | 1299 |
n | 30 |
---|---|
Females (n, %) | 16 (53) |
Age (y, mean, SD) | 10.5 (1.9) |
Diabetes Duration (y, mean, SD) | 3.4 (2.7) |
HbA1c (mean, (SD) mmol/mol) | 7.5 (0.7) |
BMI (mean (SD), kg/m2) | 18.8 (2.6) |
BMI z-score | 0.3 (0.9) |
Insulin Regimen | |
CSII (n, %) | 26 (86.7) |
MDI (n, %) | 4 (13.3) |
Controlled | Free-Living | ||
---|---|---|---|
Breakfast (CB) | Breakfast (FLB) | Dinner (FLD) | |
Summary | |||
n | 26 | 30 | 29 |
Mean study days (SD) for each participant | 5 (1) | 12 (2) | 10 (2) |
Valid CGM traces (n) | 126 | 350 | 394 |
Mean pre-prandial BGL (mmol/L (SD)) # | 6.5 (1.2) | 7.7 (3.1) | 9.4 (4.2) |
TTP (minutes) | |||
Mean (SD) | 104.5 (26.6) | 93.2 (19.9) | 79.5 (22.3) |
Range | 58.4–161 | 56.2–131.8 | 42.1–134.8 |
Unconditional Mixed Model | |||
n | 22 | 30 | 29 |
TTP (minutes) | |||
Inter-individual SD * | 18.5 (14.2–26.4) | 14.1 (11.3–19.0) | 5.7 (4.5–7.7) |
Intra-individual SD * | 38.9 (29.9–55.6) | 49.6 (39.5–66.7) | 64.5 (51.2–87.2) |
ICC | 0.184 | 0.075 | 0.008 |
Controlled | Free-Living | ||||||||
---|---|---|---|---|---|---|---|---|---|
Breakfast (CB) | Breakfast (FLB) | Dinner (FLD) | |||||||
Parameter | 95% CI | p | Parameter | 95% CI | p | Parameter | 95% CI | p | |
BG before | −3.6 | −10.7, 3.6 | 0.33 | NA | NA | NA | NA | NA | NA |
SG before | NA | NA | NA | −1.2 | −2.9, 0.6 | 0.19 | −7.0 | −8.8, −5.3 | <0.001 |
Age | 1.7 | −6.0, 9.6 | 0.66 | 0.1 | −4.9, 5.2 | 0.95 | 1.7 | −3.5, 6.8 | 0.53 |
Sex | 4.0 | −26.8, 34.9 | 0.8 | −5.1 | −25.5, 15.3 | 0.63 | −1.7 | −21.7, 18.2 | 0.87 |
BMIz | −13.2 | −31.7, 5.3 | 0.18 | −1.0 | −13.6, 11.4 | 0.87 | 1.2 | −10.8, 13.4 | 0.83 |
HbA1c | 0.6 | −19.0, 20.2 | 0.95 | 1.9 | −10.3, 14.1 | 0.76 | 9.9 | −2.0, 21.9 | 0.11 |
Pre bolus time | NA | NA | NA | 0.1 | −0.4, 0.6 | 0.67 | −0.2 | −0.7, 0.4 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, E.; Binkowski, S.; Sanderson, E.; Keating, B.; Smith, G.; Harray, A.J.; Davis, E.A. Substantial Intra-Individual Variability in Post-Prandial Time to Peak in Controlled and Free-Living Conditions in Children with Type 1 Diabetes. Nutrients 2021, 13, 4154. https://doi.org/10.3390/nu13114154
Bell E, Binkowski S, Sanderson E, Keating B, Smith G, Harray AJ, Davis EA. Substantial Intra-Individual Variability in Post-Prandial Time to Peak in Controlled and Free-Living Conditions in Children with Type 1 Diabetes. Nutrients. 2021; 13(11):4154. https://doi.org/10.3390/nu13114154
Chicago/Turabian StyleBell, Emily, Sabrina Binkowski, Elaine Sanderson, Barbara Keating, Grant Smith, Amelia J. Harray, and Elizabeth A. Davis. 2021. "Substantial Intra-Individual Variability in Post-Prandial Time to Peak in Controlled and Free-Living Conditions in Children with Type 1 Diabetes" Nutrients 13, no. 11: 4154. https://doi.org/10.3390/nu13114154
APA StyleBell, E., Binkowski, S., Sanderson, E., Keating, B., Smith, G., Harray, A. J., & Davis, E. A. (2021). Substantial Intra-Individual Variability in Post-Prandial Time to Peak in Controlled and Free-Living Conditions in Children with Type 1 Diabetes. Nutrients, 13(11), 4154. https://doi.org/10.3390/nu13114154