Association between Dietary Magnesium Intake and Glycemic Markers in Ghanaian Women of Reproductive Age: A Pilot Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Study Data Collection
2.3. Statistical Analysis
3. Results
3.1. Background Characteristics of Study Participants
3.2. Association between Magnesium Intake and Glycemic Markers
3.3. Post Hoc Analysis Showing Risk of Hyperglycemia in Women of Reproductive Age According to Magnesium Intake
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbagallo, M. Magnesium and type 2 diabetes. World J. Diabetes 2015, 6, 1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gommers, L.M.M.; Hoenderop, J.G.J.; Bindels, R.J.M.; De Baaij, J.H.F. Hypomagnesemia in type 2 diabetes: A vicious circle? Diabetes 2016, 65, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villegas, R.; Gao, Y.T.; Dai, Q.; Yang, G.; Cai, H.; Li, H.; Zheng, W.; Shu, X.O. Dietary calcium and magnesium intakes and the risk of type 2 diabetes: The Shanghai women’s Health Study. Am. J. Clin. Nutr. 2009, 89, 1059–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.Y.; Xun, P.; He, K.; Qin, L.Q. Magnesium intake and risk of type 2 diabetes meta-analysis of prospective cohort studies. Diabetes Care 2011, 34, 2116–2122. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Zeng, L.; Zhao, J.; Wu, Q.; Dong, Y.; Zou, F.; Gan, L.; Wei, Y.; Zhang, W. Association of magnesium intake with type 2 diabetes and total stroke: An updated systematic review and meta-analysis. BMJ Open 2020, 10, e032240. [Google Scholar] [CrossRef] [Green Version]
- Ozcaliskan Ilkay, H.; Sahin, H.; Tanriverdi, F.; Samur, G. Association Between Magnesium Status, Dietary Magnesium Intake, and Metabolic Control in Patients with Type 2 Diabetes Mellitus. J. Am. Coll. Nutr. 2019, 38, 31–39. [Google Scholar] [CrossRef]
- Hata, A.; Doi, Y.; Ninomiya, T.; Mukai, N.; Hirakawa, Y.; Hata, J.; Ozawa, M.; Uchida, K.; Shirota, T.; Kitazono, T.; et al. Magnesium intake decreases Type 2 diabetes risk through the improvement of insulin resistance and inflammation: The Hisayama Study. Diabet. Med. 2013, 30, 1487–1494. [Google Scholar] [CrossRef]
- Song, Y.; Dai, Q.; He, K. Magnesium intake, insulin resistance, and type 2 diabetes. N. Am. J. Med. Sci. 2013, 6, 9–15. [Google Scholar] [CrossRef]
- Huerta, M.G.; Roemmich, J.N.; Kington, M.L.; Bovbjerg, V.E.; Weltman, A.L.; Holmes, V.F.; Patrie, J.T.; Rogol, A.D.; Nadler, J.L. Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care 2005, 28, 1175–1181. [Google Scholar] [CrossRef] [Green Version]
- Veronese, N.; Watutantrige-Fernando, S.; Luchini, C.; Solmi, M.; Sartore, G.; Sergi, G.; Manzato, E.; Barbagallo, M.; Maggi, S.; Stubbs, B. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Eur. J. Clin. Nutr. 2016, 70, 1354–1359. [Google Scholar] [CrossRef] [Green Version]
- Bosu, W.K. An overview of the nutrition transition in West Africa: Implications for non-communicable diseases. Proc. Nutr. Soc. 2015, 74, 466–477. [Google Scholar] [CrossRef]
- Annor, G.A.; Tano Debrah, K.; Essen, A. Mineral and phytate contents of some prepared popular Ghanaian foods. SpringerPlus 2016, 5, 581. [Google Scholar] [CrossRef] [Green Version]
- DiNicolantonio, J.J.; O’Keefe, J.H.; Wilson, W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart 2018, 5, e000668. [Google Scholar] [CrossRef]
- Global Nutrition Report 2020: Action on Equity to End Malnutrition; Development Initiatives: Bristol, UK, 2020.
- Fanni, D.; Gerosa, C.; Nurchi, V.M.; Manchia, M.; Saba, L.; Coghe, F.; Crisponi, G.; Gibo, Y.; Van Eyken, P.; Fanos, V.; et al. The Role of Magnesium in Pregnancy and in Fetal Programming of Adult Diseases. Biol. Trace Elem. Res. 2021, 199, 3647–3657. [Google Scholar] [CrossRef]
- Al-Rifai, R.H.; Aziz, F. Prevalence of type 2 diabetes, prediabetes, and gestational diabetes mellitus in women of childbearing age in Middle East and North Africa, 2000–2017: Protocol for two systematic reviews and meta-analyses. Syst. Rev. 2018, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Chivese, T.; Werfalli, M.M.; Magodoro, I.; Chinhoyi, R.L.; Kengne, A.P.; Norris, S.A.; Levitt, N.S. Prevalence of type 2 diabetes mellitus in women of childbearing age in Africa during 2000–2016: A systematic review and meta-analysis. BMJ Open 2019, 9, e024345. [Google Scholar] [CrossRef]
- Sim, J.; Lewis, M. The size of a pilot study for a clinical trial should be calculated in relation to considerations of precision and efficiency. J. Clin. Epidemiol. 2012, 65, 301–308. [Google Scholar] [CrossRef]
- Stolerman, I.P.; Price, L.H. (Eds.) Body mass index. In Encyclopedia of Psychopharmacology; Springer: Berlin/Heidelberg, Germany, 2004; Volume 79, p. 9. [Google Scholar] [CrossRef]
- Agbemafle, I.; Steiner-Asiedu, M.; Saalia, F.K.; Setorglo, J.; Chen, J.; Philips, R.D. Anaemia prevalence and nutrient intake among women in peri-urban settlements in Accra, Ghana. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11152–11167. [Google Scholar] [CrossRef]
- Kumordzie, S.M.; Okronipa, H.; Arimond, M.; Adu-Afarwuah, S.; Ocansey, M.E.; Young, R.R.; Bentil, H.J.; Tamakloe, S.M.; Oaks, B.M.; Dewey, K.G. Maternal and child factors associated with child body fatness in a Ghanaian cohort. Public Health Nutr. 2020, 23, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Ghana Statistical Service (GSS); Ghana Health Service (GHS); ICF International. Demographic health survey 2014. Demogr. Health Surv. 2015, 2014, 530. Available online: https://dhsprogram.com/pubs/pdf/FR307/FR307.pdf (accessed on 22 July 2021).
- Van Horn, L.V.; Stumbo, P.; Moag-Stahlberg, A.; Obarzanek, E.; Hartmuller, V.W.; Farris, R.P.; Kimm, S.Y.S.; Frederick, M.; Snetselaar, L.; Liu, K. The Dietary Intervention Study in Children (DISC): Dietary assessment methods for 8- to 10-year-olds. J. Am. Diet. Assoc. 1993, 93, 1396–1403. [Google Scholar] [CrossRef]
- International Diabetes Federation. International Diabetes Federation, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- WHO; Chan, M. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011; pp. 1–6. Available online: https://www.who.int/vmnis/indicators/haemoglobin.pdf (accessed on 22 July 2021).
- Pinchevsky, Y.; Butkow, N.; Raal, F.; Chirwa, T.; Rothberg, A. Demographic and Clinical Factors Associated with Development of Type 2 Diabetes: A Review of the Literature. Int. J. Gen. Med. 2020, 13, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Sinha, N.; Mishra, T.K.; Singh, T.; Gupta, N. Effect of iron deficiency anemia on hemoglobin A1c levels. Ann. Lab. Med. 2012, 32, 17–22. [Google Scholar] [CrossRef]
- Cheng, P.C.; Hsu, S.R.; Tu, S.T.; Cheng, Y.C.; Liu, Y.H. Body mass index influences the plasma glucose concentration during iatrogenic hypoglycemia in people with type 2 diabetes mellitus: A cross-sectional study. PeerJ 2018, 2018, e4348. [Google Scholar] [CrossRef] [Green Version]
- Joy, E.J.M.; Young, S.D.; Black, C.R.; Ander, E.L.; Watts, M.J.; Broadley, M.R. Risk of dietary magnesium deficiency is low in most African countries based on food supply data. Plant Soil 2012, 368, 129–137. [Google Scholar] [CrossRef]
- Van Dam, R.M.; Hu, F.B.; Rosenberg, L.; Krishnan, S.; Palmer, J.R. Dietary calcium and magnesium, major food sources, and risk of type 2 diabetes in U.S. black women. Diabetes Care 2006, 29, 2238–2243. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Giles, G.G. Glycemic index and dietary fiber and the risk of type 2 diabetes. Diabetes Care 2004, 27, 2701–2706. [Google Scholar] [CrossRef] [Green Version]
- Navarrete-Cortes, A.; Ble-Castillo, J.L.; Guerrero-Romero, F.; Cordova-Uscanga, R.; Juárez-Rojop, I.E.; Aguilar-Mariscal, H.; Tovilla-Zarate, C.A.; del Rocio Lopez-Guevara, M. No effect of magnesium supplementation on metabolic control and insulin sensitivity in type 2 diabetic patients with normomagnesemia. Magnes. Res. 2014, 27, 48–56. [Google Scholar] [CrossRef]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef]
- Soni, M.G.; White, S.M.; Flamm, W.G.; Burdock, G.A. Safety evaluation of dietary aluminum. Regul. Toxicol. Pharmacol. 2001, 33, 66–79. [Google Scholar] [CrossRef]
- Mathee, A.; Street, R. Recycled aluminium cooking pots: A growing public health concern in poorly resourced countries. BMC Public Health 2020, 20, 1141. [Google Scholar] [CrossRef] [PubMed]
- McClain, A.D.; Otten, J.J.; Hekler, E.B.; Gardner, C.D. Adherence to a low-fat vs. low-carbohydrate diet differs by insulin resistance status. Diabetes Obes. Metab. 2013, 15, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokutsu, A.; Okada, Y.; Torimoto, K.; Tanaka, Y. Relationship between glycemic intraday variations evaluated in continuous glucose monitoring and HbA1c variability in type 2 diabetes: Pilot study. Diabetol. Metab. Syndr. 2021, 13, 45. [Google Scholar] [CrossRef] [PubMed]
Variable | Frequency (%)/Mean ± SD |
---|---|
Age, years | 29.5 ± 8.5 |
Marital status | |
Currently married | 28 (44.4%) |
Single/separated/widow | 35 (55.6%) |
Ethnicity | |
Ga-Dangme | 62 (98.4%) |
Others | 1 (1.6%) |
School Attendance | |
Yes | 56 (88.9%) |
No | 7 (11.1%) |
Education | |
None | 7 (11.1%) |
KG/primary/JHS (Low) | 42 (66.7%) |
SHS/tertiary (High) | 14 (22.2%) |
Occupation | |
Not employed | 24 (38.1%) |
Employed | 39 (61.9%) |
Number of children | |
None | 14 (22.2%) |
1 | 13 (20.6%) |
≥2 | 36 (57.1%) |
Mean BMI, kg/m2 | 25.2 ± 5.1 |
BMI Category n (%) | |
Underweight | 1 (1.6%) |
Normal | 34 (54.0%) |
Overweight | 19 (30.2%) |
Obese | 9 (14.3%) |
Mean fasting blood glucose, mg/dL | 101.2 ± 15.2 |
Fasting blood glucose category | |
Normal (<100 mg/dL) | 35 (55.6%) |
Impaired fasting glucose (100–126 mg/dL), at risk | 25 (39.7%) |
Raised fasting blood glucose (≥126 mg/dL), at risk | 3 (4.8%) |
Mean HbA1c % (n = 61) | 5.5 ± 0.6 |
HbA1c category (n = 61) | |
Normal (<5.7) | 41 (67.2%) |
Pre-diabetes (5.7–6.4), at risk | 15 (24.6%) |
Diabetes (≥6.5), at risk | 5 (8.2%) |
Mean hemoglobin concentration, g/dL | 11.5 ±1.7 |
Anemia n (%) | |
Normal (≥12 g/dL) | 27 (42.9%) |
Mild (11.9–11 g/dL) | 14 (22.2%) |
Moderate (10.9–8 g/dL) | 20 (31.8%) |
Severe (<8 g/dL) | 2 (3.2%) |
Mean Magnesium Intake, mg/day | 200 ± 116 |
RDA for Magnesium intake | |
Met RDA | 10 (15.9%) |
Did not meet RDA | 53 (84.1%) |
Fasting Blood Glucose (mg/dL) n = 63 | HbA1c (%) n = 61 | |||||
---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | |
Magnesium intake | ||||||
Unadjusted | 0.31 | 0.07, 0.55 | 0.01 | 0.26 | 0.01, 0.51 | 0.04 |
Adjusted 1 | 0.22 | −0.03, 0.46 | 0.08 | 0.15 | −0.08, 0.39 | 0.20 |
Magnesium Intake (mg/Day) | Fasting Blood Glucose (mg/dL) n = 63 | HbA1c (%) n = 61 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unadjusted | Adjusted 1 | Unadjusted | Adjusted 1 | |||||||||
OR | 95% CI | p Value | OR | 95% CI | p-Value | OR | 95% CI | p Value | OR | 95% CI | p-Value | |
Met RDA | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
Unmet RDA | 0.78 | 0.20, 3.00 | 0.70 | 0.89 | 0.21, 3.72 | 0.86 | 0.46 | 0.12, 1.81 | 0.26 | 0.42 | 0.07, 2.45 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bentil, H.J.; Abreu, A.M.; Adu-Afarwuah, S.; Rossi, J.S.; Tovar, A.; Oaks, B.M. Association between Dietary Magnesium Intake and Glycemic Markers in Ghanaian Women of Reproductive Age: A Pilot Cross-Sectional Study. Nutrients 2021, 13, 4141. https://doi.org/10.3390/nu13114141
Bentil HJ, Abreu AM, Adu-Afarwuah S, Rossi JS, Tovar A, Oaks BM. Association between Dietary Magnesium Intake and Glycemic Markers in Ghanaian Women of Reproductive Age: A Pilot Cross-Sectional Study. Nutrients. 2021; 13(11):4141. https://doi.org/10.3390/nu13114141
Chicago/Turabian StyleBentil, Helena J., Alyssa M. Abreu, Seth Adu-Afarwuah, Joseph S. Rossi, Alison Tovar, and Brietta M. Oaks. 2021. "Association between Dietary Magnesium Intake and Glycemic Markers in Ghanaian Women of Reproductive Age: A Pilot Cross-Sectional Study" Nutrients 13, no. 11: 4141. https://doi.org/10.3390/nu13114141
APA StyleBentil, H. J., Abreu, A. M., Adu-Afarwuah, S., Rossi, J. S., Tovar, A., & Oaks, B. M. (2021). Association between Dietary Magnesium Intake and Glycemic Markers in Ghanaian Women of Reproductive Age: A Pilot Cross-Sectional Study. Nutrients, 13(11), 4141. https://doi.org/10.3390/nu13114141