In Vitro Evidence on Bioaccessibility of Flavonols and Cinnamoyl Derivatives of Cruciferous Sprouts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Processing Brassica Sprout Samples by a Simulated in Vitro Static Digestion Method
2.4. HPLC-DAD-ESI/MSn Analysis of Analytical Extracts and Gastrointestinal Digestion Fractions of Brassica Sprouts
2.5. Statistical Analysis
3. Results and Discussion
3.1. Content of Flavonols and Hydroxycinnamic Acids in the Raw Cruciferous Sprouts
3.2. Influence of Gastric, Intestinal, and Gastrointestinal Digestion
3.2.1. Gastrointestinal Digestion
3.2.2. Gastric and Intestinal Isolate Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Neugart, S.; Majer, P.; Schreiner, M.; Hideg, É. Blue Light Treatment but Not Green Light Treatment After Pre-exposure to UV-B Stabilizes Flavonoid Glycoside Changes and Corresponding Biological Effects in Three Different Brassicaceae Sprouts. Front. Plant Sci. 2021, 11, 611247. [Google Scholar] [CrossRef]
- Radünz, M.; Hackbart, H.C.D.S.; Bona, N.P.; Pedra, N.S.; Hoffmann, J.F.; Stefanello, F.M.; Da Rosa Zavareze, E. Glucosinolates and phenolic compounds rich broccoli extract: Encapsulation by electrospraying and antitumor activity against glial tumor cells. Colloids Surf. B Biointerfaces 2020, 192, 111020. [Google Scholar] [CrossRef] [PubMed]
- Abellán, Á.; Domínguez-Perles, R.; Moreno, D.A.; García-Viguera, C. Sorting out the Value of Cruciferous Sprouts as Sources of Bioactive Compounds for Nutrition and Health. Nutrients 2019, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, D.; Abellán-Victorio, A.; Beretta, V.; Camargo, A.; Moreno, D.A. Functional Ingredients from Brassicaceae Species: Overview and Perspectives. Int. J. Mol. Sci. 2020, 21, 1998. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.P.T.; Stewart, J.D.; Ioannou, I.; Allais, F. Sinapic Acid and Sinapate Esters in Brassica: Innate Accumulation, Biosynthesis, Accessibility via Chemical Synthesis or Recovery from Biomass, and Biological Activities. Front. Chem. 2021, 9, 350. [Google Scholar] [CrossRef]
- Sikora, E.; Cieslik, E.; Filipiak-Florkiewicz, A.; Leszczyńska, T. Effect of hydrothermal processing on phenolic acids and flavonols contents in selected brassica vegetables. Acta Sci. Pol. Technol. Aliment. 2012, 11, 45–51. [Google Scholar] [PubMed]
- Domínguez-Perles, R.; Baenas, N.; García-Viguera, C. New Insights in (Poly)phenolic Compounds: From Dietary Sources to Health Evidence. Foods 2020, 9, 543. [Google Scholar] [CrossRef] [PubMed]
- Angelino, D.; Cossu, M.; Marti, A.; Zanoletti, M.; Chiavaroli, L.; Brighenti, F.; Del Rio, D.; Martini, D. Bioaccessibility and bioavailability of phenolic compounds in bread: A review. Food Funct. 2017, 8, 2368–2393. [Google Scholar] [CrossRef] [Green Version]
- Corona-Leo, L.S.; Meza-Márquez, O.G.; Hernández-Martínez, D.M. Effect of in vitro digestion on phenolic compounds and antioxidant capacity of different apple (Malus domestica) varieties harvested in Mexico. Food Biosci. 2021, 43, 101311. [Google Scholar] [CrossRef]
- Majdoub, Y.O.E.; Ginestra, G.; Mandalari, G.; Dugo, P.; Mondello, L.; Cacciola, F. The Digestibility of Hibiscus sabdariffa L. Polyphenols Using an In Vitro Human Digestion Model and Evaluation of Their Antimicrobial Activity. Nutrients 2021, 13, 2360. [Google Scholar] [CrossRef]
- Laib, I.; Farida, K.; Haddad, N.; Boudjemia, T.; Barkat, M. Effect of in vitro gastrointestinal digestion on phenolic compounds and the antioxidant activity of Aloe vera. Acta Sci. Nat. 2020, 7, 433–439. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Sugier, D.; Świeca, M.; Gawlik-Dziki, U. The effect of in vitro digestion, food matrix, and hydrothermal treatment on the potential bioaccessibility of selected phenolic compounds. Food Chem. 2021, 344, 128581. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.J.; Mariutti, L.R.B.; Bragagnolo, N.; Mercadante, A.Z.; Barbosa-Cánovas, G.V.; Orlien, V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci. Technol. 2017, 67, 195–206. [Google Scholar] [CrossRef]
- Nićiforović, N.; Abramovič, H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Abellán, A.; Domínguez-Perles, R.; García-Viguera, C.; Moreno, D.A. Evidence on the Bioaccessibility of Glucosinolates and BreakDown Products of Cruciferous Sprouts by Simulated In Vitro Gastrointestinal Digestion. Int. J. Mol. Sci. 2021, 22, 11046. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Dębski, H.; Wiczkowski, W.; Szablińska-Piernik, J.; Horbowicz, M. The Application of Fe-EDTA and Sodium Silicate Affects the Polyphenols Content in Broccoli and Radish Sprouts. Biomolecules 2021, 11, 1190. [Google Scholar] [CrossRef]
- Hassini, I.; Baenas, N.; Moreno, D.A.; Carvajal, M.; Boughanmi, N.; Martinez Ballesta, M.D.C. Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. J. Sci. Food Agric. 2017, 97, 2291–2299. [Google Scholar] [CrossRef]
- Baenas, N.; Moreno, D.A.; García-Viguera, C. Selecting sprouts of brassicaceae for optimum phytochemical composition. J. Agric. Food Chem. 2012, 60, 11409–11420. [Google Scholar] [CrossRef]
- Li, Z.; Lee, H.; Liang, X.; Dong, L.; Wang, Q.; Huang, D.; Ong, C. Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables. Molecules 2018, 23, 1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiyam, U.; Stöckmann, H.; Felde, T.; Schwarz, K. Antioxidative effect of main sinapic acid derivatives from rapeseed and mustard oil by-products. Eur. J. Lipid Sci. Technol. 2006, 108, 239–248. [Google Scholar] [CrossRef]
- Hussain, S.; Rehman, A.U.; Luckett, D.J.; Blanchard, C.L.; Obied, H.K.; Strappe, P. Phenolic Compounds with Antioxidant Properties from Canola Meal Extracts Inhibit Adipogenesis. Int. J. Mol. Sci. 2019, 21, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, W.; Hu, R.; Chen, G.; Zhang, Y.; Wang, W.; Li, Y. Potential bioaccessibility of phenolic acids in whole wheat products during in vitro gastrointestinal digestion and probiotic fermentation. Food Chem. 2021, 362, 130135. [Google Scholar] [CrossRef]
- Zhu, Y.; Sang, S. Phytochemicals in whole grain wheat and their health-promoting effects. Mol. Nutr. Food Res. 2017, 61, 1600852. [Google Scholar] [CrossRef]
- Deseva, I.; Stoyanova, M.; Petkova, N.; Mihaylova, D. Red Beetroot Juice Phytochemicals Bioaccessibility: An In Vitro Approach. Pol. J. Food Nutr. Sci. 2020, 70, 45–53. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.-M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; et al. In Vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef] [Green Version]
- Ortega, N.; Macià, A.; Romero, M.-P.; Reguant, J.; Motilva, M.-J. Matrix composition effect on the digestibility of carob flour phenols by an in-vitro digestion model. Food Chem. 2011, 124, 65–71. [Google Scholar] [CrossRef]
- Renard, C.M.G.C.; Watrelot, A.A.; Le Bourvellec, C. Interactions between polyphenols and polysaccharides: Mechanisms and consequences in food processing and digestion. Trends Food Sci. Technol. 2017, 60, 43–51. [Google Scholar] [CrossRef]
- Velderrain-Rodríguez, G.R.; Palafox-Carlos, H.; Wall-Medrano, A.; Ayala-Zavala, J.F.; Chen, C.Y.; Robles-Sánchez, M.; Astiazaran-García, H.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Phenolic compounds: Their journey after intake. Food Funct. 2014, 5, 189–197. [Google Scholar] [CrossRef] [PubMed]
- McDougall, G.J.; Fyffe, S.; Dobson, P.; Stewart, D. Anthocyanins from red cabbage—Stability to simulated gastrointestinal digestion. Phytochemistry 2007, 68, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Laib, I.; Kehal, F.; Arris, M.; Maameri, M.I.; Lachlah, H.; Bensouici, C.; Mosbah, R.; Houasnia, M.; Barkat, M. Effet de la digestion gastro-intestinale in vitro sur les composés phénoliques et l’activité antioxydante du thé vert Camellia sinensis L. issu de l’agriculture biologique. Nutr. Clin. Et Métabolisme 2021, 35, 212–221. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
Consituent | Concentration of SGF, pH 3 (mmol/L) | Concentration of SIF, pH 7 (mmol/L) |
---|---|---|
Potassium chloride (KCl) | 6.90 | 6.80 |
Potassium dihydrogenphosphate (KH2PO4) | 0.90 | 0.80 |
Sodium hydrogen carbonate (NaHCO3) | 25.00 | 85.00 |
Sodium chloride (NaCl) | 47.20 | 38.40 |
Magnesium chloride (MgCl2) | 0.10 | 0.33 |
Ammonium carbonate ((NH4)CO3) | 0.50 | - |
Compound | Parent Ion (m/z [M-H]-) | Product Ions (m/z [M-H]-) | Broccoli Sprouts | Red Radish Sprouts | Red Cabbage Sprouts | White Mustard Sprouts | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(MS2) | (MS3) | PM | GP | IP | GIP | PM | GP | IP | GIP | PM | GP | IP | GIP | PM | GP | IP | GIP | ||
Kaempferol sinapoyl-diglcusoside-7-glucoside | 977 | 815,609,429 | 285 | X | X | X | X | - | - | - | - | - | - | - | - | - | - | - | - |
Sinapoyl-glucose | 385 | 265,247 | 223 | X | - | X | X | X | - | X | X | X | - | X | X | - | - | - | - |
Kaempferol—7-gucoside-3-sinapoyl diglucoside | 977 | 623,429 | 285 | X | - | X | X | - | - | - | - | X | - | - | - | X | - | - | - |
Unknown synapoyl derivative | 236 | 207 | 223 | - | - | - | - | - | X | - | - | - | X | - | - | - | X | - | - |
Feruloyl-glucose | 385 | 355,244 | 193 | X | - | X | X | X | - | - | - | - | - | - | - | - | - | - | - |
Disinapoyl-gentibioside | 753 | 529,289 | 223 | X | - | X | X | - | - | X | X | X | - | - | X | X | - | X | X |
Trisinapoyl-gentibioside | 959 | 753,529,289 | 223 | X | - | X | X | X | - | X | X | X | - | X | X | X | - | X | X |
Disinapoyl-glucose | 591 | 367,223,193 | 223 | - | - | - | - | X | - | - | - | - | - | - | - | X | - | - | - |
Disinapoyl-glucose (isomer) | 591 | 367,193 | 223 | X | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Synapoyl-gentibioside | 547 | 529,247 | 223 | - | - | - | - | - | - | - | - | - | - | X | X | X | - | X | X |
Sinapic acid | 223 | 207,179 | 163 | - | - | - | - | - | X | X | X | X | X | X | X | - | X | X | X |
Compound | Sprouts | |||
---|---|---|---|---|
Broccoli | Red Radish | Red Cabbage | White Mustard | |
Flavonols | ||||
Kaempferol sinapoyl-diglucoside-7-glucoside | 1.18 ± 0.01 a Z | N.d. Y b | N.d. b | N.d. b |
Kaempferol—7-glucoside-3-sinapoyl diglucoside | 52.72 ± 0.77 a | N.d. d | 46.44 ± 0.57 b | 43.42 ± 0.06 c |
Hydroxycinamic acids | ||||
Sinapoyl-glucose | 5.89 ± 0.05 d | 22.08 ± 0.70 b | 9.99 ± 0.08 c | 36.58 ± 1.41 a |
Unknown sinapoyl derivative | N.d. b | 21.31 ± 0.05 a | N.d. b | N.d. b |
Feruloyl-glucose | 18,60 ± 0.87 a | 5.60 ± 0.14 b | N.d. c | N.d. c |
Disinapoyl-glucose | 17.30 ± 1.50 a | 11.70 ± 1.06 b | N.d. c | N.d. c |
Disinapoyl-gentibioside | 13.79 ± 0.36 b | N.d. d | 21.72 ± 2.93 a | 8.85 ± 0.13 c |
Trisinapoyl-gentibioside | 28.40 ± 1.05 a | 3.55 ± 0.30 b | 29.89 ± 2.93 a | 32.31 ± 1.87 a |
Compound | Sprouts | |||
---|---|---|---|---|
Broccoli | Red Radish | Red Cabbage | White Mustard | |
Flavonols | ||||
Kaempferol sinapoyl-diglucoside-7-glucoside | 3.55 ± 0.27 a Z | N.d. b | N.d. b | N.d. b |
Kaempferol—7-gucoside-3-sinapoyl diglucoside | 4.59 ± 0.11 a | N.d. b | N.d. b | N.d. b |
Hydroxycinnamic acids | ||||
Sinapoyl-glucose | 2.94 ± 0.39 b | 2.02 ± 0.24 b | 3.61 ± 0.36 b | 29.00 ± 3.69 a |
Synapoyl-gentibioside | N.d. b | N.d. b | 3.82 ± 0.34 a | N.d. b |
Unknown synapoyl derivative | N.d. b | 2.09 ± 0.18 a | N.d. b | N.d. b |
Feruloyl-glucose | 8.61 ± 0.20 a | N.d. b | N.d. b | N.d. b |
Sinapic acid | 1.40 ± 0.05 c | 45,39 ± 2.65 a | 15.54 ± 2.48 ab | 17.93 ± 1.61 ab |
Disinapoyl-glucose | N.d. b | N.d. b | N.d. b | 1.90 ± 0.25 a |
Disinapoyl-gentibioside | 1.77 ± 0.17 b | 14.71 ± 2.36 a | N.d. c | 1.62 ± 0.22 b |
Trisinapoyl-gentibioside | 6.08 ± 0.29 b | 1.10 ± 0.17 c | 7.67 ± 0.28 a | N.d. d |
Compound | Digestive Phase Z | Sprouts | |||
---|---|---|---|---|---|
Broccoli | Red Radish | Red Cabbage | White Mustard | ||
Flavonols | |||||
Kaempferol sinapoyl-diglucoside-7-glucoside | GD | 3.21 ± 0.30 b Y | N.d. X b | N.d. b | N.d. b |
ID | 4.55 ± 0.22 a | N.d. b | N.d. b | N.d. b | |
Kaempferol—7-glucoside-3-sinapoyl diglucoside | GD | N.d. b | N.d. | N.d. | N.d. |
ID | 4.32 ± 0.07 a | N.d. b | N.d. b | N.d. b | |
Hydroxycinammic acids | |||||
Sinapoyl-glucose | GD | N.d. | N.d. | N.d. | N.d. |
ID | 2.69 ± 0.02 b | 1.83 ± 0.28 b | 4.59 ± 0.06 b | 27.11 ± 1.52 a | |
Synapoyl-gentibioside | GD | N.d. | N.d. | N.d. | N.d. |
ID | N.d. b | N.d. b | 5.03 ± 0.69 a | N.d. b | |
Unknown synapoyl derivative | GD | N.d. | N.d. c | N.d. | N.d. |
ID | N.d. b | 2.97 ± 0.20 a | N.d. b | N.d. b | |
Feruloyl-glucose | GD | N.d. | N.d. | N.d. | N.d. |
ID | 10.19 ± 0.38 a | N.d. b | N.d. b | N.d. b | |
Sinapic acid | GD | 35.59 ± 0.49 b | 58.32 ± 7.89 a | 45.38 ± 4.06 ab | 32,08 ± 0.32 b |
ID | 0.63 ± 0.09 c | 47.34 ± 5.11 a | 26.29 ± 0.56 b | 25.45 ± 0.45 b | |
Disinapoyl-glucose | GD | N.d. | N.d. | N.d. | N.d. |
ID | N.d. b | N.d. b | N.d. b | 1.51 ± 0.12 a | |
Disinapoyl-gentibioside | GD | N.d. | N.d. | N.d. | N.d. |
ID | 2.69 ± 0.10 c | 16.26 ± 1.61 a | 4.31 ± 0.39 b | 1.39 ± 0.15 c | |
Trisinapoyl-gentibioside | GD | N.d. | N.d. | N.d. | N.d. |
ID | 4.49 ± 0.12 b | 1.32 ± 0.13 c | 11.47 ± 0.91 a | N.d. d | |
Unknown synapoyl derivative | GD | N.d. c | 32.08 ± 4.11 a | 27.15 ± 3.14 a | 22,38 ± 1.93 b |
ID | N.d. | N.d. | N.d. | N.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abellán, Á.; Domínguez-Perles, R.; García-Viguera, C.; Moreno, D.A. In Vitro Evidence on Bioaccessibility of Flavonols and Cinnamoyl Derivatives of Cruciferous Sprouts. Nutrients 2021, 13, 4140. https://doi.org/10.3390/nu13114140
Abellán Á, Domínguez-Perles R, García-Viguera C, Moreno DA. In Vitro Evidence on Bioaccessibility of Flavonols and Cinnamoyl Derivatives of Cruciferous Sprouts. Nutrients. 2021; 13(11):4140. https://doi.org/10.3390/nu13114140
Chicago/Turabian StyleAbellán, Ángel, Raúl Domínguez-Perles, Cristina García-Viguera, and Diego A. Moreno. 2021. "In Vitro Evidence on Bioaccessibility of Flavonols and Cinnamoyl Derivatives of Cruciferous Sprouts" Nutrients 13, no. 11: 4140. https://doi.org/10.3390/nu13114140
APA StyleAbellán, Á., Domínguez-Perles, R., García-Viguera, C., & Moreno, D. A. (2021). In Vitro Evidence on Bioaccessibility of Flavonols and Cinnamoyl Derivatives of Cruciferous Sprouts. Nutrients, 13(11), 4140. https://doi.org/10.3390/nu13114140