The Prognostic Role of Glutathione and Its Related Antioxidant Enzymes in the Recurrence of Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Size Calculation
2.2. Patient Eligibility and Tumor Pathology
2.3. Data Collection and Biochemical Measurements
2.4. Follow-Up Procedure
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
BMI | body mass index |
BUN | blood urea nitrogen |
GSH | glutathione |
GPx | glutathione peroxidase |
GR | glutathione reductase |
GST | glutathione S-transferase |
GSSG | glutathione disulfide |
HCC | hepatocellular carcinoma |
hs-CRP | high-sensitivity C-reactive protein |
MDA | malondialdehyde |
TEAC | trolox equivalent antioxidant capacity |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Barsouk, A.; Thandra, K.C.; Saginala, K.; Rawla, P.; Barsouk, A. Chemical Risk Factors of Primary Liver Cancer: An Update. Hepat. Med. 2020, 12, 179–188. [Google Scholar] [CrossRef]
- D’Souza, S.; Lau, K.C.; Coffin, C.S.; Patel, T.R. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J. Gastroenterol. 2020, 26, 5759–5783. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int. J. Mol. Sci. 2015, 16, 26087–26124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, D.; Takaki, A.; Oyama, A.; Adachi, T.; Wada, N.; Onishi, H.; Okada, H. Oxidative Stress Management in Chronic Liver Diseases and Hepatocellular Carcinoma. Nutrients 2020, 12, 1576. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Dysregulation of glutathione synthesis in liver disease. Liver Res. 2020, 4, 64–73. [Google Scholar] [CrossRef]
- Mossenta, M.; Busato, D.; Dal Bo, M.; Toffoli, G. Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers 2020, 12, 1668. [Google Scholar] [CrossRef]
- Bansal, A.; Simon, M.C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 2018, 217, 2291–2298. [Google Scholar] [CrossRef] [Green Version]
- Vairetti, M.; Di Pasqua, L.G.; Cagna, M.; Richelmi, P.; Ferrigno, A.; Berardo, C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants 2021, 10, 364. [Google Scholar] [CrossRef]
- Tsai, S.M.; Lin, S.K.; Lee, K.T.; Hsiao, J.K.; Huang, J.C.; Wu, S.H.; Ma, H.; Wu, S.H.; Tsai, L.Y. Evaluation of redox statuses in patients with hepatitis B virus-associated hepatocellular carcinoma. Ann. Clin. Biochem. 2009, 46, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, M.; Takaki, A.; Tamaki, N.; Maruyama, T.; Onishi, H.; Kobayashi, S.; Nouso, K.; Yasunaka, T.; Koike, K.; Hagihara, H.; et al. Serum oxidative-anti-oxidative stress balance is dysregulated in patients with hepatitis C virus-related hepatocellular carcinoma. Hepatol. Res. 2013, 43, 1078–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yahya, R.S.; Ghanem, O.H.; Foyouh, A.A.; Atwa, M.; Enany, S.A. Role of interleukin-8 and oxidative stress in patients with hepatocellular carcinoma. Clin. Lab. 2013, 59, 969–976. [Google Scholar] [CrossRef]
- Lee, K.T.; Tsai, S.M.; Wang, S.N.; Lin, S.K.; Wu, S.H.; Chuang, S.C.; Wu, S.H.; Ma, H.; Tsai, L.Y. Glutathione status in the blood and tissues of patients with virus-originated hepatocellular carcinoma. Clin. Biochem. 2007, 40, 1157–1162. [Google Scholar] [CrossRef]
- Lin, C.C.; Yin, M.C. B vitamins deficiency and decreased anti-oxidative state in patients with liver cancer. Eur. J. Nutr. 2007, 46, 293–299. [Google Scholar] [CrossRef]
- Shimomura, Y.; Takaki, A.; Wada, N.; Yasunaka, T.; Ikeda, F.; Maruyama, T.; Tamaki, N.; Uchida, D.; Onishi, H.; Kuwaki, K.; et al. The Serum Oxidative/Anti-oxidative Stress Balance Becomes Dysregulated in Patients with Non-alcoholic Steatohepatitis Associated with Hepatocellular Carcinoma. Intern. Med. 2017, 56, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Sanabria, J.R.; Kombu, R.S.; Zhang, G.F.; Sandlers, Y.; Ai, J.; Ibarra, R.A.; Abbas, R.; Goyal, K.; Brunengraber, H. Glutathione species and metabolomic prints in subjects with liver disease as biological markers for the detection of hepatocellular carcinoma. HPB 2016, 18, 979–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samant, H.; Amiri, H.S.; Zibari, G.B. Addressing the worldwide hepatocellular carcinoma: Epidemiology, prevention and management. J. Gastrointest. Oncol. 2021, 12, S361–S373. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.B.; Liu, H.T.; Chen, S.Y.; Lin, P.T.; Lai, C.Y.; Huang, Y.C. Changes of Oxidative Stress, Glutathione, and Its Dependent Antioxidant Enzyme Activities in Patients with Hepatocellular Carcinoma before and after Tumor Resection. PLoS ONE 2017, 12, e0170016. [Google Scholar] [CrossRef]
- Liao, K.F.; Lai, S.W.; Lin, C.Y.; Huang, C.H.; Lin, Y.Y. Risk factors of recurrence after curative resection of hepatocellular carcinoma in Taiwan. Am. J. Med. Sci. 2011, 341, 301–304. [Google Scholar]
- Shehta, A.; Han, H.S.; Ahn, S.; Yoon, Y.S.; Cho, J.Y.; Choi, Y.R. Post-resection recurrence of hepatocellular carcinoma in cirrhotic patients: Is thrombocytopenia a risk factor for recurrence? Surg. Oncol. 2016, 25, 364–369. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, S.; Ahn, C.S.; Kim, K.H.; Moon, D.B.; Ha, T.Y.; Song, G.W.; Jung, D.H.; Park, G.C.; Hong, S.M. Postresection prognosis of combined hepatocellular carcinoma-cholangiocarcinoma according to the 2010 World Health Organization classification: Single-center experience of 168 patients. Ann. Surg. Treat. Res. 2021, 100, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Yuan, S.X.; Yang, F.; Tao, Q.F.; Yang, Y.; Xu, Q.G.; Wang, Z.G.; Yu, J.; Lin, K.Y.; Wang, Z.Y.; et al. Paraoxonase 3 inhibits cell proliferation and serves as a prognostic predictor in hepatocellular carcinoma. Oncotarget 2016, 7, 70045–70057. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Y.; Chen, Y.M.; Wu, J.; Yang, F.C.; Lv, Z.; Xu, X.F.; Zheng, S.S. Expression of FOXO6 is Associated With Oxidative Stress Level and Predicts the Prognosis in Hepatocellular Cancer: A Comparative Study. Medicine 2016, 95, e3708. [Google Scholar] [CrossRef]
- Fang, Y.; He, J.; Janssen, H.L.A.; Wu, J.; Dong, L.; Shen, X.Z. Peroxiredoxin 1, restraining cell migration and invasion, is involved in hepatocellular carcinoma recurrence. J. Dig. Dis. 2018, 19, 155–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.Y.; Yu, J.; Huang, Y.H.; Lin, Y.H.; Yeh, C.T. The lipid peroxidation derived DNA adduct gamma-OHPdG levels in paraneoplastic liver tissues predict postoperative outcomes of hepatoma. J. Cancer 2021, 12, 4064–4074. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.B.; Lin, P.T.; Liu, H.T.; Peng, Y.S.; Huang, S.C.; Huang, Y.C. Vitamin B-6 Supplementation Could Mediate Antioxidant Capacity by Reducing Plasma Homocysteine Concentration in Patients with Hepatocellular Carcinoma after Tumor Resection. BioMed Res. Int. 2016, 2016, 7658981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.; Ng, K.T.; Shao, Y.; Li, C.X.; Geng, W.; Ling, C.C.; Ma, Y.Y.; Liu, X.B.; Liu, H.; Liu, J.; et al. The Clinical Significance and Potential Therapeutic Role of GPx3 in Tumor Recurrence after Liver Transplantation. Theranostics 2016, 6, 1934–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamarajah, S.K.; Frankel, T.L.; Sonnenday, C.; Cho, C.S.; Nathan, H. Critical evaluation of the American Joint Commission on Cancer (AJCC) 8th edition staging system for patients with Hepatocellular Carcinoma (HCC): A Surveillance, Epidemiology, End Results (SEER) analysis. J. Surg. Oncol. 2018, 117, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D.; Ciofani, G.; Pierdomenico, S.D.; Giamberardino, M.A.; Cuccurullo, F. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma. Free Radic. Biol. Med. 2001, 31, 331–335. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Hernández-Ruiz, J.; García-Cánovas, F.; Acosta, M. Inhibition by L-ascorbic acid and other antioxidants of the 2.2′-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) oxidation catalyzed by peroxidase: A new approach for determining total antioxidant status of foods. Anal. Biochem. 1996, 236, 255–261. [Google Scholar] [CrossRef]
- Carlberg, I.; Mannervik, B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. J. Biol. Chem. 1975, 250, 5475–5480. [Google Scholar] [CrossRef]
- Arauz, J.; Ramos-Tovar, E.; Muriel, P. Redox state and methods to evaluate oxidative stress in liver damage: From bench to bedside. Ann. Hepatol. 2016, 15, 160–173. [Google Scholar] [PubMed]
- Sentellas, S.; Morales-Ibanez, O.; Zanuy, M.; Alberti, J.J. GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress. Toxicol. In Vitro 2014, 28, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Chen, C.; An, J.; Shang, Y.; Li, H.; Xia, H.; Yu, J.; Wang, C.; Liu, Y.; et al. Regulation of TBBPA-induced oxidative stress on mitochondrial apoptosis in L02cells through the Nrf2 signaling pathway. Chemosphere 2019, 226, 463–471. [Google Scholar] [CrossRef]
- Salama, S.A.; Arab, H.H.; Hassan, M.H.; Al Robaian, M.M.; Maghrabi, I.A. Cadmium-induced hepatocellular injury: Modulatory effects of gamma-glutamyl cysteine on the biomarkers of inflammation, DNA damage, and apoptotic cell death. J. Trace Elem. Med. Biol. 2019, 52, 74–82. [Google Scholar] [CrossRef]
- Lorente, L.; Rodriguez, S.T.; Sanz, P.; Abreu-Gonzalez, P.; Diaz, D.; Moreno, A.M.; Borja, E.; Martin, M.M.; Jimenez, A.; Barrera, M.A. Association between Pre-Transplant Serum Malondialdehyde Levels and Survival One Year after Liver Transplantation for Hepatocellular Carcinoma. Int. J. Mol. Sci. 2016, 17, 500. [Google Scholar] [CrossRef] [Green Version]
- Lorente, L.; Rodriguez, S.T.; Sanz, P.; Perez-Cejas, A.; Abreu-Gonzalez, P.; Padilla, J.; Diaz, D.; Gonzalez, A.; Martin, M.M.; Jimenez, A.; et al. Serum total antioxidant capacity prior to liver transplantation for hepatocellular carcinoma is associated with 1-year liver transplantation survival. J. Int. Med. Res. 2018, 46, 2641–2649. [Google Scholar] [CrossRef]
- Qi, X.; Ng, K.T.; Lian, Q.Z.; Liu, X.B.; Li, C.X.; Geng, W.; Ling, C.C.; Ma, Y.Y.; Yeung, W.H.; Tu, W.W.; et al. Clinical significance and therapeutic value of glutathione peroxidase 3 (GPx3) in hepatocellular carcinoma. Oncotarget 2014, 5, 11103–11120. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Kan, X.F.; Ma, C.; Chen, L.L.; Cheng, T.T.; Zou, Z.W.; Li, Y.; Cao, F.J.; Zhang, W.J.; Yao, J.; et al. GPX2 overexpression indicates poor prognosis in patients with hepatocellular carcinoma. Tumour Biol. 2017, 39, 1010428317700410. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.F.; Moura, A.C.; Andreolla, H.F.; Veiga, A.; Fiegenbaum, M.; Giovenardi, M.; Almeida, S. Gene expression evaluation of antioxidant enzymes in patients with hepatocellular carcinoma: RT-qPCR and bioinformatic analyses. Genet. Mol. Biol. 2021, 44, e20190373. [Google Scholar] [CrossRef]
- Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev. 2013, 2013, 972913. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhou, C.; Ma, Q.; Chen, W.; Atyah, M.; Yin, Y.; Fu, P.; Liu, S.; Hu, B.; Ren, N.; et al. High GCLC level in tumor tissues is associated with poor prognosis of hepatocellular carcinoma after curative resection. J. Cancer 2019, 10, 3333–3343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-Culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef] [PubMed]
- Ma-On, C.; Sanpavat, A.; Whongsiri, P.; Suwannasin, S.; Hirankarn, N.; Tangkijvanich, P.; Boonla, C. Oxidative stress indicated by elevated expression of Nrf2 and 8-OHdG promotes hepatocellular carcinoma progression. Med. Oncol. 2017, 34, 57. [Google Scholar] [CrossRef]
- Wang, Z.X.; Peng, W.; Zhang, X.Y.; Wen, T.F.; Li, C. Prognostic significance of postoperative change of PALBI grade for patients with hepatocellular carcinoma after hepatectomy. Medicine 2021, 100, e24476. [Google Scholar] [CrossRef]
- Lurje, G.; Bednarsch, J.; Czigany, Z.; Amygdalos, I.; Meister, F.; Schoning, W.; Ulmer, T.F.; Foerster, M.; Dejong, C.; Neumann, U.P. Prognostic factors of disease-free and overall survival in patients with hepatocellular carcinoma undergoing partial hepatectomy in curative intent. Langenbecks Arch. Surg. 2018, 403, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.F.; Xing, H.; Han, J.; Li, Z.L.; Lau, W.Y.; Zhou, Y.H.; Gu, W.M.; Wang, H.; Chen, T.H.; Zeng, Y.Y.; et al. Risk Factors, Patterns, and Outcomes of Late Recurrence After Liver Resection for Hepatocellular Carcinoma: A Multicenter Study From China. JAMA Surg. 2019, 154, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Barrett, C.W.; Ning, W.; Chen, X.; Smith, J.J.; Washington, M.K.; Hill, K.E.; Coburn, L.A.; Peek, R.M.; Chaturvedi, R.; Wilson, K.T.; et al. Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. Cancer Res. 2013, 73, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Recurrence (n = 48) | Non-Recurrence (n = 44) | ||
---|---|---|---|---|
Pre-Resection | Post-Resection | Pre-Resection | Post-Resection | |
Age (years) | 60.9 ± 9.7 | 58.6 ± 10.3 | ||
Gender (male/female) | 39/9 | 36/8 | ||
BMI (kg/m2) | 24.0 ± 3.0 | 23.6 ± 2.8 2,* | 24.9 ± 2.8 | 24.5 ± 2.4 3,* |
Blood pressure | ||||
SBP (mmHg) | 131.3 ± 16.2 | 126.7 ± 18.6 2,* | 126.8 ± 13.4 | 129.8 ± 16.8 3 |
DBP (mmHg) | 76.4 ± 11.2 | 73.6 ± 13.3 2 | 77.5 ± 11.6 | 79.2 ± 11.4 3 |
Smoking habit (n, %) | ||||
Yes | 13 (27.1%) | 14 (31.8%) | ||
No | 35 (72.9%) | 30 (68.2%) | ||
Drinking habit (n, %) | ||||
Yes | 6 (12.5%) | 8 (18.2%) | ||
No | 42 (87.5%) | 36 (81.8%) | ||
Cirrhosis (n, %) | ||||
Yes | 17 (35.4%) | 7 (15.9%) | ||
No | 31 (64.6%) | 37 (84.1%) | ||
Hepatitis (n, %) | ||||
No hepatitis | 3 (6.3%) | 3 (6.8%) | ||
Hepatitis B | 28 (58.3%) | 30 (68.2%) | ||
Hepatitis C | 16 (33.3%) | 10 (22.7%) | ||
Co-hepatitis B and C | 1 (2.1%) | 1 (2.3%) | ||
Use of nutritional supplement | ||||
Yes | 10 (20.8%) | 5 (11.4%) | ||
No | 38 (79.2%) | 39 (88.6%) | ||
Cancer stage (n, %) | ||||
Stage I | 27 (56.3%) | 21 (47.7%) | ||
Stage II | 21 (43.8%) | 23 (52.3%) | ||
Histological grading (n, %) | ||||
Well-differentiated | 1 (2.1%) | 0 (0%) | ||
Moderately differentiated | 21 (43.8%) | 25 (56.8%) | ||
Poorly differentiated | 26 (54.2%) | 19 (43.2%) | ||
Tumor number (n, %) | ||||
Solitary | 39 (81.3%) | 43 (97.7%) | ||
Multifocal | 9 (18.8%) | 1 (2.3%) | ||
Tumor size (n, %) | ||||
≤5 cm | 34 (70.8%) | 27 (61.4%) | ||
>5 cm | 14 (29.2%) | 17 (38.6%) | ||
Lymph-Vascular Invasion (n, %) | ||||
Absent | 33 (68.8%) | 22 (50%) | ||
Present | 15 (31.3%) | 22 (50%) |
Parameters | Recurrence (n = 48) | Non-Recurrence (n = 44) | ||||||
---|---|---|---|---|---|---|---|---|
Pre-Resection | Post-Resection | p Value 2 | Δ(Post—Pre-Resection) | Pre-Resection | Post-Resection | p Value 2 | Δ(Post—Pre-Resection) | |
ALT (U/L) | 64.4 ± 8.2 (43.5) | 54.2 ± 7.2 (39.5) | 0.12 | −10.3 ± 8.0 (−3.0) | 76.4 ± 15.6 (37.0) | 44.2 ± 4.7 (35.5) | 0.10 | −33.9 ± 16.5 (−2.0) |
AST (U/L) | 63.0 ± 8.7 (36.5) | 42.8 ± 5.6 (31.5) | 0.01 | −20.2 ± 9.0 (−5.5) | 77.5 ± 15.4 (37.0) | 37.3 ± 3.5 (30.0) | 0.003 | −42.9 ± 16.4 (−5.5) |
α-fetoprotein (ng/mL) | 1240.1 ± 941.8 (19.1) | 34.1 ± 10.0 (9.8) | <0.001 | −1205.3 ± 937.4 (−3.1) | 2562.8 ± 1504.8 (31.3) | 119.8 ± 67.0 # (5.7) | <0.001 | −2652.5 ± 1594.0 (−21.8) |
Total bilirubin (mg/dL) | 0.6 ± 0.04 (0.6) | 1.1 ± 0.3 3 (0.8) | 0.01 | 0.5 ± 0.3 (0.2) | 0.7 ± 0.1 (0.6) | 0.7 ± 0.1 4 (0.6) | 0.58 | 0.02 ±0.03 (0.0) |
Albumin (g/dL) | 4.1 ± 0.1 (4.1) | 4.1 ± 0.1 3 (4.1) | 0.69 | −0.01 ± 0.8 (0.1) | 4.1 ± 0.1 (4.1) | 4.3 ± 0.04 # (4.3) | 0.004 | 0.2 ± 0.1 † (0.1) |
hs-CRP (mg/dL) | 0.9 ± 0.3 (0.2) | 0.7 ± 0.1 (0.4) | 0.07 | −0.2 ± 0.3 (0.1) | 0.4 ± 0.1 (0.1) | 0.5 ± 0.2 (0.3) | 0.01 | 0.1 ± 0.2 (0.1) |
BUN (mg/dL) | 14.3 ± 0.8 (13.0) | 16.1 ± 0.9 (15.0) | 0.01 | 1.7 ± 0.7 (2.0) | 14.6 ± 0.9 (13.5) | 16.1 ± 0.9 (15.0) | 0.49 | 0.6 ± 0.8 (0.5) |
Parameters | Recurrence (n = 48) | Non-Recurrence (n = 44) | ||||||
---|---|---|---|---|---|---|---|---|
Pre-Resection | Post-Resection | p Value 2 | Δ(Post—Pre-Resection) | Pre-Resection | Post-Resection | p Value 2 | Δ(Post—Pre-Resection) | |
Oxidative stress marker | ||||||||
MDA (μmol/L) | 0.9 ± 0.04 (0.9) | 0.8 ± 0.5 (0.7) | 0.01 | −0.1 ± 0.1 (−0.2) | 1.0 ± 0.04 (1.0) | 1.0 ± 0.2 (0.8) | 0.01 | 0.0 ± 0.1 (−0.1) |
GSSG/GSH ratio | 34.6 ± 20.1 (12.3) | 24.8 ± 7.6 (8.8) | 0.20 | −12.5 ± 17.4 (−1.9) | 17.6 ± 4.1 (9.4) | 23.5 ± 13.0 (7.7) | 0.10 | 6.7 ± 12.5 (−1.2) |
Antioxidant capacities | ||||||||
GSH (μmol/L) | 54.0 ± 5.2 (47.6) | 67.9 ± 6.8 (62.9) | 0.01 | 14.9 ± 5.5 (12.2) | 64.8 ± 5.9 (60.9) | 83.8 ± 8.3 (77.9) | 0.003 | 17.6 ± 6.1 (13.2) |
GSSG (μmol/L) | 555.1 ± 15.4 (575.7) | 610.1 ± 16.5 (606.0) | 0.01 | 52.5 ± 17.6 (50.6) | 552.7 ± 15.6 (554.1) | 611.1 ± 18.4 (593.9) | <0.001 | 58.1 ± 12.7 (37.7) |
GPx (nmol min−1 mL−1) | 130.9 ± 13.4 (132.4) | 152.3 ± 11.2 (160.5) | 0.03 | 22.4 ± 14.5 (15.3) | 144.5 ± 7.4 (149.0) | 157.4 ± 9.4 (175.7) | 0.17 | 16.5 ± 10.2 (15.3) |
GR (nmol min−1 mL−1) | 54.8 ± 2.4 (54.7) | 69.2 ± 2.7 (67.4) | <0.001 | 14.1 ± 2.7 (9.6) | 64.7 ± 3.2 * (59.6) | 70.4 ± 2.9 (70.8) | 0.047 | 5.7 ± 3.7 (7.8) |
GST (nmol min−1 mL−1) | 38.7 ± 4.1 (35.8) | 30.0 ± 3.0 (25.8) | 0.03 | −8.9 ± 4.3 (−6.0) | 24.7 ± 3.1 * (15.2) | 22.1 ± 2.8 (18.2) | 0.31 | −2.6 ± 2.7 (−3.0) |
TEAC (μmol/L) | 4346.4 ± 83.3 (4334.7) | 4592.6 ± 65.7 (4602.6) | 0.01 | 269.2 ± 101.1 (318.0) | 4394. 9 ± 76.0 (4401.3) | 4610.1 ± 69.5 (4642.1) | 0.02 | 215.2 ± 92.0 (219.1) |
Characteristics | Recurrence (n = 48) | Non-Recurrence (n = 44) | ||
---|---|---|---|---|
Adjacent Normal Tissue | HCC Tissue | Adjacent Normal Tissue | HCC Tissue | |
Oxidative stress marker | ||||
MDA (μmol/g protein) | 0.7 ± 0.1 (0.7) | 0.5 ± 0.1 (0.3) | 0.6 ± 0.1 (0.4) | 0.7 ± 0.1 (0.5) |
GSSG/GSH ratio | 14.5 ± 1.8 2 (14.1) | 16.4 ± 3.4 2 (13.8) | 21.9 ± 2.8 3,# (19.8) | 23.9 ± 3.6 3 (18.2) |
Antioxidant capacities | ||||
GSH (μmol/g protein) | 20.4 ± 2.4 (21.4) | 30.6 ± 3.9 * (26.5) | 14.5 ± 3.2 # (3.3) | 20.0 ± 3.9 *,# (6.6) |
GSSG (μmol/g protein) | 33.5 ± 1.5 2 (32.5) | 47.0 ± 4.4 2,* (43.1) | 38.7 ± 2.1 3 (35.7) | 54.0 ± 4.7 3,* (48.4) |
TEAC (μmol/g protein) | 214.1 ± 9.7 (209.6) | 268.3 ± 16.5 * (262.7) | 202.6 ± 11.6 (189.3) | 247.8 ± 17.0 * (218.7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsiao, Y.-F.; Cheng, S.-B.; Lai, C.-Y.; Liu, H.-T.; Huang, S.-C.; Huang, Y.-C. The Prognostic Role of Glutathione and Its Related Antioxidant Enzymes in the Recurrence of Hepatocellular Carcinoma. Nutrients 2021, 13, 4071. https://doi.org/10.3390/nu13114071
Hsiao Y-F, Cheng S-B, Lai C-Y, Liu H-T, Huang S-C, Huang Y-C. The Prognostic Role of Glutathione and Its Related Antioxidant Enzymes in the Recurrence of Hepatocellular Carcinoma. Nutrients. 2021; 13(11):4071. https://doi.org/10.3390/nu13114071
Chicago/Turabian StyleHsiao, Yung-Fang, Shao-Bin Cheng, Chia-Yu Lai, Hsiao-Tien Liu, Shih-Chien Huang, and Yi-Chia Huang. 2021. "The Prognostic Role of Glutathione and Its Related Antioxidant Enzymes in the Recurrence of Hepatocellular Carcinoma" Nutrients 13, no. 11: 4071. https://doi.org/10.3390/nu13114071
APA StyleHsiao, Y. -F., Cheng, S. -B., Lai, C. -Y., Liu, H. -T., Huang, S. -C., & Huang, Y. -C. (2021). The Prognostic Role of Glutathione and Its Related Antioxidant Enzymes in the Recurrence of Hepatocellular Carcinoma. Nutrients, 13(11), 4071. https://doi.org/10.3390/nu13114071