1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Groups
2.2. Target Parameters
2.3. Statistics
3. Results
3.1. The Effect of Serum Vitamin D Status on Clinical Outcomes of Retrospective Cases
3.2. Retrospective Study
3.3. The Effect of Vitamin D Treatment on Clinical Outcomes: Untreated Retrospective Cases vs. Vitamin D Treated Prospective Cases
3.4. Prospective Study (the Biological Background of Vitamin D Treatment)
3.4.1. Vitamin D Treatment Formula
3.4.2. Mean Comparisons
3.4.3. Correlation Analysis
4. Discussion
4.1. The Efficiency of Vitamin D Supplementation
4.2. Vitamin D, Iron, and Hemoglobin
4.3. Vitamin D and Sepsis
4.4. Vitamin D and COVID-19
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wan, S.; Yi, Q.; Fan, S.; Lv, J.; Zhang, X.; Guo, L.; Lang, C.; Xiao, Q.; Xiao, K.; Yi, Z.; et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br. J. Haematol. 2020, 189, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef][Green Version]
- Cao, W.; Li, T. COVID-19: Towards understanding of pathogenesis. Cell Res. 2020, 30, 367–369. [Google Scholar] [CrossRef]
- Dos Santos, W.G. Natural history of COVID-19 and current knowledge on treatment therapeutic options. Biomed. Pharmacother. 2020, 129, 110493. [Google Scholar] [CrossRef] [PubMed]
- Dursun, E.; Alaylioglu, M.; Bilgic, B.; Hanagasi, H.; Lohmann, E.; Atasoy, I.L.; Candas, E.; Araz, O.S.; Onal, B.; Gurvit, H.; et al. Vitamin d deficiency might pose a greater risk for apo-evarepsilon4 non-carrier alzheimer’s disease patients. Neurol. Sci. 2016, 37, 1633–1643. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: A millenium perspective. J. Cell. Biochem. 2003, 88, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Holick, M. Vitamin D: A D-lightful solution for good health. J. Med. Biochem. 2012, 31, 263–264. [Google Scholar] [CrossRef][Green Version]
- Holick, M.F. Cancer, sunlight and vitamin D. J. Clin. Transl. Endocrinol. 2014, 1, 179–186. [Google Scholar] [CrossRef][Green Version]
- Visweswaran, R.K.; Lekha, H. Extraskeletal effects and manifestations of Vitamin D deficiency. Indian J. Endocrinol. Metab. 2013, 17, 602–610. [Google Scholar] [CrossRef]
- Gezen-Ak, D.; Dursun, E. Molecular basis of vitamin D action in neurodegeneration: The story of a team perspective. Hormones 2018, 18, 17–21. [Google Scholar] [CrossRef]
- Gezen-Ak, D.; Yilmazer, S.; Dursun, E. Why vitamin d in alzheimer’s disease? The hypothesis. J. Alzheimers Dis. 2014, 40, 257–269. [Google Scholar] [CrossRef]
- Annweiler, C.; Dursun, E.; Feron, F.; Gezen-Ak, D.; Kalueff, A.V.; Littlejohns, T.; Llewellyn, D.; Millet, P.; Scott, T.; Tucker, K.L.; et al. Vitamin d and cognition in older adults: Internation-al consensus guidelines. Geriatr. Psychol. Neuropsychiatr. Vieil. 2016, 14, 265–273. [Google Scholar] [CrossRef]
- Dursun, E.; Gezen-Ak, D. Vitamin D basis of Alzheimer’s disease: From genetics to biomarkers. Hormones 2019, 18, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect. 2006, 134, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Krohn, M.A.; Simhan, H.N. Maternal Vitamin D Deficiency Is Associated with Bacterial Vaginosis in the First Trimester of Pregnancy. J. Nutr. 2009, 139, 1157–1161. [Google Scholar] [CrossRef][Green Version]
- Villamor, E. A potential role for vitamin d on hiv infection? Nutr. Rev. 2006, 64, 226–233. [Google Scholar] [CrossRef]
- Rodríguez, M.; Daniels, B.; Gunawardene, S.; Robbins, G.K. High Frequency of Vitamin D Deficiency in Ambulatory HIV-Positive Patients. AIDS Res. Hum. Retrovir. 2009, 25, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Pantalena, L.C.; Liu, X.K.; Gaffen, S.L.; Liu, H.; Rohowsky-Kochan, C.; Ichiyama, K.; Yoshimura, A.; Steinman, L.; Christakos, S.; et al. 1,25-dihydroxyvitamin d(3) ameliorates th17 autoimmunity via transcriptional modulation of interleukin-17a. Mol. Cell Biol. 2011, 31, 3653–3669. [Google Scholar] [CrossRef][Green Version]
- Fernandes de Abreu, D.A.; Eyles, D.; Féron, F. Vitamin d, a neuro-immunomodulator: Implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 2009, 34, 265–277. [Google Scholar] [CrossRef]
- Golpour, A.; Bereswill, S.; Heimesaat, M.M. Antimicrobial and immune-modulatory effects of vitamin D provide promising antibiotics-independent approaches to tackle bacterial infections—lessons learnt from a literature survey. Eur. J. Microbiol. Immunol. 2019, 9, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Rathi, H.; Haq, A.; Wimalawansa, S.J.; Sharma, A. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Virus Res. 2021, 292, 198235. [Google Scholar] [CrossRef]
- Azizi-Soleiman, F.; Vafa, M.; Abiri, B.; Safavi, M. Effects of iron on Vitamin D metabolism: A systematic review. Int. J. Prev. Med. 2016, 7, 126. [Google Scholar] [CrossRef]
- Blanco-Rojo, R.; Pérez-Granados, A.M.; Toxqui, L.; Zazo, P.; De La Piedra, C.; Vaquero, M.P. Relationship between vitamin D deficiency, bone remodelling and iron status in iron-deficient young women consuming an iron-fortified food. Eur. J. Nutr. 2012, 52, 695–703. [Google Scholar] [CrossRef][Green Version]
- Heldenberg, D.; Tenenbaum, G.; Weisman, Y. Effect of iron on serum 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D concentrations. Am. J. Clin. Nutr. 1992, 56, 533–536. [Google Scholar] [CrossRef][Green Version]
- Wright, I.; Blanco-Rojo, R.; Fernández, M.C.; Toxqui, L.; Moreno, G.; Pérez-Granados, A.M.; de la Piedra, C.; Remacha, Á.F.; Vaquero, M.P. Bone remodelling is reduced by recovery from iron-deficiency anaemia in premenopausal women. J. Physiol. Biochem. 2013, 69, 889–896. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hayden, S.J.; Albert, T.J.; Watkins, T.R.; Swenson, E.R. Anemia in critical illness: Insights into etiology, consequences, and management. Am. J. Respir. Crit. Care Med. 2012, 185, 1049–1057. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yang, C.; Liu, Y.; Wan, W. Role and mechanism of vitamin D in sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019, 31, 1170–1173. [Google Scholar]
- Parekh, D.; Patel, J.; Scott, A.; Lax, S.; Dancer, R.C.A.; D’Souza, V.; Greenwood, H.; Fraser, W.D.; Gao, F.; Sapey, E.; et al. Vitamin D Deficiency in Human and Murine Sepsis. Crit. Care Med. 2017, 45, 282–289. [Google Scholar] [CrossRef][Green Version]
- Alipio, M.M. Vitamin D Supplementation Could Possibly Improve Clinical Outcomes of Patients Infected with Coronavirus-2019 (COVID-2019); Elsevier BV: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Radujkovic, A.; Hippchen, T.; Tiwari-Heckler, S.; Dreher, S.; Boxberger, M.; Merle, U. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients 2020, 12, 2757. [Google Scholar] [CrossRef]
- AlSafar, H.; Grant, W.B.; Hijazi, R.; Uddin, M.; Alkaabi, N.; Tay, G.; Mahboub, B.; Al Anouti, F. COVID-19 disease severity and death in relation to vitamin d status among SARS-CoV-2-positive uae residents. Nutrients 2021, 13, 1714. [Google Scholar] [CrossRef]
- Kazemi, A.; Mohammadi, V.; Aghababaee, S.K.; Golzarand, M.; Clark, C.C.T.; Babajafari, S. Association of vitamin d status with SARS-CoV-2 infection or COVID-19 severity: A systematic review and meta-analysis. Adv. Nutr. 2021, 12, 1636–1658. [Google Scholar] [CrossRef]
- Sanchez-Zuno, G.A.; Gonzalez-Estevez, G.; Matuz-Flores, M.G.; Macedo-Ojeda, G.; Hernandez-Bello, J.; Mora-Mora, J.C.; Perez-Guerrero, E.E.; Garcia-Chagollan, M.; Vega-Magana, N.; Turrubiates-Hernandez, F.J.; et al. Vitamin d levels in COVID-19 outpatients from western mexico: Clinical correlation and effect of its supplementation. J. Clin. Med. 2021, 10, 2378. [Google Scholar] [CrossRef]
- Durlak, J.A. How to Select, Calculate, and Interpret Effect Sizes. J. Pediatric Psychol. 2009, 34, 917–928. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gezen-Ak, D.; Alaylıoğlu, M.; Genç, G.; Şengül, B.; Keskin, E.; Sordu, P.; Güleç, Z.E.K.; Apaydın, H.; Bayram-Gürel, Ç.; Ulutin, T.; et al. Altered Transcriptional Profile of Mitochondrial DNA-Encoded OXPHOS Subunits, Mitochondria Quality Control Genes, and Intracellular ATP Levels in Blood Samples of Patients with Parkinson’s Disease. J. Alzheimer’s Dis. 2020, 74, 287–307. [Google Scholar] [CrossRef]
- Corwin, H.L.; Gettinger, A.; Pearl, R.G.; Fink, M.P.; Levy, M.M.; Abraham, E.; MacIntyre, N.R.; Shabot, M.M.; Duh, M.-S.; Shapiro, M.J. The CRIT Study: Anemia and blood transfusion in the critically ill—Current clinical practice in the United States *. Crit. Care Med. 2004, 32, 39–52. [Google Scholar] [CrossRef][Green Version]
- Vincent, J.L.; Baron, J.-F.; Reinhart, K.; Gattinoni, L.; Thijs, L.; Webb, A.; Meier-Hellmann, A.; Nollet, G.; Peres-Bota, D. For the ABC Investigators Anemia and Blood Transfusion in Critically Ill Patients. JAMA 2002, 288, 1499–1507. [Google Scholar] [CrossRef][Green Version]
- Amrein, K.; Schnedl, C.; Holl, A.; Riedl, R.; Christopher, K.B.; Pachler, C.; Urbanic Purkart, T.; Waltensdorfer, A.; Munch, A.; Warnkross, H.; et al. Effect of high-dose vitamin d3 on hospi-tal length of stay in critically ill patients with vitamin d deficiency: The vitdal-icu randomized clinical trial. JAMA 2014, 312, 1520–1530. [Google Scholar] [CrossRef][Green Version]
- Smith, E.M.; Jones, J.L.; Han, J.E.; Alvarez, J.A.; Sloan, J.H.; Konrad, R.J.; Zughaier, S.M.; Martin, G.S.; Ziegler, T.R.; Tangpricha, V. High-dose vitamin d3 administration is associated with increases in hemoglobin concentrations in mechanically ventilated critically ill adults: A pilot double-blind, randomized, placebo-controlled trial. J. Parenter Enter. Nutr. 2018, 42, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Pizzini, A.; Aichner, M.; Sahanic, S.; Bohm, A.; Egger, A.; Hoermann, G.; Kurz, K.; Widmann, G.; Bellmann-Weiler, R.; Weiss, G.; et al. Impact of vitamin d deficiency on COVID-19-a pro-spective analysis from the covild registry. Nutrients 2020, 12, 2775. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Lavezzi, E.; Brunetti, A.; Mirani, M.; Favacchio, G.; Pizzocaro, A.; Sandri, M.T.; Di Pasquale, A.; Voza, A.; Ciccarelli, M.; et al. Vitamin d deficiency, secondary hyperpara-thyroidism and respiratory insufficiency in hospitalized patients with COVID-19. J. Endocrinol. Investig. 2021, 44, 2285–2293. [Google Scholar] [CrossRef]
- Elham, A.S.; Azam, K.; Azam, J.; Mostafa, L.; Nasrin, B.; Marzieh, N. Serum vitamin D, calcium, and zinc levels in patients with COVID-19. Clin. Nutr. ESPEN 2021, 43, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Osman, W.; Al Fahdi, F.; Al Salmi, I.; Al Khalili, H.; Gokhale, A.; Khamis, F. Serum Calcium and Vitamin D levels: Correlation with severity of COVID-19 in hospitalized patients in Royal Hospital, Oman. Int. J. Infect. Dis. 2021, 107, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Azevedo, M.L.V.; Zanchettin, A.C.; Vaz de Paula, C.B.; Motta Junior, J.D.S.; Malaquias, M.A.S.; Raboni, S.M.; Neto, P.C.; Zeni, R.C.; Prokopenko, A.; Borges, N.H.; et al. Lung neutro-philic recruitment and il-8/il-17a tissue expression in COVID-19. Front. Immunol. 2021, 12, 656350. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Duan, X.; Li, Y.; Li, M.; Gao, Y.; Li, T.; Li, S.; Tan, L.; Shao, T.; Jeyarajan, A.J.; et al. Differentially expressed immune response genes in COVID-19 patients based on disease severity. Aging 2021, 13, 9265–9276. [Google Scholar] [CrossRef]
- Zawawi, A.; Naser, A.Y.; Alwafi, H.; Minshawi, F. Profile of Circulatory Cytokines and Chemokines in Human Coronaviruses: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 666223. [Google Scholar] [CrossRef]
- Lakkireddy, M.; Gadiga, S.G.; Malathi, R.D.; Karra, M.L.; Raju, I.P.M.; Chinapaka, S.; Baba, K.S.; Kandakatla, M. Impact of daily high dose oral vitamin d therapy on the inflammatory markers in patients with COVID 19 disease. Sci. Rep. 2021, 11, 10641. [Google Scholar] [CrossRef]
- Kessel, C.; Vollenberg, R.; Masjosthusmann, K.; Hinze, C.; Wittkowski, H.; Debaugnies, F.; Nagant, C.; Corazza, F.; Vely, F.; Kaplanski, G.; et al. Discrimination of COVID-19 from inflam-mation-induced cytokine storm syndromes by disease-related blood biomarkers. Arthritis Rheumatol. 2021, 73, 1791–1799. [Google Scholar] [CrossRef]
- Chen, Z.; Feng, Q.; Zhang, T.; Wang, X. Identification of COVID-19 subtypes based on immunogenomic profiling. Int. Immunopharmacol. 2021, 96, 107615. [Google Scholar] [CrossRef]
- Yamasaki, H. Blood nitrate and nitrite modulating nitric oxide bioavailability: Potential therapeutic functions in COVID-19. Nitric Oxide 2020, 103, 29–30. [Google Scholar] [CrossRef]
- Dursun, E.; Gezen-Ak, D.; Yilmazer, S. A new mechanism for amyloid-beta induction of inos: Vitamin d-vdr pathway disruption. J. Alzheimer’s Dis. 2013, 36, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Dursun, E.; Gezen-Ak, D.; Yilmazer, S. The influence of vitamin d treatment on the inducible nitric oxide synthase (inos) expression in primary hippocampal neurons. Noro. Psikiyatr. Ars. 2014, 51, 163–168. [Google Scholar] [CrossRef]
- Andrukhova, O.; Slavic, S.; Zeitz, U.; Riesen, S.C.; Heppelmann, M.S.; Ambrisko, T.D.; Markovic, M.; Kuebler, W.M.; Erben, R.G. Vitamin d is a regulator of endothelial nitric oxide syn-thase and arterial stiffness in mice. Mol. Endocrinol. 2014, 28, 53–64. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lorente, L.; Gómez-Bernal, F.; Martín, M.M.; Navarro-Gonzálvez, J.A.; Argueso, M.; Perez, A.; Ramos-Gómez, L.; Solé-Violán, J.; Ramos, J.A.M.Y.; Ojeda, N.; et al. High serum nitrates levels in non-survivor COVID-19 patients. Med. Intensiva 2020. [Google Scholar] [CrossRef] [PubMed]
- Yardan, T.; Erenler, A.K.; Baydin, A.; Aydin, K.; Cokluk, C. Usefulness of S100B protein in neurological disorders. J. Pak. Med. Assoc. 2011, 61, 276–281. [Google Scholar] [PubMed]
- Perrin, P.; Collongues, N.; Baloglu, S.; Bedo, D.; Bassand, X.; Lavaux, T.; Gautier-Vargas, G.; Keller, N.; Kremer, S.; Fafi-Kremer, S.; et al. Cytokine release syndrome-associated encephalo-pathy in patients with COVID-19. Eur. J. Neurol. 2021, 28, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Aceti, A.; Margarucci, L.M.; Scaramucci, E.; Orsini, M.; Salerno, G.; Di Sante, G.; Gianfranceschi, G.; Di Liddo, R.; Valeriani, F.; Ria, F.; et al. Serum S100B protein as a marker of severity in COVID-19 patients. Sci. Rep. 2020, 10, 18665. [Google Scholar] [CrossRef] [PubMed]
- Bauer, W.; Ulke, J.; Galtung, N.; Strasser-Marsik, L.C.; Neuwinger, N.; Tauber, R.; Somasundaram, R.; Kappert, K. Role of Cell Adhesion Molecules for Prognosis of Disease Development of Patients with and Without COVID-19 in the Emergency Department. J. Infect. Dis. 2021, 223, 1497–1499. [Google Scholar] [CrossRef]
- Li, L.; Huang, M.; Shen, J.; Wang, Y.; Wang, R.; Yuan, C.; Jiang, L.; Huang, M. Serum Levels of Soluble Platelet Endothelial Cell Adhesion Molecule 1 in COVID-19 Patients Are Associated with Disease Severity. J. Infect. Dis. 2021, 223, 178–179. [Google Scholar] [CrossRef]
- Spadaro, S.; Fogagnolo, A.; Campo, G.; Zucchetti, O.; Verri, M.; Ottaviani, I.; Tunstall, T.; Grasso, S.; Scaramuzzo, V.; Murgolo, F.; et al. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients. Crit. Care 2021, 25, 74. [Google Scholar] [CrossRef] [PubMed]

COVID-19 VITAMIN D (CHOLECALCIFEROL) SUPPLEMENTATION | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Patient Definition | DAY 1 | DAY 2 | DAY 3 | DAY 4 | DAY 5 | DAY 6 | DAY 7 | TOTAL PERIOD | TOTAL DOSE | |
INPATIENT | Serum 25OHD level < 12 ng/mL | 100.000 IU | 10.000 IU | 10.000 IU | 10.000 IU | 10.000 IU | 10.000 IU | 10.000 IU | 14 Days | 320.000 IU |
Serum 25OHD level 20–12 ng/mL | 100.000 IU | 5.000 IU | 5.000 IU | 5.000 IU | 5.000 IU | 5.000 IU | 5.000 IU | 14 Days | 260.000 IU | |
Serum 25OHD level 20–30 ng/mL | 100.000 IU | 2.000 IU | 2.000 IU | 2.000 IU | 2.000 IU | 2.000 IU | 2.000 IU | 14 Days | 224.000 IU | |
ICU PATIENT | Serum 25OHD level < 12 ng/mL | 100.000 IU | 100.000 IU | 100.000 IU | 100.000 IU | 100.000 IU | 5 Days | 500.000 IU | ||
Serum 25OHD level 20–12 ng/mL | 100.000 IU | 100.000 IU | 100.000 IU | 100.000 IU | 4 Days | 400.000 IU | ||||
Serum 25OHD level 20–30 ng/mL | 100.000 IU | 100.000 IU | 50.000 IU | 3 Days | 250.000 IU |
Serum 25OHD Levels | ||||||
---|---|---|---|---|---|---|
<12 ng/mL (L1) | 12–20 ng/mL (L2) | 20–30 ng/mL (L3) | >30 ng/mL (L4) | p Value | ||
n (%) | n (%) | n (%) | n (%) | |||
Sex | Female | 31 (37.8%) | 10 (24.4%) | 11 (39.3%) | 6 (54.5%) | 0.23 |
Male | 51 (62.2%) | 31 (75.6%) | 17 (60.7%) | 5 (45.5%) | ||
Hospital stay | <8 days | 29 (35.4%) | 20 (48.8%) | 14 (50.0%) | 6 (54.5%) | 0.30 |
>8 days | 53 (64.6%) | 21 (51.2%) | 14 (50.0%) | 5 (45.5%) | ||
ICU referral | Yes | 5 (6.1%) | 2 (5.0%) | 1 (3.6%) | 0 (0.0%) | 0.82 |
No | 77 (93.9%) | 38 (95.0%) | 27 (96.4%) | 11 (100%) | ||
<12 ng/mL | 12–20 ng/mL | 20–30 ng/mL | >30 ng/mL | p value for MCT | ||
n | 82 | 41 | 28 | 11 | ||
Age | Mean ± SD | 49.70 ± 13.45 | 46.75 ± 11.27 | 54.25 ± 12.35 | 52.18 ± 12.01 | p > 0.05 for all groups |
Hospital stay (days) | Mean ± SD | 9.40 ± 4.78 | 8.95 ± 4.13 | 8.39 ± 4.14 | 6.91 ± 3.36 | p > 0.05 for all groups |
Serum 25OHD levels (ng/mL) | Mean ± SD | 8.16 ± 2.22 | 15.27 ± 2.13 | 23.80 ± 2.87 | 44.12 ± 12.87 | p < 0.001 for all groups, overall Post hoc power: 100%, overall Glass’ Δ: 6.84 |
ALT (IU/L) | Mean ± SD | 32.53 ± 26.07 | 43.66 ± 79.13 | 32.45 ± 17.08 | 24.01 ± 15.08 | p > 0.05 for all groups |
AST (IU/L) | Mean ± SD | 34.72 ± 28.79 | 36.67 ± 35.91 | 35.71 ± 18.88 | 27.54 ± 14.02 | p > 0.05 for all groups |
CRP (mg/L) | Mean ± SD | 55.36 ± 70.44 | 40.85 ± 64.49 | 49.84 ± 53.85 | 25.75 ± 26.49 | p > 0.05 for all groups |
Creatinine (mg/dL) | Mean ± SD | 0.84 ± 0.19 | 0.90 ± 0.22 | 0.91 ± 0.22 | 0.90 ± 0.25 | p > 0.05 for all groups |
Ca2+ (mg/dL) | Mean ± SD | 8.75 ± 0.48 | 8.83 ± 0.53 | 8.89 ± 0.51 | 9.22 ± 0.67 | L1 vs. L4 p < 0.05; p > 0.05 for other groups Post hoc power: 61.4%, %, Glass’ Δ: 0.98 |
Sodium (mmol/L) | Mean ± SD | 137.76 ± 3.09 | 138.28 ± 3.20 | 136.96 ± 3.00 | 137.73 ± 4.47 | p > 0.05 for all groups |
Urea (mg/dL) | Mean ± SD | 27.78 ± 12.46 | 25.67 ± 6.89 | 25.75 ± 8.23 | 26.64 ± 10.14 | p > 0.05 for all groups |
Ferritin (ng/mL) | Mean ± SD | 407.55 ± 418.19 | 322.83 ± 304.59 | 455.10 ± 442.27 | 394.76 ± 318.01 | p > 0.05 for all groups |
Hemoglobine (g/dL) | Mean ± SD | 13.48 ± 1.54 | 13.53 ± 1.57 | 13.51 ± 1.35 | 13.24 ± 1.23 | p > 0.05 for all groups |
Lymphocyte (×103/µL) | Mean ± SD | 1.61 ± 1.00 | 1.59 ± 0.82 | 1.45 ± 0.78 | 1.75 ± 0.93 | p > 0.05 for all groups |
Platelet (×103/µL) | Mean ± SD | 217.70 ± 78.02 | 224.95 ± 76.72 | 211.07 ± 54.47 | 210.49 ± 72.20 | p > 0.05 for all groups |
Leukocyte (×103/µL) | Mean ± SD | 6.94 ± 2.96 | 6.72 ± 3.80 | 5.99 ± 2.09 | 5.62 ± 1.75 | p > 0.05 for all groups |
D-dimer (mg/L) | Mean ± SD | 2.80 ± 12.62 | 0.62 ± 0.55 | 2.49 ± 10.06 | 0.57 ± 0.38 | p > 0.05 for all groups |
Fibrinogen (mg/dL) | Mean ± SD | 485.21 ± 178.26 | 426.99 ± 176.84 | 464.54 ± 155.50 | 407.79 ±167.58 | p > 0.05 for all groups |
n | 18 | 18 | 16 | n < 3 | ||
PTH (pg/mL) | Mean ± SD | 37.68 ± 22.87 | 27.10 ± 10.15 | 23.48 ± 11.25 | - | p > 0.05 for all groups |
Nitrate–Nitrite (µM) | Mean ± SD | 12.35 ± 6.77 | 10.50 ± 3.89 | 16.11 ± 5.64 | - | L2 vs. L3 p < 0.05; p > 0.05 for other groups Post hoc power: 91.6%, Glass’ Δ: 1.44 |
NOS1 (ng/mL) | Mean ± SD | 3.00 ± 0.85 | 3.73 ± 1.22 | 3.42 ± 1.07 | - | p > 0.05 for all groups |
DBP (ng/mL) | Mean ± SD | 450.64 ± 182.61 | 586.10 ± 221.10 | 547.78 ± 174.04 | - | p > 0.05 for all groups |
IL1B (pg/mL) | Mean ± SD | 6.08 ± 0.94 | 5.98 ± 1.44 | 6.34 ± 1.36 | - | p > 0.05 for all groups |
IL6 (pg/mL) | Mean ± SD | 17.33 ± 33.40 | 14.81 ± 27.31 | 4.60 ± 3.33 | - | p > 0.05 for all groups |
IFNg (pg/mL) | Mean ± SD | 6.08 ± 7.72 | 4.65 ± 4.30 | 3.87 ± 4.54 | - | p > 0.05 for all groups |
IL17 (pg/mL) | Mean ± SD | 2.68 ± 0.57 | 2.56 ± 0.73 | 2.84 ± 0.78 | - | p > 0.05 for all groups |
LL37 (ng/mL) | Mean ± SD | 19.01 ± 8.22 | 22.52 ± 9.49 | 19.33 ± 4.79 | - | p > 0.05 for all groups |
S100B (pg/mL) | Mean ± SD | 6.37 ± 8.64 | 5.84 ± 8.94 | 7.86 ± 15.17 | - | p > 0.05 for all groups |
ICAM1 (ng/mL) | Mean ± SD | 98.03 ± 25.50 | 103.89 ± 66.33 | 72.11 ± 23.84 | - | p > 0.05 for all groups |
VCAM1 (ng/mL) | Mean ± SD | 578.17 ± 560.15 | 402.15 ± 302.33 | 370.82 ± 163.75 | - | p > 0.05 for all groups |
Serum 25OHD Levels | ||||
---|---|---|---|---|
<12 ng/mL | >12 ng/mL | p Value | ||
n (%) | n (%) | |||
Sex | Female | 31 (37.8%) | 27 (33.8%) | 0.60 |
Male | 51 (62.2%) | 53 (66.2%) | ||
Hospital stay | <8 days | 28 (35%) | 38 (49%) | 0.08 Post hoc power: 42.9% |
>8 days | 52 (65%) | 40 (51%) | ||
ICU referral | Yes | 5 (6%) | 4 (5%) | 0.776 |
No | 75 (94%) | 73 (95%) | ||
Mortality | 3 (3.7%) | 1 (1.3%) | 0.33 | |
Serum 25OHD levels | ||||
<12 ng/mL | >12 ng/mL | p value | ||
n | 82 | 79 | ||
Age | Mean ± SD | 49.71 ± 13.45 | 50.16 ± 12.14 | 0.82 |
Duration of hospital stay (days) | Mean ± SD | 9.40 ± 4.78 | 8.47 ± 4.05 | 0.18 |
Serum 25OHD levels (ng/mL) | Mean ± SD | 8.16 ± 2.21 | 22.22 ± 10.90 | <0.0001 Post hoc power: 100%, Glass’ Δ: 6.36 |
ALT (IU/L) | Mean ± SD | 32.53 ± 26.07 | 36.95 ± 57.57 | 0.53 |
AST (IU/L) | Mean ± SD | 34.72 ± 28.79 | 35.06 ± 28.34 | 0.94 |
CRP (mg/L) | Mean ± SD | 55.36 ± 70.44 | 41.93 ± 56.86 | 0.19 |
Creatinine (mg/dL) | Mean ± SD | 0.84 ± 0.19 | 0.90 ± 0.22 | 0.056 Post hoc power: 45.6%, Glass’ Δ: 0.32 |
Ca2+ (mg/dL) | Mean ± SD | 8.75 ± 0.48 | 8.90 ± 0.55 | 0.057 Post hoc power: 45.3%, Glass’ Δ: 0.31 |
Sodium (mmol/L) | Mean ± SD | 137.76 ± 3.09 | 137.73 ± 3.34 | 0.96 |
Urea (mg/dL) | Mean ± SD | 27.78 ± 12.46 | 25.83 ± 7.79 | 0.24 |
Ferritin (ng/mL) | Mean ± SD | 407.55 ± 418.19 | 384.72 ± 367.76 | 0.74 |
Hemoglobine (g/dL) | Mean ± SD | 13.48 ± 1.53 | 13.48 ± 1.44 | 0.99 |
Lymphocyte (×103/µL) | Mean ± SD | 1.61 ± 1.00 | 1.56 ± 0.82 | 0.75 |
Platelet (×103/µL) | Mean ± SD | 217.70 ± 78.02 | 218.02 ± 68.47 | 0.98 |
Leukocyte (×103/µL) | Mean ± SD | 6.94 ± 2.96 | 6.31 ± 3.05 | 0.19 |
D-dimer (mg/L) | Mean ± SD | 2.80 ± 12.62 | 1.31 ± 6.16 | 0.36 |
Fibrinogen (mg/dL) | Mean ± SD | 485.21 ± 178.26 | 437.49 ± 166.76 | 0.12 |
n | 18 | 34 | p value | |
PTH (pg/mL) | Mean ± SD | 37.68 ± 22.87 | 25.40 ±10.68 | 0.04 Post hoc power: 57.8%, Glass’ Δ: 0.54 |
Nitrate–Nitrite (µM) | Mean ± SD | 12.35 ± 6.77 | 13.14 ± 5.51 | 0.65 |
NOS1 (ng/mL) | Mean ± SD | 3.00 ± 0.85 | 3.59 ± 1.14 | 0.06 Post hoc power: 55.9%, Glass’ Δ: 0.69 |
DBP (ng/mL) | Mean ± SD | 450.64 ± 182.61 | 568.07 ± 198.32 | 0.04 Post hoc power: 57.2%, Glass’ Δ: 0.64 |
IL1B (pg/mL) | Mean ± SD | 6.08 ±0.94 | 6.15 ± 1.39 | 0.85 |
IL6 (pg/mL) | Mean ± SD | 17.33 ± 33.40 | 10.00 ± 20.40 | 0.40 |
IFNg (pg/mL) | Mean ± SD | 6.08 ± 7.72 | 4.28 ± 4.36 | 0.37 |
IL17 (pg/mL) | Mean ± SD | 2.68 ± 0.57 | 2.69 ± 0.76 | 0.98 |
LL37 (ng/mL) | Mean ± SD | 19.01 ± 8.22 | 21.02 ± 7.71 | 0.39 |
S100B (pg/mL) | Mean ± SD | 6.37 ± 8.64 | 6.79 ± 12.12 | 0.90 |
ICAM1 (ng/mL) | Mean ± SD | 98.03 ± 25.50 | 88.93 ± 52.76 | 0.50 |
VCAM1 (ng/mL) | Mean ± SD | 575.17 ± 560.15 | 386.96 ± 241.91 | 0.19 |
Retrospective COVID-19 Cases (without Additional Disease, without Vitamin D Treatment, and Serum 25OHD < 30 ng/mL) | Prospective COVID-19 Cases (with Vitamin D Treatment, and Initial Serum 25OHD < 30 ng/mL) | |||
---|---|---|---|---|
n (%) | n (%) | p Value | ||
Sex | Female | 52 (34.4%) | 80 (49.4%) | 0.008 |
Male | 99 (65.6%) | 82 (50.6%) | ||
Hospital stay | <8 days | 63 (41.7%) | 89 (54.9%) | 0.02 * |
>8 days | 88 (58.3%) | 73 (45.1%) | ||
ICU referral | Yes | 8 (5.3%) | 18 (11.0%) | 0.07 |
No | 143 (94.7%) | 145 (89.0%) | ||
Mortality | 4 (2.7%) | 9 (5.5%) | 0.22 | |
n | 151 | 163 | ||
Age | Mean ± SD | 50.23 ± 12.36 | 55.00 ± 16.45 | 0.004 |
Hospital stay (days) | Mean ± SD | 8.91 ± 4.35 | 9.23 ± 6.54 | 0.30 |
GROUPS | |||||
---|---|---|---|---|---|
Healthy Subjects (H) (n = 23) | COVID-19 (1–3 Days before Vitamin D Treatment) (C) (n = 210) | COVID-19 Cases (Day 7 of vit D) (D7) (n = 97) | COVID-19 Cases (Day 14 of Vit D) (D14) (n = 95) | p Value for MCT (Multiple Comparison Test) Age and Sex Adjusted | |
Serum 25OHD levels (ng/mL) Mean ± SD | 23.44 ± 9.10 | 16.62 ± 11.85 | 31.73 ± 12.29 | 35.46 ± 10.93 | H vs.C p < 0.05; H vs. D14 p < 0.001; C vs. D7 or D14 p < 0.001; p > 0.05 for other groups Post hoc power: 100% |
Ca2+ (mg/dL) Mean ± SD | 8.80 ± 0.41 | 8.49 ± 0.87 | 9.06 ± 0.90 | 9.52 ± 0.72 | p > 0.05 for all groups Post hoc power: 37% |
PTH (pg/mL) Mean ± SD | 28.97 ± 12.14 | 53.67 ± 114.78 | 49.92 ± 124.34 | 33.93 ± 40.15 | p > 0.05 for all groups Post hoc power: 24% |
Nitrate–Nitrite (µM) Mean ± SD | 10.18 ± 6.62 | 16.58 ± 10.89 | 17.83 ± 11.67 | 18.53 ± 10.76 | H vs. D7or D14 p < 0.05; p > 0.05 for other groups Post hoc power: 62% |
NOS1 (ng/mL) Mean ± SD | 0.81 ± 0.35 | 3.93 ± 2.45 | 3.56 ± 2.41 | 2.89 ± 2.00 | H vs. C p < 0.001; H vs. D7 p < 0.05; C vs. D14 p < 0.01; p > 0.05 for other groups Post hoc power: 98% |
DBP (ng/mL) Mean ± SD | 258.16 ± 92.86 | 416.64 ± 279.55 | 307.67 ± 258.36 | 289.74 ± 270.07 | C vs. D7 or D14 p < 0.001; p > 0.05 for other groups Post hoc power: 95% |
IL1B (pg/mL) Mean ± SD | 4.44 ± 0.75 | 7.30 ± 3.00 | 7.54 ± 4.19 | 7.07 ± 3.49 | H vs. Cor D7 p < 0.05; H vs. D14 p < 0.001; C vs. D14 p < 0.05; p > 0.05 for other groups Post hoc power: 86% |
IL6 (pg/mL) Mean ± SD | 0.86 ± 0.34 | 19.27 ± 41.66 | 27.57 ± 64.32 | 17.82 ± 43.20 | p > 0.05 for all groups Post hoc power: 22% |
IFNg (pg/mL) Mean ± SD | 1.10 ± 0.23 | 28.01 ± 24.63 | 35.66 ± 23.34 | 37.05 ± 21.52 | H vs. all groups p < 0.0001; C vs. D7 p < 0.001; C vs. D14 p < 0.0001; p > 0.05 for other groups Post hoc power: 100% |
IL17 (pg/mL) Mean ± SD | 3.06 ± 1.03 | 2.09 ± 0.80 | 1.98 ± 1.21 | 2.11 ± 1.28 | H vs. all groups p < 0.0001; p > 0.05 for other groups Post hoc power: 99% |
LL37 (ng/mL) Mean ± SD | 4.81 ± 2.69 | 18.51 ± 9.65 | 15.97 ± 9.23 | 14.76 ± 6.78 | H vs. all groups p < 0.0001; C vs. D7 p < 0.05; C vs. D14 p < 0.01; p > 0.05 for other groups Post hoc power: 100% |
S100B (pg/mL) Mean ± SD | 1.43 ± 0.25 | 3.96 ± 6.28 | 3.03 ± 3.21 | 3.00 ± 2.56 | H vs.C p < 0.05; p > 0.05 for other groups Post hoc power: 57% |
ICAM1 (ng/mL) Mean ± SD | 71.97 ± 37.92 | 130.48 ± 84.74 | 144.15 ± 77.14 | 145.33 ± 73.56 | H vs.D7 p < 0.05; H vs.D14 p < 0.01; C vs.D14 p < 0.05; p > 0.05 for other groups Post hoc power: 71% |
VCAM1 (ng/mL) Mean ± SD | 319.84 ± 138.14 | 496.33 ± 354.93 | 571.24 ± 371.16 | 666.65 ± 463.34 | p > 0.05 for all groups Post hoc power: 13% |
COVID-19 Cases (1–3 Days before Vitamin D Treatment) (C) (n = 209) | COVID-19 Cases (Day 7 of Vit D) (D7) (n = 99) | COVID-19 Cases (Day 14 of Vit D) (D14) (n = 86) | p Value for MCT | |
---|---|---|---|---|
ALT (IU/L) Mean ± SD | 29.08 ± 21.42 | 49.23 ± 44.76 | 53.22 ± 62.64 | C vs. D7 or D14 p < 0.001; p > 0.05 for other groups |
AST (IU/L) Mean ± SD | 31.44 ± 23.41 | 35.61 ± 26.62 | 31.68 ± 29.86 | p > 0.05 for all groups |
CRP (mg/L) Mean ± SD | 50.68 ± 66.41 | 28.13 ± 49.08 | 10.96 ± 27.27 | C vs. D7 or D14 p < 0.001; D7 vs. D14 p < 0.001; p > 0.05 for other groups |
Creatinine (mg/dL) Mean ± SD | 1.03 ± 0.65 | 1.08 ± 1.02 | 0.87 ± 0.27 | p > 0.05 for all groups |
Sodium (mmol/L) Mean ± SD | 137.08 ± 8.51 | 139.28 ± 3.69 | 139.63 ± 3.24 | C vs. D7 or D14 p < 0.001; p > 0.05 for other groups |
Urea (mg/dL) Mean ± SD | 35.46 ± 22.64 | 40.77 ± 28.98 | 32.22 ± 16.44 | p > 0.05 for all groups |
Ferritin (ng/mL) Mean ± SD | 408.15 ± 474.26 | 421.19 ± 498.75 | 252.52 ± 299.45 | p > 0.05 for all groups |
Hemoglobi Mean ± SD | 12.43 ± 1.89 | 12.27 ± 1.80 | 12.69 ± 1.75 | p > 0.05 for all groups |
Lymphocyte (×103/µL) Mean ± SD | 1.56 ± 0.82 | 1.60 ± 0.86 | 1.84 ± 0.65 | C vs. D14 p < 0.001; D7 vs. D14 p < 0.05; p > 0.05 for other groups |
Platelet (×103/µL) Mean ± SD | 210.80 ± 81.10 | 296.25 ± 124.71 | 296.67 ± 91.07 | C vs. D7 or D14 p < 0.001; p > 0.05 for other groups |
Leukocyte (×103/µL) Mean ± SD | 7.51 ± 7.55 | 8.31 ± 6.63 | 7.60 ± 3.02 | C vs. D14 p < 0.01; p > 0.05 for other groups |
D-dimer (mg/L) Mean ± SD | 0.99 ± 1.21 | 1.08 ± 1.22 | 0.76 ± 0.83 | p > 0.05 for all groups |
Fibrinogen (mg/dL) Mean ± SD | 469.60 ± 172.43 | 449.55 ± 148.01 | 375.42 ± 116.03 | C vs. D14 p < 0.001; D7 vs. D14 p < 0.001; p > 0.05 for other groups |
Groups | Ca2+ | PTH | Nitrate–Nitrite | NOS1 | DBP | IL1B | IL6 | IFNg | IL17 | LL37 | S100B | ICAM1 | VCAM1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Healthy subjects (n = 23) | NC | p = 0.08 95% CI: −0.68 to 0.05, r2 = 0.14 | NC | NC | NC | NC | NC | NC | NC | NC | NC | NC | NC |
COVID-19 cases (1–3 days before vitamin D treatment) (n = 210) | p = 0.049 95% CI: 0.0006 to 0.27, r2 = 0.02 | p = 0.02 95% CI: −0.29 to −0.03, r2 = 0.03 | p = 0.047 95% CI: −0.27 to −0.002, r2 = 0.02 | p = 0.06 95% CI: −0.26 to 0.005, r2 = 0.02 | p = 0.03 95% CI: 0.01 to 0.28, r2 = 0.02 | p < 0.0001 95% CI: 0.15 to 0.40, r2 = 0.08 | NC | p = 0.06695 95% CI: −0.026 to 0.0009, r2 = 0.016 | NC | NC | NC | p = 0.0003 95% CI: −0.37 to −0.12, r2 = 0.06 | NC |
COVID-19 cases (day 7 of vit D treatment) (n = 97) | NC | p = 0.074 95% CI: −0.37 to 0.02, r2 = 0.03 | NC | p = 0.043 95% CI: 0.007 to 0.39, r2 = 0.04 | p = 0.043 95% CI: 0.007 to 0.39, r2 = 0.04 | NC | NC | NC | NC | p = 0.005 95% CI: 0.09 to 0.46, r2 = 0.08 | NC | NC | NC |
COVID-19 cases (day 14 of vit D treatment) (n = 95) | NC | NC | NC | p = 0.023 95% CI: 0.03 to 0.42, r2 = 0.05 | p = 0.033 95% CI: 0.02 to 0.41, r2 = 0.05 | NC | NC | NC | NC | p = 0.008 95% CI: 0.07 to 0.45, r2 = 0.07 | NC | NC | NC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).