Beneficial Effects of Slow-Release Large Neutral Amino Acids after a Phenylalanine Oral Load in Patients with Phenylketonuria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Protocol
2.3. Dietary Phe Loads
2.4. SrLNAAs Supplementation
2.5. Phe and Tyr Profiling
2.6. Statistical Analysis
3. Results
3.1. Plasma Phe Fluctuations at the Baseline, with and without srLNAAs, and during Phe Loads
3.2. Plasma Tyr Fluctuations at the Baseline, with and without srLNAAs, and during Phe Loads
3.3. Plasma Phe/Tyr Ratio at the Baseline, with and without srLNAAs, and During Phe Loads
3.4. Tolerability and Adverse Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Wegberg, A.M.J.; Macdonald, A.; Ahring, K.; BéLanger-Quintana, A.; Blau, N.; Bosch, A.M.; Burlina, A.; Campistol, J.; Feillet, F.; Giżewska, M.; et al. The complete European guidelines on phenylketonuria: Diagnosis and treatment. Orphanet J. Rare Dis. 2017, 12, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campistol, J.; Gassió, R.; Artuch, R.; Vilaseca, M.A. Neurocognitive function in mild hyperphenylalaninemia. Dev. Med. Child Neurol. 2011, 53, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.; Prevor, M.B.; Callender, G.; Druin, D.P. Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monogr. Soc. Res. Child Dev. 1997, 62, 1–208. [Google Scholar] [CrossRef]
- White, D.A.; Nortz, M.J.; Mandernach, T.; Huntington, K.; Steiner, R.D. Age-related working memory impairments in children with prefrontal dysfunction associated with phenylketonuria. J. Int. Neuropsychol. Soc. 2002, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Huijbregts, S. Sustained attention and inhibition of cognitive interference in treated phenylketonuria: Associations with concurrent and lifetime phenylalanine concentrations. Neuropsychology 2002, 40, 7–15. [Google Scholar] [CrossRef]
- Jahja, R.; Huijbregts, S.; de Sonneville, L.; van der Meere, J.J.; van Spronsen, F.J. Neurocognitive evidence for revision of treatment targets and guidelines for phenylketonuria. J. Pediatr. 2014, 164, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Azadi, B.; Seddigh, A.; Tehrani-Doost, M.; Alaghband-Rad, J.; Ashrafi, M.R.; Azadi, B. Executive dysfunction in treated phenylketonuric patients. Eur. Child Adolesc. Psychiatry 2009, 18, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Nardecchia, F.; Manti, F.; Chiarotti, F.; Carducci, C.; Carducci, C.; Leuzzi, V. Neurocognitive and neuroimaging outcome of early treated young adult PKU patients: A longitudinal study. Mol. Genet. Metab. 2015, 115, 84–90. [Google Scholar] [CrossRef]
- Banerjee, P.; Grange, D.K.; Steiner, R.D.; White, D.A. Executive strategic processing during verbal fluency performance in children with phenylketonuria. Child Neuropsychol. 2011, 17, 105–117. [Google Scholar] [CrossRef]
- Leuzzi, V.; Pansini, M.; Sechi, E.; Chiarotti, F.; Carducci, C.; Levi, G.; Antonozzi, I. Executive function impairment in early-treated PKU subjects with normal mental development. J. Inherit. Metab. Dis. 2004, 27, 115–125. [Google Scholar] [CrossRef]
- Welsh, M.C.; Pennington, B.F.; Ozonoff, S.; Rouse, B.; McCabe, E.R.B. Neuropsychology of early-treated phenylketonuria: Specific executive function deficits. Child Dev. 1990, 61, 1697–1713. [Google Scholar] [CrossRef]
- Medford, E.; Hare, D.J.; Wittkowski, A. Demographic and psychosocial influences on treatment adherence for children and adolescents with PKU: A systematic review. JIMD Rep. 2017, 39, 107–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazzorla, C.; Bensi, G.; Biasucci, G.; Leuzzi, V.; Manti, F.; Musumeci, A.; Papadia, F.; Stoppioni, V.; Tummolo, A.; Vendemiale, M.; et al. Living with phenylketonuria in adulthood: The PKU ATTITUDE study. Mol. Genet. Metab. Rep. 2018, 16, 39–45. [Google Scholar] [CrossRef]
- Macdonald, A.; Van Rijn, M.; Feillet, F.; Lund, A.; Bernstein, L.; Bosch, A.M.; Giżewska, M.; Van Spronsen, F.J. Adherence issues in inherited metabolic disorders treated by low natural protein diets. Ann. Nutr. Metab. 2012, 61, 289–295. [Google Scholar] [CrossRef]
- Huijbregts, S.C.; Gassió, R.; Campistol, J. Executive functioning in context: Relevance for treatment and monitoring of phenylketonuria. Mol. Genet. Metab. 2013, 110, S25–S30. [Google Scholar] [CrossRef] [PubMed]
- Van Spronsen, F.J.; Hoeksma, M.; Reijngoud, D.-J. Brain dysfunction in phenylketonuria: Is phenylalanine toxicity the only possible cause? J. Inherit. Metab. Dis. 2009, 32, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Bröer, S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 2008, 88, 249–286. [Google Scholar] [CrossRef]
- Bröer, A.; Wagner, C.; Lang, F.; Bröer, S. Neutral amino acid transporter ASCT2 displays substrate-induced Na+ exchange and a substrate-gated anion conductance. Biochem. J. 2000, 346, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Dave, M.H.; Schulz, N.; Zecevic, M.; Wagner, C.A.; Verrey, F. Expression of heteromeric amino acid transporters along the murine intestine. J. Physiol. 2004, 558, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Verrey, F.; Jack, D.; Paulsen, I.; Saier, J.M.; Pfeiffer, R. New glycoprotein-associated amino acid transporters. J. Membr. Biol. 1999, 172, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Kantipudi, S.; Jeckelmann, J.-M.; Ucurum, Z.; Bosshart, P.D.; Fotiadis, D. The heavy chain 4F2hc modulates the substrate affinity and specificity of the light chains LAT1 and LAT2. Int. J. Mol. Sci. 2020, 21, 7573. [Google Scholar] [CrossRef] [PubMed]
- Fotiadis, D.; Kanai, Y.; Palacín, M. The SLC3 and SLC7 families of amino acid transporters. Mol. Asp. Med. 2013, 34, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Rossier, G.; Meier, C.; Bauch, C.; Summa, V.; Sordat, B.; Verrey, F.; Kühn, L.C. LAT2, a New basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J. Biol. Chem. 1999, 274, 34948–34954. [Google Scholar] [CrossRef] [Green Version]
- Zevenbergen, C.; Meima, M.E.; Lima de Souza, E.C.; Peeters, R.P.; Kinne, A.; Krause, G.; Visser, W.E.; Visser, T.J. Transport of iodothyronines by human L-type amino acid transporters. Endocrinology 2015, 156, 4345–4355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segawa, H.; Fukasawa, Y.; Miyamoto, K.-I.; Takeda, E.; Endou, H.; Kanai, Y. Identification and functional characterization of a Na+-independent neutral amino acid transporter with broad substrate selectivity. J. Biol. Chem. 1999, 274, 19745–19751. [Google Scholar] [CrossRef] [Green Version]
- Schindeler, S.; Ghosh-Jerath, S.; Thompson, S.; Rocca, A.; Joy, P.; Kemp, A.; Rae, C.; Green, K.; Wilcken, B.; Christodoulou, J. The effects of large neutral amino acid supplements in PKU: An MRS and neuropsychological study. Mol. Genet. Metab. 2007, 91, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Scala, I.; Riccio, M.P.; Marino, M.; Bravaccio, C.; Parenti, G.; Strisciuglio, P. Large neutral amino acids (LNAAs) supplementation improves neuropsychological performances in adult patients with phenylketonuria. Nutrients 2020, 12, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlina, A.P.; Cazzorla, C.; Massa, P.; Loro, C.; Gueraldi, D.; Burlina, A.B. The impact of a slow-release large neutral amino acids supplement on treatment adherence in adult patients with phenylketonuria. Nutrients 2020, 12, 2078. [Google Scholar] [CrossRef] [PubMed]
- Burlina, A.P.; Cazzorla, C.; Massa, P.; Polo, G.; Loro, C.; Gueraldi, D.; Burlina, A.B. Large neutral amino acid therapy increases tyrosine levels in adult patients with phenylketonuria: A long-term study. Nutrients 2019, 11, 2541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matalon, R.; Michals-Matalon, K.; Bhatia, G.; Grechanina, E.; Novikov, P.; McDonald, J.D.; Grady, J.; Tyring, S.K.; Güttler, F. Large neutral amino acids in the treatment of phenylketonuria (PKU). J. Inherit. Metab. Dis. 2006, 29, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Matalon, R.; Michals-Matalon, K.; Bhatia, G.; Burlina, A.B.; Burlina, A.P.; Braga, C.; Fiori, L.; Giovannini, M.; Grechanina, E.; Novikov, P.; et al. Double blind placebo control trial of large neutral amino acids in treatment of PKU: Effect on blood phenylalanine. J. Inherit. Metab. Dis. 2007, 30, 153–158. [Google Scholar] [CrossRef]
- Concolino, D.; Mascaro, I.; Moricca, M.T.; Bonapace, G.; Matalon, K.; Trapasso, J.; Radhakrishnan, G.; Ferrara, C.; Matalon, R.; Strisciuglio, P. Long-term treatment of phenylketonuria with a new medical food containing large neutral amino acids. Eur. J. Clin. Nutr. 2017, 71, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scala, I.; Concolino, D.; Della Casa, R.; Nastasi, A.; Ungaro, C.; Paladino, S.; Capaldo, B.; Ruoppolo, M.; Daniele, A.; Bonapace, G.; et al. Long-term follow-up of patients with phenylketonuria treated with tetrahydrobiopterin: A seven years experience. Orphanet J. Rare Dis. 2015, 10, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scolamiero, E.; Cozzolino, C.; Albano, L.; Ansalone, A.; Caterino, M.; Corbo, G.; di Girolamo, M.G.; Di Stefano, C.; Durante, A.; Franzese, G.; et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol. BioSyst. 2015, 11, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, A.; Gokmen-Ozel, H.; Van Rijn, M.; Burgard, P. The reality of dietary compliance in the management of phenyl-ketonuria. J. Inherit. Metab. Dis. 2010, 33, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Jurecki, E.; Cederbaum, S.; Kopesky, J.; Perry, K.; Rohr, F.; Sanchez-Valle, A.; Viau, K.; Sheinin, M.; Cohen-Pfeffer, J. Adherence to clinic recommendations among patients with phenylketonuria in the United States. Mol. Genet. Metab. 2017, 120, 190–197. [Google Scholar] [CrossRef]
- Arnold, G.L.; Kramer, B.M.; Kirby, R.S.; Plumeau, P.B.; Blakely, E.M.; Cregan, L.S.; Davidson, P.W. Factors affecting cognitive, motor, behavioral and executive functioning in children with phenylketonuria. Acta Paediat. 1998, 87, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Anastasoaie, V.; Kurzius, L.; Forbes, P.; Waisbren, S. Stability of blood phenylalanine levels and IQ in children with phenylketonuria. Mol. Genet. Metab. 2008, 95, 17–20. [Google Scholar] [CrossRef]
- Hood, A.; Grange, D.K.; Christ, S.E.; Steiner, R.; White, D.A. Variability in phenylalanine control predicts IQ and executive abilities in children with phenylketonuria. Mol. Genet. Metab. 2014, 111, 445–451. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, A.; Singh, R.H.; Rocha, J.C.; Van Spronsen, F.J. Optimising amino acid absorption: Essential to improve nitrogen balance and metabolic control in phenylketonuria. Nutr. Res. Rev. 2019, 32, 70–78. [Google Scholar] [CrossRef]
- Ponzone, A.; Spada, M.; de Sanctis, L.; Dianzani, I.; Guldberg, P.; Güttler, F. Phenotyping of phenylketonuric patients by oral phenylalanine loading. Eur. J. Nucl. Eur. J. Pediatrics 1996, 155, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.C.; Berry, H.K.; Bofinger, M.K.; Phillips, P.J.; Guilfoile, M.B.; Hunt, M.M. Comparative diagnostic value of phenyla-lanine challenge and phenylalanine hydroxylase activity in phenylketonuria. Clin. Genet. 1983, 23, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Guldberg, P.; Mikkelsen, I.; Henriksen, K.F.; Lou, H.C.; Güttler, F. In vivo assessment of mutations in the phenylalanine hydroxylase gene by phenylalanine loading: Characterization of seven common mutations. Eur. J. Pediatrics 1995, 154, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Van Spronsen, F.J.; Blau, N.; Harding, C.; Burlina, A.; Longo, N.; Bosch, A.M. Phenylketonuria. Nat. Rev. Dis. Primers 2021, 7, 36. [Google Scholar] [CrossRef]
Patient # | SEX (M/F) | Age (years) | PHE at Diagnosis (µmol/L) | Tolerance (mg/day) | PAH Mutations (Allele 1/Allele 2) | AA from PS (gr) | AA from Natural Protein (gr) | srLNAAs Load (gr) |
---|---|---|---|---|---|---|---|---|
1 | F | 28 | 1500 | 350 | R261Q/IVS10nt-11G>A | 40 | 15 | 30 |
2 | F | 33 | 660 | 500 | L48S/R158Q | 15 | 37 | 35 |
3 | F | 29 | 1450 | 250 | 1055delG/1055delG | 44.5 | 9.5 | 30 |
4 | F | 24 | 1300 | 280 | R252W/R408W | 54 | 10 | 30 |
5 | F | 30 | 1900 | 350 | R261Q/IVS07nt3G>C | 52 | 18 | 35 |
6 | M | 22 | 1100 | 390 | IVS10nt-11G>A/116-118delTCT | 52 | 21 | 30 |
7 | M | 18 | 620 | 500 | I94S/I94S | 56 | 30 | 35 |
8 | M | 21 | 1570 | 325 | pS16XFsx1/y343C+[Ivs3-22C>T/Q232Q] | 50 | 15 | 36 |
9 | F | 20 | 2070 | 225 | R158Q/R158Q | 42 | 9 | 26 |
10 | F | 17 | 1530 | 211 | IVS10nt-11G>A/pF55LFs | 37.5 | 10 | 26 |
11 | M | 17 | 1028 | 370 | L48S/IVS10nt-11G>A | 37.5 | 9 | 33 |
12 | F | 21 | 2180 | 310 | IVS10nt-11G>A/R261Q | 37.5 | 15 | 26 |
13 | F | 14 | 883 | 355 | n.a. | 37.8 | 9.4 | 22 |
14 | F | 14 | 1936 | 280 | IVS10nt-11G>A/IVS10nt-11G>A | 40 | 9.5 | 22 |
Food Product | Quantity of Product (gr) | Content of Natural Proteins (gr) |
---|---|---|
Potatoes | 280 | 5.8 |
Fish stick | 50 | 5.5 |
Sliced cheese | 20 | 4.9 |
Baked ham | 30 | 5.9 |
Spreadable cheese wedges | 40 | 4.4 |
Diet | Time-Point | Phe | Tyr | Phe/Tyr |
---|---|---|---|---|
Baseline Diet (Day 1) | Before dinner | 358 ± 113 | 50 ± 29 | 8 ± 3 |
2h-after dinner | 376 ± 144 | 65 ± 50 | 7 ± 4 | |
Before breakfast (Fasting condition) | 360 ± 134 | 42 ± 10 | 9 ± 4 | |
Baseline diet + srLNAAs (Day 7) | Before dinner | 371 ± 113 | 110 ± 60 * | 5 ± 2 * |
2h-after dinner | 360 ± 131 | 110 ± 70 * | 5 ± 4 | |
Before breakfast (Fasting condition) | 378 ± 128 | 69 ± 30 * | 6 ± 3 | |
Baseline diet + 250 mg Phe + srLNAAs (Day 14, 21) | Before dinner | 337 ± 129 | 134 ± 80 * | 4 ± 3 * |
2h-after dinner | 301 ± 117 | 174 ± 69 * | 2 ± 2 * | |
Before breakfast (Fasting condition) | 384 ± 170 | 50 ± 22 | 9 ± 8 6 (2–29) | |
Baseline diet + 500 mg Phe + srLNAAs (Day 28, 35) | Before dinner | 397 ± 157 | 157 ± 61 * | 3 ± 2 * |
2h-after dinner | 384 ± 173 | 176 ± 65 * | 2 ± 1 * | |
Before breakfast (Fasting condition) | 450 ± 196 | 48 ± 15 | 10 ± 7 8 (4–30) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scala, I.; Concolino, D.; Nastasi, A.; Esposito, G.; Crisci, D.; Sestito, S.; Ferraro, S.; Albano, L.; Ruoppolo, M.; Parenti, G.; et al. Beneficial Effects of Slow-Release Large Neutral Amino Acids after a Phenylalanine Oral Load in Patients with Phenylketonuria. Nutrients 2021, 13, 4012. https://doi.org/10.3390/nu13114012
Scala I, Concolino D, Nastasi A, Esposito G, Crisci D, Sestito S, Ferraro S, Albano L, Ruoppolo M, Parenti G, et al. Beneficial Effects of Slow-Release Large Neutral Amino Acids after a Phenylalanine Oral Load in Patients with Phenylketonuria. Nutrients. 2021; 13(11):4012. https://doi.org/10.3390/nu13114012
Chicago/Turabian StyleScala, Iris, Daniela Concolino, Anna Nastasi, Giulia Esposito, Daniela Crisci, Simona Sestito, Stefania Ferraro, Lucia Albano, Margherita Ruoppolo, Giancarlo Parenti, and et al. 2021. "Beneficial Effects of Slow-Release Large Neutral Amino Acids after a Phenylalanine Oral Load in Patients with Phenylketonuria" Nutrients 13, no. 11: 4012. https://doi.org/10.3390/nu13114012
APA StyleScala, I., Concolino, D., Nastasi, A., Esposito, G., Crisci, D., Sestito, S., Ferraro, S., Albano, L., Ruoppolo, M., Parenti, G., & Strisciuglio, P. (2021). Beneficial Effects of Slow-Release Large Neutral Amino Acids after a Phenylalanine Oral Load in Patients with Phenylketonuria. Nutrients, 13(11), 4012. https://doi.org/10.3390/nu13114012