Dairy Food Intake Is Not Associated with Measures of Bone Microarchitecture in Men and Women: The Framingham Osteoporosis Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Dietary Assessment
2.3. HR-pQCT Measurements at the Radius and Tibia
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Association of Dairy Food Intake and HR-pQCT Bone Measures
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wright, N.C.; Looker, A.C.; Saag, K.G.; Curtis, J.R.; Delzell, E.S.; Randall, S.; Dawson-Hughes, B. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 2014, 29, 2520–2526. [Google Scholar] [CrossRef] [Green Version]
- Feskanich, D.; Bischoff-Ferrari, H.A.; Frazier, A.L.; Willett, W.C. Milk consumption during teenage years and risk of hip fractures in older adults. JAMA Pediatr. 2014, 168, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Feskanich, D.; Meyer, H.E.; Fung, T.T.; Bischoff-Ferrari, H.A.; Willett, W.C. Milk and other dairy foods and risk of hip fracture in men and women. Osteoporos. Int. 2018, 29, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Feskanich, D.; Willett, W.C.; Colditz, G.A. Calcium, vitamin D, milk consumption, and hip fractures: A prospective study among postmenopausal women. Am. J. Clin. Nutr. 2003, 77, 504–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matía-Martín, P.; Torrego-Ellacuría, M.; Larrad-Sainz, A.; Fernández-Pérez, C.; Cuesta-Triana, F.; Rubio-Herrera, M.Á. Effects of Milk and Dairy Products on the Prevention of Osteoporosis and Osteoporotic Fractures in Europeans and Non-Hispanic Whites from North America: A Systematic Review and Updated Meta-Analysis. Adv. Nutr. 2019, 10, S120–S143. [Google Scholar] [CrossRef]
- Kalkwarf, H.J.; Khoury, J.C.; Lanphear, B.P. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am. J. Clin. Nutr. 2003, 77, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Durosier-Izart, C.; Biver, E.; Merminod, F.; van Rietbergen, B.; Chevalley, T.; Herrmann, F.R.; Ferrari, S.L.; Rizzoli, R. Peripheral skeleton bone strength is positively correlated with total and dairy protein intakes in healthy postmenopausal women. Am. J. Clin. Nutr. 2017, 105, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Langsetmo, L.; Shikany, J.M.; Burghardt, A.J.; Cawthon, P.M.; Orwoll, E.S.; Cauley, J.A.; Taylor, B.C.; Schousboe, J.T.; Bauer, D.C.; Vo, T.N.; et al. High dairy protein intake is associated with greater bone strength parameters at the distal radius and tibia in older men: A cross-sectional study. Osteoporos. Int. 2018, 29, 69–77. [Google Scholar] [CrossRef]
- Sahni, S.; Mangano, K.M.; Kiel, D.P.; Tucker, K.L.; Hannan, M.T. Dairy Intake Is Protective against Bone Loss in Older Vitamin D Supplement Users: The Framingham Study. J. Nutr. 2017, 147, 645–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangano, K.M.; Noel, S.E.; Sahni, S.; Tucker, K.L. Higher Dairy Intakes Are Associated with Higher Bone Mineral Density among Adults with Sufficient Vitamin D Status: Results from the Boston Puerto Rican Osteoporosis Study. J. Nutr. 2019, 149, 139–148. [Google Scholar] [CrossRef]
- Nishiyama, K.K.; Shane, E. Clinical imaging of bone microarchitecture with HR-pQCT. Curr. Osteoporos. Rep. 2013, 11, 147–155. [Google Scholar] [CrossRef]
- Wallace, T.C.; Bailey, R.L.; Lappe, J.; O’Brien, K.O.; Wang, D.D.; Sahni, S.; Weaver, C.M. Dairy intake and bone health across the lifespan: A systematic review and expert narrative. Crit. Rev. Food Sci. Nutr. 2020, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Biver, E.; Durosier-Izart, C.; Merminod, F.; Chevalley, T.; van Rietbergen, B.; Ferrari, S.L.; Rizzoli, R. Fermented dairy products consumption is associated with attenuated cortical bone loss independently of total calcium, protein, and energy intakes in healthy postmenopausal women. Osteoporos. Int. 2018, 29, 1771–1782. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Feinleib, M.; McNamara, P.M.; Garrison, R.J.; Castelli, W.P. An investigation of coronary heart disease in families. The Framingham offspring study. Am. J. Epidemiol. 1979, 110, 281–290. [Google Scholar] [CrossRef]
- Rimm, E.B.; Giovannucci, E.L.; Stampfer, M.J.; Colditz, G.A.; Litin, L.B.; Willett, W.C. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. Am. J. Epidemiol. 1992, 135, 1114–1126. [Google Scholar] [CrossRef]
- Ascherio, A.; Stampfer, M.J.; Coldh’z, A.; Rimm, E.; Willett, W. Correlations of vitamin A and E intakes with the plasma concentrations of carotenoids and tocopherols among American men and women. J. Nutr. 1992, 122, 1792–1801. [Google Scholar] [CrossRef]
- Jacques, P.; Sulsky, S.; Sadowski, J.; Phillips, J.; Rush, D.; Willett, W. Comparison of micronutrient intake measured by a dietary questionnaire and biochemical indicators of micronutrient status. Am. J. Clin. Nutr. 1993, 57, 182–189. [Google Scholar] [CrossRef]
- Salvini, S.; Hunter, D.J.; Sampson, L.; Stampfer, M.J.; Colditz, G.A.; Rosner, B.; Willett, W.C. Food-based validation of a dietary questionnaire: The effects of week-to-week variation in food consumption. Int. J. Epidemiol. 1989, 18, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Longnecker, M.P.; Lissner, L.; Holden, J.M.; Flack, V.F.; Taylor, P.R.; Stampfer, M.J.; Willett, W.C. The reproducibility and validity of a self-administered semiquantitative food frequency questionnaire in subjects from South Dakota and Wyoming. Epidemiology 1993, 4, 356–365. [Google Scholar] [CrossRef]
- Wang, H.; Fox, C.S.; Troy, L.M.; McKeown, N.M.; Jacques, P.F. Longitudinal association of dairy consumption with the changes in blood pressure and the risk of incident hypertension: The Framingham Heart Study. Br. J. Nutr. 2015, 114, 1887–1899. [Google Scholar] [CrossRef] [Green Version]
- Boutroy, S.; Bouxsein, M.L.; Munoz, F.; Delmas, P.D. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 2005, 90, 6508–6515. [Google Scholar] [CrossRef] [Green Version]
- Rozental, T.D.; Deschamps, L.N.; Taylor, A.; Earp, B.; Zurakowski, D.; Day, C.S.; Bouxsein, M.L. Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture. J. Bone Jt. Surg. Am. 2013, 95, 633–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.T.; Broe, K.E.; Zhou, Y.; Boyd, S.K.; Cupples, L.A.; Hannan, M.T.; Lim, E.; McLean, R.R.; Samelson, E.J.; Bouxsein, M.L.; et al. Visceral Adipose Tissue Is Associated With Bone Microarchitecture in the Framingham Osteoporosis Study. J. Bone Miner. Res. 2017, 32, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Samelson, E.J.; Demissie, S.; Cupples, L.A.; Zhang, X.; Xu, H.; Liu, C.T.; Boyd, S.K.; McLean, R.R.; Broe, K.E.; Kiel, D.P.; et al. Diabetes and Deficits in Cortical Bone Density, Microarchitecture, and Bone Size: Framingham HR-pQCT Study. J. Bone Miner. Res. 2018, 33, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Pialat, J.B.; Burghardt, A.J.; Sode, M.; Link, T.M.; Majumdar, S. Visual grading of motion induced image degradation in high resolution peripheral computed tomography: Impact of image quality on measures of bone density and micro-architecture. Bone 2012, 50, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S.; Riggs, B.L.; Atkinson, E.J.; Oberg, A.L.; McDaniel, L.J.; Holets, M.; Peterson, J.M.; Melton, L.J., 3rd. Effects of sex and age on bone microstructure at the ultradistal radius: A population-based noninvasive in vivo assessment. J. Bone Miner. Res. 2006, 21, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, K.K.; Macdonald, H.M.; Hanley, D.A.; Boyd, S.K. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporos. Int. 2013, 24, 1733–1740. [Google Scholar] [CrossRef]
- Boutroy, S.; Van Rietbergen, B.; Sornay-Rendu, E.; Munoz, F.; Bouxsein, M.L.; Delmas, P.D. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J. Bone Miner. Res. 2008, 23, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Keyak, J.H.; Sigurdsson, S.; Karlsdottir, G.; Oskarsdottir, D.; Sigmarsdottir, A.; Zhao, S.; Kornak, J.; Harris, T.B.; Sigurdsson, G.; Jonsson, B.Y.; et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone 2011, 48, 1239–1245. [Google Scholar] [CrossRef] [Green Version]
- Sode, M.; Burghardt, A.J.; Kazakia, G.J.; Link, T.M.; Majumdar, S. Regional variations of gender-specific and age-related differences in trabecular bone structure of the distal radius and tibia. Bone 2010, 46, 1652–1660. [Google Scholar] [CrossRef] [Green Version]
- Cannarella, R.; Barbagallo, F.; Condorelli, R.A.; Aversa, A.; La Vignera, S.; Calogero, A.E. Osteoporosis from an Endocrine Perspective: The Role of Hormonal Changes in the Elderly. J. Clin. Med. 2019, 8, 1564. [Google Scholar] [CrossRef] [Green Version]
- Kannel, W.B.; Belanger, A.; D’Agostino, R.; Israel, I. Physical activity and physical demand on the job and risk of cardiovascular disease and death: The Framingham Study. Am. Heart J. 1986, 112, 820–825. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- McCabe, L.D.; Martin, B.R.; McCabe, G.P.; Johnston, C.C.; Weaver, C.M.; Peacock, M. Dairy intakes affect bone density in the elderly. Am. J. Clin. Nutr. 2004, 80, 1066–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschonis, G.; Manios, Y. Skeletal site-dependent response of bone mineral density and quantitative ultrasound parameters following a 12-month dietary intervention using dairy products fortified with calcium and vitamin D: The Postmenopausal Health Study. Br. J. Nutr. 2006, 96, 1140–1148. [Google Scholar] [CrossRef]
- Murphy, S.; Khaw, K.-T.; May, H.; Compston, J.E. Milk consumption and bone mineral density in middle aged and elderly women. Bmj 1994, 308, 939–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, R.; Devine, A.; Dick, I.; Criddle, A.; Kerr, D.; Kent, N.; Price, R.; Randell, A. The effects of calcium supplementation (milk powder or tablets) and exercise on bone density in postmenopausal women. J. Bone Miner. Res. 1995, 10, 1068–1075. [Google Scholar] [CrossRef]
- Sahni, S.; Tucker, K.L.; Kiel, D.P.; Quach, L.; Casey, V.A.; Hannan, M.T. Milk and yogurt consumption are linked with higher bone mineral density but not with hip fracture: The Framingham Offspring Study. Arch. Osteoporos. 2013, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Iki, M.; Fujita, Y.; Tamaki, J.; Kouda, K.; Yura, A.; Moon, J.S.; Winzenrieth, R.; Iwaki, H.; Ishizuka, R.; et al. Greater milk intake is associated with lower bone turnover, higher bone density, and higher bone microarchitecture index in a population of elderly Japanese men with relatively low dietary calcium intake: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos. Int. 2015, 26, 1585–1594. [Google Scholar] [CrossRef]
- Soroko, S.; Holbrook, T.L.; Edelstein, S.; Barrett-Connor, E. Lifetime milk consumption and bone mineral density in older women. Am. J. Public Health 1994, 84, 1319–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorpe, M.P.; Jacobson, E.H.; Layman, D.K.; He, X.; Kris-Etherton, P.M.; Evans, E.M. A diet high in protein, dairy, and calcium attenuates bone loss over twelve months of weight loss and maintenance relative to a conventional high-carbohydrate diet in adults. J. Nutr. 2008, 138, 1096–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzoli, R. Dairy products, yogurts, and bone health. Am. J. Clin. Nutr. 2014, 99, 1256–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, C.J.; Guss, J.D.; Luna, M.; Goldring, S.R. Links Between the Microbiome and Bone. J. Bone Miner. Res. 2016, 31, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Wohl, G.R.; Loehrke, L.; Watkins, B.A.; Zernicke, R.F. Effects of high-fat diet on mature bone mineral content, structure, and mechanical properties. Calcif. Tissue Int. 1998, 63, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Corwin, R.L.; Hartman, T.J.; Maczuga, S.A.; Graubard, B.I. Dietary saturated fat intake is inversely associated with bone density in humans: Analysis of NHANES III. J. Nutr. 2006, 136, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.J.; Atkinson, C.; Bhalla, K.; Birbeck, G.; Burstein, R.; Chou, D.; Dellavalle, R.; Danaei, G.; Ezzati, M.; Fahimi, A.; et al. The state of US health, 1990-2010: Burden of diseases, injuries, and risk factors. JAMA 2013, 310, 591–608. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.F.; O’Connor, T.P.; McSweeney, P.L.H.; Guinee, T.P.; O’Brien, N.M. Cheese: Physical, Biochemical, and Nutritional Aspects. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Academic Press: New York, NY, USA, 1996; Volume 39, pp. 163–328. [Google Scholar]
- Weinsier, R.L.; Krumdieck, C.L. Dairy foods and bone health: Examination of the evidence. Am. J. Clin. Nutr. 2000, 72, 681–689. [Google Scholar] [CrossRef] [PubMed]
Descriptive Variables 1 | Men (n = 532) | Women (n = 694) |
---|---|---|
Age, years | 64.2 ± 7.8 | 64.2 ± 7.9 |
BMI, kg/m2 | 28.9 ± 4.1 | 27.3 ± 5.3 |
Physical activity index | 36.3 ± 6.4 | 35.3 ± 4.7 |
Menopause status and estrogen use | 32 (4.6) 587 (84.6) 62 (8.9) | |
Pre-menopausal | - | |
Post-menopausal, no estrogen use | - | |
Post-menopausal, estrogen use | - | |
Current smokers, n (%) | 36 (7) | 46 (7) |
Calcium supplement user, n (%) | 92 (17) | 437 (63) |
Multivitamin supplement user, n (%) | 289 (54) | 455 (66) |
Vitamin D supplement user, n (%) | 41 (8) | 110 (16) |
Dairy intake (servings/week) | ||
Milk | 5.6 ± 5.3 | 5.5 ± 5.0 |
Yogurt | 0.9 ± 1.7 | 1.7 ± 2.4 |
Cheese | 3.5 ± 3.0 | 3.4 ± 3.2 |
Milk + yogurt | 6.5 ± 5.7 | 7.1 ± 5.7 |
Milk + yogurt + cheese | 10.0 ± 6.6 | 10.6 ± 6.4 |
Other dietary intakes | ||
Energy, kcal/d | 2002 ± 650 | 1787 ± 587 |
Total calcium, mg/d | 926 ± 389 | 1258 ± 504 |
Dietary calcium, mg/d | 791 ± 325 | 776 ± 305 |
Supplemental calcium, mg/d 2 | 32 (0–181) | 462 (100–750) |
Total vitamin D, IU/d | 438 ± 274 | 500 ± 265 |
Dietary vitamin D, IU/d | 215 ± 116 | 204 ± 110 |
Supplemental vitamin D, IU/d 2 | 200 (0–400) | 314 (114–400) |
Radius | ||
Bone Strength | ||
Estimated failure load, (N) | 3276 ± 577 | 1975 ± 395 |
Cortical bone | ||
Cortical vBMD (mg HA/cm3) | 955.65 ± 53.82 | 956.60 ± 63.69 |
Cortical thickness (mm) | 0.98 ± 0.20 | 0.80 ± 0.19 |
Trabecular bone | ||
Trabecular vBMD (mg HA/cm3) | 188.01 ± 36.54 | 147.52 ± 38.64 |
Trabecular number (1/mm) | 2.23 ± 0.27 | 1.91 ± 0.39 |
Tibia | ||
Bone Strength | ||
Estimated failure load, (N) | 8046 ± 1246 | 5241 ± 934 |
Cortical bone | ||
Cortical vBMD (mg HA/cm3) | 882.42 ± 67.14 | 835.72 ± 77.3 |
Cortical thickness (mm) | 1.37 ± 0.27 | 1.07 ± 0.26 |
Trabecular bone | ||
Trabecular vBMD (mg HA/cm3) | 196.63 ± 38.00 | 161.60 ± 36.94 |
Trabecular number (1/mm) | 2.26 ± 0.34 | 1.91 ± 0.38 |
HR-pQCT Measures | Dairy Foods (Servings/Week) | Radius 1 | Radius 2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male (n = 488) | Female (n = 652) | Male (n = 488) | Female (n = 652) | ||||||||||
Beta | SE | p | Beta | SE | p | Beta | SE | p | Beta | SE | p | ||
Cortical vBMD, mgHA/cm3 | Milk | −0.18 | 2.47 | 0.94 | 1.51 | 2.47 | 0.54 | −0.66 | 2.32 | 0.78 | 2.66 | 2.17 | 0.22 |
Yogurt | −0.53 | 3.09 | 0.86 | 3.73 | 2.79 | 0.18 | 0.22 | 2.89 | 0.93 | 0.18 | 2.50 | 0.94 | |
Cheese | −0.13 | 3.11 | 0.97 | −7.12 | 3.08 | 0.02 | −0.55 | 2.91 | 0.84 | −9.61 | 2.74 | <0.01 * | |
Milk + Yogurt | 0.35 | 2.45 | 0.89 | 3.54 | 2.73 | 0.19 | −0.26 | 2.31 | 0.91 | 3.07 | 2.41 | 0.20 | |
Milk + Yogurt + Cheese | −0.43 | 0.42 | 0.30 | −0.08 | 0.46 | 0.86 | −0.42 | 0.39 | 0.28 | −0.09 | 0.41 | 0.83 | |
Cortical thickness, mm | Milk | 0.01 | 0.01 | 0.20 | 0.01 | 0.01 | 0.39 | 0.01 | 0.01 | 0.20 | 0.01 | 0.01 | 0.13 |
Yogurt | −0.02 | 0.01 | 0.22 | 0.00 | 0.01 | 0.62 | −0.01 | 0.01 | 0.41 | 0.00 | 0.01 | 0.90 | |
Cheese | 0.00 | 0.01 | 0.91 | −0.01 | 0.01 | 0.57 | 0.00 | 0.01 | 0.79 | −0.01 | 0.01 | 0.10 | |
Milk + Yogurt | 0.01 | 0.01 | 0.60 | 0.01 | 0.01 | 0.23 | 0.01 | 0.01 | 0.55 | 0.01 | 0.01 | 0.19 | |
Milk + Yogurt + Cheese | 0.00 | 0.00 | 0.30 | 0.00 | 0.00 | 0.98 | 0.00 | 0.00 | 0.37 | 0.00 | 0.00 | 0.90 | |
Trabecular vBMD, mg HA/cm3 | Milk | 3.05 | 1.63 | 0.06 | 0.19 | 1.44 | 0.89 | 2.80 | 1.62 | 0.08 | 0.89 | 1.39 | 0.52 |
Yogurt | 2.65 | 2.05 | 0.20 | −1.93 | 1.63 | 0.23 | 3.62 | 2.01 | 0.07 | −1.55 | 1.65 | 0.34 | |
Cheese | 1.65 | 2.06 | 0.42 | −0.24 | 1.79 | 0.89 | 1.33 | 2.04 | 0.51 | −1.10 | 1.76 | 0.53 | |
Milk + Yogurt | 2.20 | 1.63 | 0.18 | −0.56 | 1.59 | 0.72 | 2.01 | 1.63 | 0.21 | −0.02 | 1.55 | 0.99 | |
Milk + Yogurt + Cheese | 0.40 | 0.27 | 0.14 | −0.24 | 0.27 | 0.37 | 0.39 | 0.27 | 0.16 | −0.24 | 0.26 | 0.37 | |
Trabecular number,1/mm | Milk | 0.01 | 0.01 | 0.23 | −0.01 | 0.02 | 0.74 | 0.01 | 0.01 | 0.31 | 0.01 | 0.01 | 0.70 |
Yogurt | 0.00 | 0.02 | 0.94 | −0.03 | 0.02 | 0.07 | 0.00 | 0.02 | 0.89 | −0.03 | 0.02 | 0.10 | |
Cheese | 0.00 | 0.02 | 0.79 | 0.01 | 0.02 | 0.51 | −0.01 | 0.02 | 0.60 | 0.00 | 0.02 | 0.91 | |
Milk + Yogurt | 0.01 | 0.01 | 0.43 | −0.01 | 0.02 | 0.44 | 0.01 | 0.01 | 0.51 | −0.01 | 0.02 | 0.74 | |
Milk + Yogurt + Cheese | 0.00 | 0.00 | 0.67 | 0.00 | 0.00 | 0.34 | 0.00 | 0.00 | 0.76 | 0.00 | 0.00 | 0.44 | |
Estimated failure load, N | Milk | 31.11 | 26.55 | 0.24 | 16.61 | 15.18 | 0.27 | 18.73 | 25.07 | 0.46 | 24.26 | 13.27 | 0.07 |
Yogurt | 25.93 | 35.41 | 0.46 | −27.45 | 16.94 | 0.10 | 24.16 | 33.53 | 0.47 | −25.66 | 15.42 | 0.10 | |
Cheese | 58.11 | 33.23 | 0.08 | 7.74 | 19.13 | 0.69 | 47.12 | 31.33 | 0.13 | −20.38 | 17.00 | 0.23 | |
Milk + Yogurt | 25.13 | 26.39 | 0.34 | 7.82 | 16.91 | 0.64 | 13.39 | 25.00 | 0.59 | 8.62 | 14.86 | 0.56 | |
Milk + Yogurt + Cheese | 0.10 | 4.44 | 0.98 | −1.67 | 2.81 | 0.55 | −1.23 | 4.18 | 0.77 | −3.02 | 2.49 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millar, C.L.; Kiel, D.P.; Hannan, M.T.; Sahni, S. Dairy Food Intake Is Not Associated with Measures of Bone Microarchitecture in Men and Women: The Framingham Osteoporosis Study. Nutrients 2021, 13, 3940. https://doi.org/10.3390/nu13113940
Millar CL, Kiel DP, Hannan MT, Sahni S. Dairy Food Intake Is Not Associated with Measures of Bone Microarchitecture in Men and Women: The Framingham Osteoporosis Study. Nutrients. 2021; 13(11):3940. https://doi.org/10.3390/nu13113940
Chicago/Turabian StyleMillar, Courtney L., Douglas P. Kiel, Marian T. Hannan, and Shivani Sahni. 2021. "Dairy Food Intake Is Not Associated with Measures of Bone Microarchitecture in Men and Women: The Framingham Osteoporosis Study" Nutrients 13, no. 11: 3940. https://doi.org/10.3390/nu13113940
APA StyleMillar, C. L., Kiel, D. P., Hannan, M. T., & Sahni, S. (2021). Dairy Food Intake Is Not Associated with Measures of Bone Microarchitecture in Men and Women: The Framingham Osteoporosis Study. Nutrients, 13(11), 3940. https://doi.org/10.3390/nu13113940