Vitamins as Possible Cancer Biomarkers: Significance and Limitations
Abstract
:1. Introduction
2. Vitamins
2.1. Vitamin A
2.2. Vitamin B Complex
2.3. Vitamin C
2.4. Vitamin D
2.5. Vitamin E
2.6. Vitamin K
3. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AA | ascorbic acid |
AI | adequate intake |
AFP | α-fetoprotein |
AFR | ascorbyl free radical |
Asc− | ascorbate |
C | carbon |
CBP | CREB-binding protein |
CGI | CG islands |
CoA | coenzyme A |
CoQ | coenzyme Q |
CREB | cAMP response element-binding protein |
Cyb5R3 | NADH-cytochrome b5 oxidoreductase 3 |
CytC | cytochrome c |
DCP | des-gamma-carboxy prothrombin |
DHA | dehydroascorbate acid |
DHF | dihydrofolate |
DHFR | dihydrofolate reductase |
DMT | DNA methyl transferase |
DNA pol | DNA polymerase |
E− | electron |
dTMP | deoxythymidine monophosphate |
dU | deoxyuridine |
dUMP | deoxyuridine monophosphate |
FADH | flavin adenine dinucleotide (reduced form) |
H | hydrogen |
HCC | hepatocellular carcinoma |
HIF | hypoxia inducible factor |
HIFH | HIF hydroxylase |
hnRNP-E1 | heterogeneous nuclear ribonucleoprotein E1 |
HPV | human papillomavirus |
HR | hazard ratio |
IKK | IκB kinase |
MAT | methionine adenosyl transferase |
5-MTHF | 5-methyltetrahydrofolate |
NADH | nicotinamide adenine dinucleotide (reduced form) |
O | oxygen |
OR | odds ratio |
8-oxo-dG | 8-oxo-deoxy-guanosine |
pCAF | p300/CBP-associated factor |
PI3K | phosphoinositide 3-kinase |
PIVKA-II | prothrombin induced by vitamin K absence or antagonist-II |
RBP | retinol-binding protein |
RDA | recommended daily allowance |
RNA pol | RNA polymerase |
ROS | reactive oxygen species |
RR | relative risk |
STAT | signal transducer and activator of transcription |
TCA | tricarboxylic acid |
TET | ten-eleven translocation |
THF | tetrahydrofolate |
TS | thymidylate synthase |
VDAC1 | voltage-dependent anion-selective channel 1 |
VDBP | vitamin D binding protein |
VDR | vitamin D recognition protein |
VDRE | vitamin D response element |
References
- Swinburn, B.; Sacks, G.; Ravussin, E. Increased food energy supply is more than sufficient to explain the US epidemic of obesity. Am. J. Clin. Nutr. 2009, 90, 1453–1456. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Vallgårda, S.; Nielsen, M.E.J.; Hansen, A.K.K.; Cathaoir, K.Ó.; Hartlev, M.; Holm, L.; Christensen, B.J.; Jensen, J.D.; Sørensen, T.I.A.; Sandøe, P. Should Europe follow the US and declare obesity a disease?: A discussion of the so-called utilitarian argument. Eur. J. Clin. Nutr. 2017, 71, 1263–1267. [Google Scholar] [CrossRef]
- Zur Hausen, H.; De Villiers, E.M. Dairy cattle serum and milk factors contributing to the risk of colon and breast cancers. Int. J. Cancer 2015, 137, 959–967. [Google Scholar] [CrossRef]
- Dolecek, T.A.; McCarthy, B.J.; Joslin, C.E.; Peterson, C.E.; Kim, S.; Freels, S.A.; Davis, F.G. Prediagnosis food patterns are associated with length of survival from epithelial ovarian cancer. J. Am. Diet. Assoc. 2010, 110, 369–382. [Google Scholar] [CrossRef]
- Mendling, W.; Palmeira-de-Oliveira, A.; Biber, S.; Prasauskas, V. An update on the role of Atopobium vaginae in bacterial vaginosis: What to consider when choosing a treatment? A mini review. Arch. Gynecol. Obstet. 2019, 300, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astrup, A.; Bügel, S. Overfed but undernourished: Recognizing nutritional inadequacies/deficiencies in patients with overweight or obesity. Int. J. Obes. 2019, 43, 219–232. [Google Scholar] [CrossRef]
- Muthayya, S.; Rah, J.H.; Sugimoto, J.D.; Roos, F.F.; Kraemer, K.; Black, R.E. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 2013, 8, e67860. [Google Scholar] [CrossRef] [Green Version]
- Ames, B.N.; Wakimoto, P. Are vitamin and mineral deficiencies a major cancer risk? Nat. Rev. Cancer 2002, 2, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Sauberlich, H.E. Pharmacology of vitamin C. Annu. Rev. Nutr. 1994, 14, 371–391. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, R.L.; Carroll, M.D.; Ford, E.S.; Lacher, D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES). Am. J. Clin. Nutr. 2009, 90, 1252–1263. [Google Scholar] [CrossRef]
- McLean, E.; de Benoist, B.; Allen, L.H. Review of the magnitude of folate and vitamin B12 deficiencies worldwide. Food Nutr. Bull. 2008, 29, S38–S51. [Google Scholar] [CrossRef] [PubMed]
- Roman Viñas, B.; Ribas Barba, L.; Ngo, J.; Gurinovic, M.; Novakovic, R.; Cavelaars, A.; de Groot, L.C.P.G.M.; van’t Veer, P.; Matthys, C.; Serra Majem, L. Projected prevalence of inadequate nutrient intakes in Europe. Ann. Nutr. Metab. 2011, 59, 84–95. [Google Scholar] [CrossRef]
- Biesalski, H.K.; Tinz, J. Multivitamin/mineral supplements: Rationale and safety. Nutrition 2017, 36, 60–66. [Google Scholar] [CrossRef]
- Elmadfa, I.; Meyer, A.L. The Role of the Status of Selected Micronutrients in Shaping the Immune Function. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 1100–1115. [Google Scholar] [CrossRef]
- Muenst, S.; Läubli, H.; Soysal, S.D.; Zippelius, A.; Tzankov, A.; Hoeller, S. The immune system and cancer evasion strategies: Therapeutic concepts. J. Intern. Med. 2016, 279, 541–562. [Google Scholar] [CrossRef]
- Pecora, F.; Persico, F.; Argentiero, A.; Neglia, C.; Esposito, S. The Role of Micronutrients in Support of the Immune Response against Viral Infections. Nutrients 2020, 12, 3198. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.N. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat. Res. 2001, 475, 7–20. [Google Scholar] [CrossRef]
- Directive of the European Council 2008/100/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0100&from=EN (accessed on 1 August 2021).
- Krawinkel, M.B.; Strohm, D.; Weissenborn, A.; Watzl, B.; Eichholzer, M.; Bärlocher, K.; Elmadfa, I.; Leschik-Bonnet, E.; Heseker, H. Revised D-A-CH intake recommendations for folate: How much is needed? Eur. J. Clin. Nutr. 2014, 68, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Kipp, A.P.; Strohm, D.; Brigelius-Flohé, R.; Schomburg, L.; Bechthold, A.; Leschik-Bonnet, E.; Heseker, H. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015, 32, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryal, S. Normal Laboratory Values of Blood, Plasma, Serum, Urine, CSF and Stool. Available online: https://microbiologyinfo.com/normal-laboratory-values-of-blood-plasma-serum-urine-csf-and-stool/ (accessed on 1 August 2021).
- Ströhle, A.; Richter, M.; González-Gross, M.; Neuhäuser-Berthold, M.; Wagner, K.-H.; Leschik-Bonnet, E.; Egert, S. The Revised D-A-CH-Reference Values for the Intake of Vitamin B(12): Prevention of Deficiency and Beyond. Mol. Nutr. Food Res. 2019, 63, e1801178. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for vitamin A. EFSA J. 2015, 13, 4028. [Google Scholar] [CrossRef] [Green Version]
- Jungert, A.; Linseisen, J.; Wagner, K.-H.; Richter, M. Revised D-A-CH Reference Values for the Intake of Vitamin B6. Ann. Nutr. Metab. 2020, 76, 213–222. [Google Scholar] [CrossRef]
- Strohm, D.; Bechthold, A.; Isik, N.; Leschik-Bonnet, E.; Heseker, H. Revised reference values for the intake of thiamin (vitamin B1), riboflavin (vitamin B2) and niacin. NFS J. 2016, 3, 20–24. [Google Scholar] [CrossRef] [Green Version]
- German Federal Ministry of Food and Agriculture. 13th DGE-Nutrition Report 2016. Available online: https://www.dge.de/fileadmin/public/doc/en/DGE-Nutrition-Report-summary-2016.pdf (accessed on 1 August 2021).
- European Food Safety Authority. Dietary Reference Values for Nutrients 2017. Available online: https://www.efsa.europa.eu/en/topics/topic/dietary-reference-values (accessed on 1 August 2021).
- Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Dietary Reference Values for riboflavin. EFSA J. 2017, 15, e04919. [Google Scholar] [CrossRef] [Green Version]
- Scientific Opinion on Dietary Reference Values for niacin. EFSA J. 2014, 12, 3759. [CrossRef] [Green Version]
- Scientific Opinion on Dietary Reference Values for pantothenic acid. EFSA J. 2014, 12. [CrossRef] [Green Version]
- Scientific Opinion on Dietary Reference Values for biotin. EFSA J. 2014, 12. [CrossRef] [Green Version]
- Scientific Opinion on Dietary Reference Values for vitamin C. EFSA J. 2013, 11, 3418. [CrossRef] [Green Version]
- New reference values for vitamin D. Ann. Nutr. Metab. 2012, 60, 241–246. [CrossRef]
- Scientific Opinion on Dietary Reference Values for vitamin E as α-tocopherol. EFSA J. 2015, 13. [CrossRef]
- Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Dietary reference values for vitamin K. EFSA J. 2017, 15, e04780. [Google Scholar] [CrossRef]
- Aredes, M.A.; Garcez, M.R.; Chaves, G.V. Influence of chemoradiotherapy on nutritional status, functional capacity, quality of life and toxicity of treatment for patients with cervical cancer. Nutr. Diet. J. Dietit. Assoc. Aust. 2018, 75, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Closas, R.; Castellsagué, X.; Bosch, X.; González, C.A. The role of diet and nutrition in cervical carcinogenesis: A review of recent evidence. Int. J. Cancer 2005, 117, 629–637. [Google Scholar] [CrossRef]
- Abike, F.; Engin, A.B.; Dunder, I.; Tapisiz, O.L.; Aslan, C.; Kutluay, L. Human papilloma virus persistence and neopterin, folate and homocysteine levels in cervical dysplasias. Arch. Gynecol. Obstet. 2011, 284, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.C.; Polk, B.F.; Underwood, B.A.; Stampfer, M.J.; Pressel, S.; Rosner, B.; Taylor, J.O.; Schneider, K.; Hames, C.G. Relation of serum vitamins A and E and carotenoids to the risk of cancer. N. Engl. J. Med. 1984, 310, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Barchitta, M.; Maugeri, A.; Quattrocchi, A.; Agrifoglio, O.; Scalisi, A.; Agodi, A. The Association of Dietary Patterns with High-Risk Human Papillomavirus Infection and Cervical Cancer: A Cross-Sectional Study in Italy. Nutrients 2018, 10, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, M.; Shaw, E.G.; Lesser, G.J.; Case, L.D.; Vitolins, M.Z.; Schneider, C.; Frizzell, B.; Sullivan, C.; Lively, M.; Franzmann, E.; et al. A Randomized Double-Blind Placebo-Controlled Trial of Fruit and Vegetable Concentrates on Intermediate Biomarkers in Head and Neck Cancer. Integr. Cancer Ther. 2018, 17, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lloret, G.R.; Visacri, M.B.; Tuan, B.T.; Amaral, L.S.; Baldini, D.; de Sousa, V.M.; de Castro, L.L.; Aguiar, J.R.S.; Pincinato, E.D.C.; Mazzola, P.G.; et al. High 15-F2t-Isoprostane Levels in Patients with a Previous History of Nonmelanoma Skin Cancer: The Effects of Supplementary Antioxidant Therapy. BioMed Res. Int. 2015, 2015, 963569. [Google Scholar]
- Hopkins, M.H.; Fedirko, V.; Jones, D.P.; Terry, P.D.; Bostick, R.M. Antioxidant micronutrients and biomarkers of oxidative stress and inflammation in colorectal adenoma patients: Results from a randomized, controlled clinical trial. Cancer Epidemiol. Biomark. Prev. 2010, 19, 850–858. [Google Scholar] [CrossRef] [Green Version]
- Fleshner, N.E.; Kapusta, L.; Donnelly, B.; Tanguay, S.; Chin, J.; Hersey, K.; Farley, A.; Jansz, K.; Siemens, D.R.; Trpkov, K.; et al. Progression from high-grade prostatic intraepithelial neoplasia to cancer: A randomized trial of combination vitamin-E, soy, and selenium. J. Clin. Oncol. 2011, 29, 2386–2390. [Google Scholar] [CrossRef] [PubMed]
- Meyer, F.; Galan, P.; Douville, P.; Bairati, I.; Kegle, P.; Bertrais, S.; Estaquio, C.; Hercberg, S. Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. Int. J. Cancer 2005, 116, 182–186. [Google Scholar] [CrossRef]
- Key, T.J.; Appleby, P.N.; Allen, N.E.; Travis, R.C.; Roddam, A.W.; Jenab, M.; Egevad, L.; Tjønneland, A.; Johnsen, N.F.; Overvad, K.; et al. Plasma carotenoids, retinol, and tocopherols and the risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition study. Am. J. Clin. Nutr. 2007, 86, 672–681. [Google Scholar] [CrossRef]
- Nomura, A.M.; Stemmermann, G.N.; Lee, J.; Craft, N.E. Serum micronutrients and prostate cancer in Japanese Americans in Hawaii. Cancer Epidemiol. Biomark. Prev. 1997, 6, 487–491. [Google Scholar]
- Hsing, A.W.; Comstock, G.W.; Abbey, H.; Polk, B.F. Serologic precursors of cancer. Retinol, carotenoids, and tocopherol and risk of prostate cancer. J. Natl. Cancer Inst. 1990, 82, 941–946. [Google Scholar] [CrossRef]
- Schenk, J.M.; Riboli, E.; Chatterjee, N.; Leitzmann, M.F.; Ahn, J.; Albanes, D.; Reding, D.J.; Wang, Y.; Friesen, M.D.; Hayes, R.B.; et al. Serum retinol and prostate cancer risk: A nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1227–1231. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.; Metcalfe, C.; Fraser, W.D.; Donovan, J.; Hamdy, F.; Neal, D.E.; Lane, J.A.; Martin, R.M. Associations of circulating retinol, vitamin E, and 1,25-dihydroxyvitamin D with prostate cancer diagnosis, stage, and grade. Cancer Causes Control 2012, 23, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Mondul, A.M.; Watters, J.L.; Männistö, S.; Weinstein, S.J.; Snyder, K.; Virtamo, J.; Albanes, D. Serum retinol and risk of prostate cancer. Am. J. Epidemiol. 2011, 173, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Nash, S.H.; Till, C.; Song, X.; Lucia, M.S.; Parnes, H.L.; Thompson, I.M.J.; Lippman, S.M.; Platz, E.A.; Schenk, J. Serum Retinol and Carotenoid Concentrations and Prostate Cancer Risk: Results from the Prostate Cancer Prevention Trial. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1507–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichman, M.E.; Hayes, R.B.; Ziegler, R.G.; Schatzkin, A.; Taylor, P.R.; Kahle, L.L.; Fraumeni, J.F.J. Serum vitamin A and subsequent development of prostate cancer in the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Cancer Res. 1990, 50, 2311–2315. [Google Scholar] [PubMed]
- Goodman, G.E.; Schaffer, S.; Omenn, G.S.; Chen, C.; King, I. The association between lung and prostate cancer risk, and serum micronutrients: Results and lessons learned from beta-carotene and retinol efficacy trial. Cancer Epidemiol. Biomark. Prev. 2003, 12, 518–526. [Google Scholar]
- Knekt, P.; Aromaa, A.; Maatela, J.; Aaran, R.K.; Nikkari, T.; Hakama, M.; Hakulinen, T.; Peto, R.; Teppo, L. Serum vitamin A and subsequent risk of cancer: Cancer incidence follow-up of the Finnish Mobile Clinic Health Examination Survey. Am. J. Epidemiol. 1990, 132, 857–870. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.-M. Serum Folate Levels and Lung Cancer Risk: A Meta- Epidemiological Study of Population-based Case-Control Studies. Asian Pac. J. Cancer Prev. 2020, 21, 1829–1833. [Google Scholar] [CrossRef]
- Piyathilake, C.J.; Macaluso, M.; Brill, I.; Heimburger, D.C.; Partridge, E.E. Lower red blood cell folate enhances the HPV-16-associated risk of cervical intraepithelial neoplasia. Nutrition 2007, 23, 203–210. [Google Scholar] [CrossRef]
- Zhao, W.; Hao, M.; Wang, Y.; Feng, N.; Wang, Z.; Wang, W.; Wang, J.; Ding, L. Association between folate status and cervical intraepithelial neoplasia. Eur. J. Clin. Nutr. 2016, 70, 837–842. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yang, A.; Wang, Z.; Wang, W.; Wang, Z.; Wang, Y.; Wang, J.; Song, J.; Li, L.; Lv, W.; et al. Interactions between serum folate and human papillomavirus with cervical intraepithelial neoplasia risk in a Chinese population-based study. Am. J. Clin. Nutr. 2018, 108, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.-X.; Wang, J.-T.; Ding, L.; Jiang, S.-W.; Kang, H.-J.; Gao, C.-F.; Chen, X.; Chen, C.; Zhou, Q. Folate deficiency and FHIT hypermethylation and HPV 16 infection promote cervical cancerization. Asian Pac. J. Cancer Prev. 2014, 15, 9313–9317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piyathilake, C.J.; Macaluso, M.; Chambers, M.M.; Badiga, S.; Siddiqui, N.R.; Bell, W.C.; Edberg, J.C.; Partridge, E.E.; Alvarez, R.D.; Johanning, G.L. Folate and vitamin B12 may play a critical role in lowering the HPV 16 methylation-associated risk of developing higher grades of CIN. Cancer Prev. Res. 2014, 7, 1128–1137. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.Y.; Butler, L.M.; Midttun, Ø.; Koh, W.-P.; Ueland, P.M.; Wang, R.; Jin, A.; Gao, Y.-T.; Yuan, J.-M. Serum B(6) vitamers (pyridoxal 5’-phosphate, pyridoxal, and 4-pyridoxic acid) and pancreatic cancer risk: Two nested case-control studies in Asian populations. Cancer Causes Control 2016, 27, 1447–1456. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, P.; Cai, M.; Shi, Q.; Xu, P.; Wang, L.; He, Y.; Wang, H.; Zhao, W. Prognostic impact of B-vitamins involved in one-carbon metabolism in patients with diffuse large B-cell lymphoma. Hematol. Oncol. 2020, 38, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Gavars, D.; Perminov, D.; Tauckels, E.; Lindenberga, I.; Auce, A.; Lejniece, S. Association of elevated vitamin B(12) with oncohematological diseases in a cohort of 79,524 patients from Latvia. Exp. Oncol. 2019, 41, 357–362. [Google Scholar] [PubMed]
- O’Keefe, S.J.D.; Chung, D.; Mahmoud, N.; Sepulveda, A.R.; Manafe, M.; Arch, J.; Adada, H.; van der Merwe, T. Why do African Americans get more colon cancer than Native Africans? J. Nutr. 2007, 137, 175S–182S. [Google Scholar] [CrossRef] [Green Version]
- Duru, R.; Njoku, O.; Maduka, I. Oxidative stress indicators in patients with prostate disorders in Enugu, South-East Nigeria. BioMed Res. Int. 2014, 2014, 313015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabrowska-Ufniarz, E.; Dzieniszewski, J.; Jarosz, M.; Wartanowicz, M. Vitamin C concentration in gastric juice in patients with precancerous lesions of the stomach and gastric cancer. Med. Sci. Monit. 2002, 8, CR96–CR103. [Google Scholar] [PubMed]
- Heath, A.K.; Hodge, A.M.; Ebeling, P.R.; Eyles, D.W.; Kvaskoff, D.; Buchanan, D.D.; Giles, G.G.; Williamson, E.J.; English, D.R. Circulating 25-Hydroxyvitamin D Concentration and Risk of Breast, Prostate, and Colorectal Cancers: The Melbourne Collaborative Cohort Study. Cancer Epidemiol. Biomark. Prev. 2019, 28, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.; El-Awady, R.; Mohamed, G.; Hussein, M.; Ramadan, S.S. Prognostic Significance of Serum Vitamin D Levels in Egyptian Females with Breast Cancer. Asian Pac. J. Cancer Prev. 2018, 19, 571–576. [Google Scholar] [PubMed]
- de Sousa Almeida-Filho, B.; De Luca Vespoli, H.; Pessoa, E.C.; Machado, M.; Nahas-Neto, J.; Nahas, E.A.P. Vitamin D deficiency is associated with poor breast cancer prognostic features in postmenopausal women. J. Steroid Biochem. Mol. Biol. 2017, 174, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, L.; Almquist, M.; Borgquist, S.; Malm, J.; Manjer, J. Serum vitamin D (25OHD3) levels and the risk of different subtypes of breast cancer: A nested case-control study. Breast 2016, 28, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Kwan, M.L.; Ergas, I.J.; Roh, J.M.; Cheng, T.-Y.D.; Hong, C.-C.; McCann, S.E.; Tang, L.; Davis, W.; Liu, S.; et al. Association of Serum Level of Vitamin D at Diagnosis With Breast Cancer Survival: A Case-Cohort Analysis in the Pathways Study. JAMA Oncol. 2017, 3, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Toprak, B.; Colak, A.; Yalcin, H.; Yildirim, M. No association of serum PSA with vitamin D or total oxidant-antioxidant capacity in healthy men. Aging Male 2019, 22, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.-D.; Chen, Y.-H.; Xu, S.; Zhang, C.; Wang, D.-M.; Wang, H.; Chen, L.; Zhang, Z.-H.; Xia, M.-Z.; Xu, D.-X.; et al. Low vitamin D status is associated with inflammation in patients with prostate cancer. Oncotarget 2017, 8, 22076–22085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, D.C.; Hodge, A.M.; Fanidi, A.; Albanes, D.; Mai, X.M.; Shu, X.O.; Weinstein, S.J.; Larose, T.L.; Zhang, X.; Han, J.; et al. No association between circulating concentrations of vitamin D and risk of lung cancer: An analysis in 20 prospective studies in the Lung Cancer Cohort Consortium (LC3). Ann. Oncol. 2018, 29, 1468–1475. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-J.; Niu, Q.-S.; Wu, H.-B.; Lu, X.-L.; Wang, L.; Tong, X.-R.; Huang, F. Association of thyroid cancer risk with plasma 25-hydroxyvitamin D and vitamin D binding protein: A case-control study in China. J. Endocrinol. Investig. 2020, 43, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Finkelmeier, F.; Kronenberger, B.; Köberle, V.; Bojunga, J.; Zeuzem, S.; Trojan, J.; Piiper, A.; Waidmann, O. Severe 25-hydroxyvitamin D deficiency identifies a poor prognosis in patients with hepatocellular carcinoma—A prospective cohort study. Aliment. Pharmacol. Ther. 2014, 39, 1204–1212. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-Y.; Alberg, A.J.; Norkus, E.P.; Hoffman, S.C.; Comstock, G.W.; Helzlsouer, K.J. Prospective study of antioxidant micronutrients in the blood and the risk of developing prostate cancer. Am. J. Epidemiol. 2003, 157, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Deyashiki, Y.; Nishioka, Y.; Takahashi, K.; Kosaka, Y.; Suzuki, K. Evaluation of des-gamma-carboxy prothrombin as a marker protein of hepatocellular carcinoma. Cancer 1989, 64, 2546–2551. [Google Scholar] [CrossRef]
- Ho, C.H.; Lee, S.D.; Chang, H.T.; Wu, J.C.; Tsai, Y.T.; Lo, K.J. Application of des-gamma-carboxy prothrombin as a complementary tumor marker with alpha-fetoprotein in the diagnosis of hepatocellular carcinoma. Scand. J. Gastroenterol. 1989, 24, 47–52. [Google Scholar] [CrossRef]
- Koike, Y.; Shiratori, Y.; Sato, S.; Obi, S.; Teratani, T.; Imamura, M.; Yoshida, H.; Shiina, S.; Omata, M. Des-gamma-carboxy prothrombin as a useful predisposing factor for the development of portal venous invasion in patients with hepatocellular carcinoma: A prospective analysis of 227 patients. Cancer 2001, 91, 561–569. [Google Scholar] [CrossRef]
- Goss, G.D.; McBurney, M.W. Physiological and clinical aspects of vitamin A and its metabolites. Crit. Rev. Clin. Lab. Sci. 1992, 29, 185–215. [Google Scholar] [CrossRef]
- Polcz, M.E.; Barbul, A. The Role of Vitamin A in Wound Healing. Nutr. Clin. Pract. 2019, 34, 695–700. [Google Scholar] [CrossRef]
- Niles, R.M. Vitamin A and cancer. Nutrition 2000, 16, 573–576. [Google Scholar] [CrossRef]
- Buck, J.; Ritter, G.; Dannecker, L.; Katta, V.; Cohen, S.L.; Chait, B.T.; Hämmerling, U. Retinol is essential for growth of activated human B cells. J. Exp. Med. 1990, 171, 1613–1624. [Google Scholar] [CrossRef] [Green Version]
- Sidell, N.; Famatiga, E.; Golub, S.H. Augmentation of human thymocyte proliferative responses by retinoic acid. Exp. Cell Biol. 1981, 49, 239–245. [Google Scholar] [CrossRef]
- Prabhala, R.H.; Garewal, H.S.; Hicks, M.J.; Sampliner, R.E.; Watson, R.R. The effects of 13-cis-retinoic acid and beta-carotene on cellular immunity in humans. Cancer 1991, 67, 1556–1560. [Google Scholar] [CrossRef]
- Sporn, M.B.; Squire, R.A.; Brown, C.C.; Smith, J.M.; Wenk, M.L.; Springer, S. 13-cis-retinoic acid: Inhibition of bladder carcinogenesis in the rat. Science 1977, 195, 487–489. [Google Scholar] [CrossRef] [PubMed]
- Stinson, S.F.; Reznik, G.; Donahoe, R. Effect of three retinoids on tracheal carcinogenesis with N-methyl-N-nitrosourea in hamsters. J. Natl. Cancer Inst. 1981, 66, 947–951. [Google Scholar] [PubMed]
- Lotan, R. Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim. Biophys. Acta 1980, 605, 33–91. [Google Scholar] [CrossRef]
- Sherman, B.S. The effect of vitamin A on epithelial mitosis in vitro and in vivo. J. Investig. Dermatol. 1961, 37, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Zachman, R.D. The stimulation of RNA synthesis in vivo and in vitro by retinol (vitamin A) in the intestine of vitamin A deficient rats. Life Sci. 1967, 6, 2207–2213. [Google Scholar] [CrossRef]
- Peterson, C.T.; Rodionov, D.A.; Osterman, A.L.; Peterson, S.N. B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020, 12, 3380. [Google Scholar] [CrossRef]
- Xiao, X.; Tang, Y.S.; Mackins, J.Y.; Sun, X.L.; Jayaram, H.N.; Hansen, D.K.; Antony, A.C. Isolation and characterization of a folate receptor mRNA-binding trans-factor from human placenta. Evidence favoring identity with heterogeneous nuclear ribonucleoprotein E1. J. Biol. Chem. 2001, 276, 41510–41517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montfort, W.R.; Weichsel, A. Thymidylate synthase: Structure, inhibition, and strained conformations during catalysis. Pharmacol. Ther. 1997, 76, 29–43. [Google Scholar] [CrossRef]
- Reidy, J.A. Role of deoxyuridine incorporation and DNA repair in the expression of human chromosomal fragile sites. Mutat. Res. 1988, 200, 215–220. [Google Scholar] [CrossRef]
- Duthie, S.J.; Hawdon, A. DNA instability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro. FASEB J. 1998, 12, 1491–1497. [Google Scholar] [CrossRef]
- Schmidt, T.T.; Sharma, S.; Reyes, G.X.; Kolodziejczak, A.; Wagner, T.; Luke, B.; Hofer, A.; Chabes, A.; Hombauer, H. Inactivation of folylpolyglutamate synthetase Met7 results in genome instability driven by an increased dUTP/dTTP ratio. Nucleic Acids Res. 2020, 48, 264–277. [Google Scholar] [CrossRef]
- Nazki, F.H.; Sameer, A.S.; Ganaie, B.A. Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene 2014, 533, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef] [Green Version]
- Pehrsson, E.C.; Choudhary, M.N.K.; Sundaram, V.; Wang, T. The epigenomic landscape of transposable elements across normal human development and anatomy. Nat. Commun. 2019, 10, 5640. [Google Scholar] [CrossRef] [Green Version]
- Robishaw, J.D.; Neely, J.R. Coenzyme A metabolism. Am. J. Physiol. 1985, 248, E1–E9. [Google Scholar] [CrossRef]
- Arbyn, M.; Weiderpass, E.; Bruni, L.; de Sanjosé, S.; Saraiya, M.; Ferlay, J.; Bray, F. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob. Health 2020, 8, e191–e203. [Google Scholar] [CrossRef] [Green Version]
- Bosch, F.X.; Manos, M.M.; Muñoz, N.; Sherman, M.; Jansen, A.M.; Peto, J.; Schiffman, M.H.; Moreno, V.; Kurman, R.; Shah, K.V. Prevalence of human papillomavirus in cervical cancer: A worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J. Natl. Cancer Inst. 1995, 87, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Walboomers, J.M.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.J.; Peto, J.; Meijer, C.J.; Muñoz, N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Collier, B.; Goobar-Larsson, L.; Sokolowski, M.; Schwartz, S. Translational inhibition in vitro of human papillomavirus type 16 L2 mRNA mediated through interaction with heterogenous ribonucleoprotein K and poly(rC)-binding proteins 1 and 2. J. Biol. Chem. 1998, 273, 22648–22656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.-S.; Khan, R.A.; Zhang, Y.; Xiao, S.; Wang, M.; Hansen, D.K.; Jayaram, H.N.; Antony, A.C. Incrimination of heterogeneous nuclear ribonucleoprotein E1 (hnRNP-E1) as a candidate sensor of physiological folate deficiency. J. Biol. Chem. 2011, 286, 39100–39115. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Tang, Y.-S.; Khan, R.A.; Zhang, Y.; Kusumanchi, P.; Stabler, S.P.; Jayaram, H.N.; Antony, A.C. Influence of physiologic folate deficiency on human papillomavirus type 16 (HPV16)-harboring human keratinocytes in vitro and in vivo. J. Biol. Chem. 2012, 287, 12559–12577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngo, B.; Van Riper, J.M.; Cantley, L.C.; Yun, J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. 2019, 19, 271–282. [Google Scholar] [CrossRef]
- Bakalova, R.; Zhelev, Z.; Miller, T.; Aoki, I.; Higashi, T. New potential biomarker for stratification of patients for pharmacological vitamin C in adjuvant settings of cancer therapy. Redox Biol. 2020, 28, 101357. [Google Scholar] [CrossRef] [PubMed]
- Park, S. The effects of high concentrations of vitamin C on cancer cells. Nutrients 2013, 5, 3496–3505. [Google Scholar] [CrossRef] [Green Version]
- Renner, O.; Burkard, M.; Michels, H.; Vollbracht, C.; Sinnberg, T.; Venturelli, S. Parenteral high-dose ascorbate—A possible approach for the treatment of glioblastoma (Review). Int. J. Oncol. 2021, 58, 1–17. [Google Scholar] [CrossRef]
- Sinnberg, T.; Noor, S.; Venturelli, S.; Berger, A.; Schuler, P.; Garbe, C.; Busch, C. The ROS-induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF-1alpha in the NCI60 cancer cell lines. J. Cell. Mol. Med. 2014, 18, 530–541. [Google Scholar] [CrossRef]
- Venturelli, S.; Sinnberg, T.W.; Berger, A.; Noor, S.; Levesque, M.P.; Böcker, A.; Niessner, H.; Lauer, U.M.; Bitzer, M.; Garbe, C.; et al. Epigenetic impacts of ascorbate on human metastatic melanoma cells. Front. Oncol. 2014, 4, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venturelli, S.; Sinnberg, T.W.; Niessner, H.; Busch, C. Molecular mechanisms of pharmacological doses of ascorbate on cancer cells. Wien. Med. Wochenschr. 2015, 165, 251–257. [Google Scholar] [CrossRef]
- Verrax, J.; Cadrobbi, J.; Delvaux, M.; Jamison, J.M.; Gilloteaux, J.; Summers, J.L.; Taper, H.S.; Buc Calderon, P. The association of vitamins C and K3 kills cancer cells mainly by autoschizis, a novel form of cell death. Basis for their potential use as coadjuvants in anticancer therapy. Eur. J. Med. Chem. 2003, 38, 451–457. [Google Scholar] [CrossRef]
- Gilloteaux, J.; Jamison, J.M.; Venugopal, M.; Giammar, D.; Summers, J.L. Scanning electron microscopy and transmission electron microscopy aspects of synergistic antitumor activity of vitamin C–vitamin K3 combinations against human prostatic carcinoma cells. Scanning Microsc. 1995, 9, 159–173. [Google Scholar] [PubMed]
- Gilloteaux, J.; Jamison, J.M.; Arnold, D.; Ervin, E.; Eckroat, L.; Docherty, J.J.; Neal, D.; Summers, J.L. Cancer cell necrosis by autoschizis: Synergism of antitumor activity of vitamin C: Vitamin K3 on human bladder carcinoma T24 cells. Scanning 1998, 20, 564–575. [Google Scholar] [CrossRef]
- Jamison, J.M.; Gilloteaux, J.; Taper, H.S.; Calderon, P.B.; Summers, J.L. Autoschizis: A novel cell death. Biochem. Pharmacol. 2002, 63, 1773–1783. [Google Scholar] [CrossRef]
- Bakalova, R.; Zhelev, Z.; Miller, T.; Aoki, I.; Higashi, T. Vitamin C versus Cancer: Ascorbic Acid Radical and Impairment of Mitochondrial Respiration? Oxidative Med. Cell. Longev. 2020, 2020, 1504048. [Google Scholar] [CrossRef]
- Madugundu, G.S.; Cadet, J.; Wagner, J.R. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Res. 2014, 42, 7450–7460. [Google Scholar] [CrossRef]
- Zhou, X.; Zhuang, Z.; Wang, W.; He, L.; Wu, H.; Cao, Y.; Pan, F.; Zhao, J.; Hu, Z.; Sekhar, C.; et al. OGG1 is essential in oxidative stress induced DNA demethylation. Cell. Signal. 2016, 28, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Brabson, J.P.; Leesang, T.; Mohammad, S.; Cimmino, L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front. Genet. 2021, 12, 675780. [Google Scholar] [CrossRef]
- Liu, M.; Ohtani, H.; Zhou, W.; Ørskov, A.D.; Charlet, J.; Zhang, Y.W.; Shen, H.; Baylin, S.B.; Liang, G.; Grønbæk, K.; et al. Vitamin C Increases Viral Mimicry Induced by 5-Aza-2′-Deoxycytidine. Proc. Natl. Acad. Sci. USA 2016, 113, 10238–10244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Chen, C.; Chen, X.; Fei, Y.; Jiang, L.; Wang, G. Vitamin C Promotes Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma. Front. Oncol. 2020, 10, 976. [Google Scholar] [CrossRef]
- Tsukada, Y.-I.; Fang, J.; Erdjument-Bromage, H.; Warren, M.E.; Borchers, C.H.; Tempst, P.; Zhang, Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006, 439, 811–816. [Google Scholar] [CrossRef]
- Rankin, E.B.; Giaccia, A.J. Hypoxic control of metastasis. Science 2016, 352, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Byers, T.; Perry, G. Dietary carotenes, vitamin C, and vitamin E as protective antioxidants in human cancers. Annu. Rev. Nutr. 1992, 12, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [Green Version]
- Correa, P. Helicobacter pylori and gastric carcinogenesis. Am. J. Surg. Pathol. 1995, 19 (Suppl. 1), S37–S43. [Google Scholar]
- Banerjee, S.; Hawksby, C.; Miller, S.; Dahill, S.; Beattie, A.D.; McColl, K.E. Effect of Helicobacter pylori and its eradication on gastric juice ascorbic acid. Gut 1994, 35, 317–322. [Google Scholar] [CrossRef]
- Nikolac Gabaj, N.; Unic, A.; Miler, M.; Pavicic, T.; Culej, J.; Bolanca, I.; Herman Mahecic, D.; Milevoj Kopcinovic, L.; Vrtaric, A. In sickness and in health: Pivotal role of vitamin D. Biochem. Med. 2020, 30, 020501. [Google Scholar] [CrossRef] [PubMed]
- Schuster, I. Cytochromes P450 are essential players in the vitamin D signaling system. Biochim. Biophys. Acta 2011, 1814, 186–199. [Google Scholar] [CrossRef]
- Louka, M.L.; Fawzy, A.M.; Naiem, A.M.; Elseknedy, M.F.; Abdelhalim, A.E.; Abdelghany, M.A. Vitamin D and K signaling pathways in hepatocellular carcinoma. Gene 2017, 629, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E. Vitamin D and cancer incidence in the Harvard cohorts. Ann. Epidemiol. 2009, 19, 84–88. [Google Scholar] [CrossRef]
- Bilzer, M.; Roggel, F.; Gerbes, A.L. Role of Kupffer cells in host defense and liver disease. Liver Int. 2006, 26, 1175–1186. [Google Scholar] [CrossRef]
- Hammad, L.N.; Abdelraouf, S.M.; Hassanein, F.S.; Mohamed, W.A.; Schaalan, M.F. Circulating IL-6, IL-17 and vitamin D in hepatocellular carcinoma: Potential biomarkers for a more favorable prognosis? J. Immunotoxicol. 2013, 10, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Norman, A.W. Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology 2006, 147, 5542–5548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramagopalan, S.V.; Heger, A.; Berlanga, A.J.; Maugeri, N.J.; Lincoln, M.R.; Burrell, A.; Handunnetthi, L.; Handel, A.E.; Disanto, G.; Orton, S.M.; et al. A ChIP-seq defined genome-wide map of vitamin D receptor binding: Associations with disease and evolution. Genome Res. 2010, 20, 1352–1360. [Google Scholar] [CrossRef] [Green Version]
- Bhoora, S.; Punchoo, R. Policing Cancer: Vitamin D Arrests the Cell Cycle. Int. J. Mol. Sci. 2020, 21, 9296. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D and cancer: The promise not yet fulfilled. Endocrine 2014, 46, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofmann, J.N.; Yu, K.; Horst, R.L.; Hayes, R.B.; Purdue, M.P. Long-term variation in serum 25-hydroxyvitamin D concentration among participants in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Cancer Epidemiol. Biomark. Prev. 2010, 19, 927–931. [Google Scholar] [CrossRef] [Green Version]
- Albanes, D.; Mondul, A.M.; Yu, K.; Parisi, D.; Horst, R.L.; Virtamo, J.; Weinstein, S.J. Serum 25-hydroxy vitamin D and prostate cancer risk in a large nested case-control study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1850–1860. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, S.J.; Stolzenberg-Solomon, R.Z.; Kopp, W.; Rager, H.; Virtamo, J.; Albanes, D. Impact of circulating vitamin D binding protein levels on the association between 25-hydroxyvitamin D and pancreatic cancer risk: A nested case-control study. Cancer Res. 2012, 72, 1190–1198. [Google Scholar] [CrossRef] [Green Version]
- Stolzenberg-Solomon, R.Z.; Jacobs, E.J.; Arslan, A.A.; Qi, D.; Patel, A.V.; Helzlsouer, K.J.; Weinstein, S.J.; McCullough, M.L.; Purdue, M.P.; Shu, X.-O.; et al. Circulating 25-hydroxyvitamin D and risk of pancreatic cancer: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am. J. Epidemiol. 2010, 172, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Mondul, A.M.; Weinstein, S.J.; Moy, K.A.; Männistö, S.; Albanes, D. Vitamin D-binding protein, circulating vitamin D and risk of renal cell carcinoma. Int. J. Cancer 2014, 134, 2699–2706. [Google Scholar] [CrossRef] [PubMed]
- Mondul, A.M.; Weinstein, S.J.; Virtamo, J.; Albanes, D. Influence of vitamin D binding protein on the association between circulating vitamin D and risk of bladder cancer. Br. J. Cancer 2012, 107, 1589–1594. [Google Scholar] [CrossRef] [Green Version]
- Stolzenberg-Solomon, R.Z.; Hayes, R.B.; Horst, R.L.; Anderson, K.E.; Hollis, B.W.; Silverman, D.T. Serum vitamin D and risk of pancreatic cancer in the prostate, lung, colorectal, and ovarian screening trial. Cancer Res. 2009, 69, 1439–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, A.; Kattoor, A.J.; Saldeen, T.; Mehta, J.L. Vitamin E and its anticancer effects. Crit. Rev. food Sci. Nutr. 2019, 59, 2831–2838. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Natural Forms of Vitamin E as Effective Agents for Cancer Prevention and Therapy. Adv. Nutr. 2017, 8, 850–867. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms. IUBMB Life 2019, 71, 495–506. [Google Scholar] [CrossRef]
- Constantinou, C.; Charalambous, C.; Kanakis, D. Vitamin E and cancer: An update on the emerging role of γ and δ tocotrienols. Eur. J. Nutr. 2020, 59, 845–857. [Google Scholar] [CrossRef]
- Stafford, D.W. The vitamin K cycle. J. Thromb. Haemost. 2005, 3, 1873–1878. [Google Scholar] [CrossRef]
- Chiou, T.J.; Tzeng, W.F. The roles of glutathione and antioxidant enzymes in menadione-induced oxidative stress. Toxicology 2000, 154, 75–84. [Google Scholar] [CrossRef]
- Ma, M.; Qu, X.-J.; Mu, G.-Y.; Chen, M.-H.; Cheng, Y.-N.; Kokudo, N.; Tang, W.; Cui, S.-X. Vitamin K2 inhibits the growth of hepatocellular carcinoma via decrease of des-gamma-carboxy prothrombin. Chemotherapy 2009, 55, 28–35. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, M.; Finn, F.; Carr, B.I. The growth inhibitory effects of vitamins K and their actions on gene expression. Hepatology 1995, 22, 876–882. [Google Scholar] [PubMed]
- Ohsaki, Y.; Shirakawa, H.; Hiwatashi, K.; Furukawa, Y.; Mizutani, T.; Komai, M. Vitamin K suppresses lipopolysaccharide-induced inflammation in the rat. Biosci. Biotechnol. Biochem. 2006, 70, 926–932. [Google Scholar] [CrossRef] [Green Version]
- Ozaki, I.; Zhang, H.; Mizuta, T.; Ide, Y.; Eguchi, Y.; Yasutake, T.; Sakamaki, T.; Pestell, R.G.; Yamamoto, K. Menatetrenone, a vitamin K2 analogue, inhibits hepatocellular carcinoma cell growth by suppressing cyclin D1 expression through inhibition of nuclear factor kappaB activation. Clin. Cancer Res. 2007, 13, 2236–2245. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Weitzmann, M.N. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation. Int. J. Mol. Med. 2011, 27, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ozaki, I.; Hamajima, H.; Iwane, S.; Takahashi, H.; Kawaguchi, Y.; Eguchi, Y.; Yamamoto, K.; Mizuta, T. Vitamin K2 augments 5-fluorouracil-induced growth inhibition of human hepatocellular carcinoma cells by inhibiting NF-κB activation. Oncol. Rep. 2011, 25, 159–166. [Google Scholar] [PubMed] [Green Version]
- Furie, B.; Bouchard, B.A.; Furie, B.C. Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. Blood 1999, 93, 1798–1808. [Google Scholar] [CrossRef]
- Nakagawa, T.; Seki, T.; Shiro, T.; Wakabayashi, M.; Imamura, M.; Itoh, T.; Tamai, T.; Nishimura, A.; Yamashiki, N.; Matsuzaki, K.; et al. Clinicopathologic significance of protein induced vitamin K absence or antagonist II and alpha-fetoprotein in hepatocellular carcinoma. Int. J. Oncol. 1999, 14, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Huisse, M.G.; Leclercq, M.; Belghiti, J.; Flejou, J.F.; Suttie, J.W.; Bezeaud, A.; Stafford, D.W.; Guillin, M.C. Mechanism of the abnormal vitamin K-dependent gamma-carboxylation process in human hepatocellular carcinomas. Cancer 1994, 74, 1533–1541. [Google Scholar] [CrossRef]
- Bertino, G.; Ardiri, A.M.; Boemi, P.M.; Ierna, D.; Interlandi, D.; Caruso, L.; Minona, E.; Trovato, M.A.; Vicari, S.; Destri, G.L.; et al. A study about mechanisms of des-gamma-carboxy prothrombin’s production in hepatocellular carcinoma. Panminerva Med. 2008, 50, 221–226. [Google Scholar]
- Miyakawa, T.; Kajiwara, Y.; Shirahata, A.; Okamoto, K.; Itoh, H.; Ohsato, K. Vitamin K contents in liver tissue of hepatocellular carcinoma patients. Jpn. J. Cancer Res. 2000, 91, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, A.; Hayashi, N.; Fusamoto, H.; Kawada, Y.; Imai, Y.; Yamamoto, H.; Hayashi, E.; Ogihara, T.; Kamada, T. Clinical evaluation of plasma des-gamma-carboxy prothrombin as a marker protein of hepatocellular carcinoma in patients with tumors of various sizes. Dig. Dis. Sci. 1993, 38, 2170–2176. [Google Scholar] [CrossRef]
- Nakao, A.; Virji, A.; Iwaki, Y.; Carr, B.; Iwatsuki, S.; Starzl, E. Abnormal prothrombin (DES-gamma-carboxy prothrombin) in hepatocellular carcinoma. Hepato-Gastroenterol 1991, 38, 450–453. [Google Scholar]
- Fujiyama, S.; Morishita, T.; Hashiguchi, O.; Sato, T. Plasma abnormal prothrombin (des-gamma-carboxy prothrombin) as a marker of hepatocellular carcinoma. Cancer 1988, 61, 1621–1628. [Google Scholar] [CrossRef]
- Liebman, H.A.; Furie, B.C.; Tong, M.J.; Blanchard, R.A.; Lo, K.J.; Lee, S.D.; Coleman, M.S.; Furie, B. Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. N. Engl. J. Med. 1984, 310, 1427–1431. [Google Scholar] [CrossRef] [PubMed]
- Soulier, J.P.; Gozin, D.; Lefrere, J.J. A new method to assay des-gamma-carboxyprothrombin. Results obtained in 75 cases of hepatocellular carcinoma. Gastroenterology 1986, 91, 1258–1262. [Google Scholar] [CrossRef]
- Basu, P.; Hutubessy, R.; Broutet, N. Cervical cancer: WHO called for elimination, not eradication. BMJ 2019, 366, l5668. [Google Scholar] [CrossRef]
- Canfell, K.; Kim, J.J.; Brisson, M.; Keane, A.; Simms, K.T.; Caruana, M.; Burger, E.A.; Martin, D.; Nguyen, D.T.N.; Bénard, É.; et al. Mortality impact of achieving WHO cervical cancer elimination targets: A comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet 2020, 395, 591–603. [Google Scholar] [CrossRef] [Green Version]
Vitamin | RDA [µg] | Blood Concentrations [µmol/L] | Source | References |
---|---|---|---|---|
A (retinol) | 700–900 | >1.05 | Fruits, vegetables, liver, butter, milk | [24,28] |
B1 (thiamine) | 1100–1200 | 70–190 × 10−3 | Meat, vegetables | [26,28] |
B2 (riboflavin) | 1100–1300 | 10.5 × 10−3 | Milk, eggs, offal | [22,28,29] |
B3 (niacin) | 14,000–16,000 | - | Liver, meat, peanuts, whole grain | [28,30] |
B5 (pantothenic acid) | 5000 * | 1.6–2.7 | Meat, eggs, nuts, avocados | [28,31] |
B6 (pyridoxine) | 1500 | >3.0 × 10−2 | Fish, liver, meat, cereals, nuts | [25,28] |
B7 (biotin) | 40 * | 330 ng/L | Liver, mushrooms, eggs | [28,32] |
B9 (folic acid) | 250 | ≥0.01 | Leafy vegetables, legumes, oranges | [20,28] |
B12 (cobalamin) | 2.4 | >221 × 10−6 | Meat, fish, milk, eggs, liver | [23,28] |
C (ascorbic acid) | 75,000–90,000 | >50 | Fruits, vegetables | [28,33] |
D2 (ergocalciferol) | 10–20 | >50 × 10−3 | Sun irradiation | [28,34] |
D3 (cholecalciferol) | ||||
E (tocopherol) | 15,000 | >12 | Seeds, vegetable oils | [28,35] |
K1 (phylloquinone) | 70 ** | 1.45 × 10−3 | Leafy vegetables, liver, milk, soy | [28,36] |
K2 (menaquinone) |
Vitamin | Organ | Association * | Measure † | Reference | |
---|---|---|---|---|---|
A | Prostate | None | Qt | [47] | |
None | OR | [48] | |||
None | OR | [49] | |||
None ‡ | OR | [50] | |||
None | OR | [51] | |||
Positive | HR | [52] | |||
Positive | OR | [53] | |||
Negative | RR | [54] | |||
Lung | Negative | OR | [55] | ||
Any | Negative | Qt | [56] | ||
B complex | B9 (folic acid) | Lung | Negative | OR | [57] |
B9 (folic acid) | Cervix | Negative | OR | [58] | |
B9 (folic acid) | Negative | OR | [59] | ||
B9 (folic acid) | Negative | OR | [60] | ||
B9 (folic acid) | Negative | OR | [61] | ||
B9 (folic acid), B12 (cobalamin) | Negative | OR | [62] | ||
B6 (pyridoxine) | Pancreas | Negative | OR | [63] | |
B9, (folic acid), B2 (riboflavin) | Blood | Positive | HR | [64] | |
B12 (cobalamin) | Positive | OR | [65] | ||
C | Colon | Positive § | Qt | [66] | |
Prostate | Negative | Qt | [67] | ||
Stomach | Negative | Qt | [68] | ||
D | Colon | Negative | HR | [69] | |
Breast | None | HR | [69] | ||
Negative | Qt | [70] | |||
Negative | Qt | [71] | |||
Positive | OR | [72] | |||
Negative | HR | [73] | |||
Prostate | None | Qt | [74] | ||
None | HR | [69] | |||
Negative | OR | [75] | |||
Lung | None | OR | [76] | ||
Thyroid | Negative | OR | [77] | ||
Liver | Positive | HR | [78] | ||
E | Prostate | None | OR | [48] | |
None | Qt | [51] | |||
Negative | Qt | [79] | |||
Negative | Qt | [55] | |||
Negative | Qt | [55] | |||
Lung | Negative | Qt | [55] | ||
K | Liver | Positive | Qt | [80] | |
Positive | Qt | [81] | |||
Positive | HR | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venturelli, S.; Leischner, C.; Helling, T.; Burkard, M.; Marongiu, L. Vitamins as Possible Cancer Biomarkers: Significance and Limitations. Nutrients 2021, 13, 3914. https://doi.org/10.3390/nu13113914
Venturelli S, Leischner C, Helling T, Burkard M, Marongiu L. Vitamins as Possible Cancer Biomarkers: Significance and Limitations. Nutrients. 2021; 13(11):3914. https://doi.org/10.3390/nu13113914
Chicago/Turabian StyleVenturelli, Sascha, Christian Leischner, Thomas Helling, Markus Burkard, and Luigi Marongiu. 2021. "Vitamins as Possible Cancer Biomarkers: Significance and Limitations" Nutrients 13, no. 11: 3914. https://doi.org/10.3390/nu13113914
APA StyleVenturelli, S., Leischner, C., Helling, T., Burkard, M., & Marongiu, L. (2021). Vitamins as Possible Cancer Biomarkers: Significance and Limitations. Nutrients, 13(11), 3914. https://doi.org/10.3390/nu13113914