Anorexia Nervosa—What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature
Abstract
:1. Introduction
2. Calories and Nutrients in the Re-Nutrition Plan
3. Fatty Acids
4. Vitamins and Microelements
5. Microbiota and Its Modulations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AN | Anorexia nervosa |
APA | American Psychiatric Association |
ARA | Arachidonic acid n-6 |
DHA | Docosahexaenoic acid |
ED | Eating disorder |
EPA | Eicosapentaenoic acid n-3 |
HCR | Higher calorie refeeding |
IBW | Ideal Body Weight |
LCR | Lower calorie refeeding |
MUFAs | Monounsaturated fatty acids |
NGT | Nasogastric Tube |
PUFAs | Polyunsaturated fatty acids |
RFS | Refeeding syndrome |
RH | Refeeding hypophosphatemia |
SOD | Superoxide dismutase |
tDCS | Transcranial direct current brain stimulation |
WFSBP | World Federation of Societies for Biological Psychiatry |
References
- Hornberger, L.L.; Lane, M.A. Identification and management of eating disorders in children and adolescents. Pediatrics 2021, 147, 1240–1253. [Google Scholar] [CrossRef]
- Zeeck, A. S3-Leitlinie Diagnostik und Behandlung der Essstörungen. In Deutsche Gesellschaft für Psychosomatische Medizin und Ärztliche Psychotherapie (DGPM) (Hrsg.); Deutsche Gesellschaft für Essstörungen (DGESS): Düsseldorf, Germany, 2020. [Google Scholar]
- Danish Health Authority National Clinical Guideline for the Treatment of Anorexia Nervosa. Quick Guide. Available online: https://www.sst.dk/da/udgivelser/2016/~/media/36D31B378C164922BCD96573749AA206.ashx (accessed on 25 August 2021).
- Aigner, M.; Treasure, J.; Kaye, W.; Kasper, S.; World Federation of Societies of Biological Psychiatry Task Force On Eating Disorders. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the Pharmacological Treatment of Eating Disorders. World J. Biol. Psychiatry 2011, 12, 400–443. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.; Jones, W.R. MARSIPAN: Management of really sick patients with anorexia nervosa. BJPsych Adv. 2018, 24, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Yager, J.; Michael Devlin, C.J.; Halmi, K.A.; Herzog, D.B.; Mitchell, J.E., III; Powers, P.; Zerbe, K.J.; McIntyre, J.S.; Anzia, D.J.; Cook, I.A.; et al. Practice Guideline for the the Treatment of Patients with Eating Disorders, 3rd ed.; Work Group On Eating Disorders American Psychiatric Association Steering Commitee on Practice Guidelines Area and Component Liaisons Staff: Washington, DC, USA, 2010.
- Golden, N.H.; Keane-Miller, C.; Sainani, K.L.; Kapphahn, C.J. Higher caloric intake in hospitalized adolescents with anorexia nervosa is associated with reduced length of stay and no increased rate of refeeding syndrome. J. Adolesc. Health 2013, 53, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Garber, A.K.; Michihata, N.; Hetnal, K.; Shafer, M.A.; Moscicki, A.B. A prospective examination of weight gain in hospitalized adolescents with anorexia nervosa on a recommended refeeding protocol. J. Adolesc. Health 2012, 50, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Garber, A.K.; Sawyer, S.M.; Golden, N.H.; Guarda, A.S.; Katzman, D.K.; Kohn, M.R.; Le Grange, D.; Madden, S.; Whitelaw, M.; Redgrave, G.W. A systematic review of approaches to refeeding in patients with anorexia nervosa. Int. J. Eat. Disord. 2016, 49, 293–310. [Google Scholar] [CrossRef]
- Haynos, A.F.; Snipes, C.; Guarda, A.; Mayer, L.E.; Attia, E. Comparison of standardized versus individualized caloric prescriptions in the nutritional rehabilitation of inpatients with anorexia nervosa. Int. J. Eat. Disord. 2016, 49, 50. [Google Scholar] [CrossRef] [Green Version]
- Steinglass, J.; Yager, J.; Solomon, D. Anorexia Nervosa in Adults and Adolescents: Nutritional Rehabilitation (Nutritional Support). Available online: https://www.uptodate.com/contents/anorexia-nervosa-in-adults-and-adolescents-nutritional-rehabilitation-nutritional-support/print (accessed on 16 August 2021).
- Bargiacchi, A.; Clarke, J.; Paulsen, A.; Leger, J. Refeeding in anorexia nervosa. Eur. J. Pediatr. 2018, 178, 413–422. [Google Scholar] [CrossRef]
- Overview|Eating Disorders: Recognition and Treatment|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng69 (accessed on 16 August 2021).
- Garber, A.K.; Cheng, J.; Accurso, E.C.; Adams, S.H.; Buckelew, S.M.; Kapphahn, C.J.; Kreiter, A.; Le Grange, D.; MacHen, V.I.; Moscicki, A.B.; et al. Short-term Outcomes of the Study of Refeeding to Optimize Inpatient Gains for Patients with Anorexia Nervosa: A Multicenter Randomized Clinical Trial. JAMA Pediatr. 2021, 175, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Golden, N.H.; Cheng, J.; Kapphahn, C.J.; Buckelew, S.M.; Machen, V.I.; Kreiter, A.; Accurso, E.C.; Adams, S.H.; Le Grange, D.; Moscicki, A.-B.; et al. Higher-Calorie Refeeding in Anorexia Nervosa: 1-Year Outcomes From a Randomized Controlled Trial. Pediatrics 2021, 147, e2020037135. [Google Scholar] [CrossRef]
- Davis, C.; Hong, W.J.N.; Zhang, S.L.; Quek, W.E.G.; Lim, J.K.E.; Oh, J.Y.; Rajasegaran, K.; Chew, C.S.E. Outcomes of a higher calorie inpatient refeeding protocol in Asian adolescents with anorexia nervosa. Int. J. Eat. Disord. 2021, 54, 95–101. [Google Scholar] [CrossRef]
- Redgrave, G.W.; Coughlin, J.W.; Schreyer, C.C.; Martin, L.M.; Leonpacher, A.K.; Seide, M.; Verdi, A.M.; Pletch, A.; Guarda, A.S. Refeeding and weight restoration outcomes in anorexia nervosa: Challenging current guidelines. Int. J. Eat. Disord. 2015, 48, 866–873. [Google Scholar] [CrossRef]
- O’Connor, G.; Nicholls, D.; Hudson, L.; Singhal, A. Refeeding Low Weight Hospitalized Adolescents with Anorexia Nervosa: A Multicenter Randomized Controlled Trial. Nutr. Clin. Pract. 2016, 31, 681–689. [Google Scholar] [CrossRef]
- Doig, G.S.; Simpson, F.; Heighes, P.T.; Bellomo, R.; Chesher, D.; Caterson, I.D.; Reade, M.C.; Harrigan, P.W.J. Restricted versus continued standard caloric intake during the management of refeeding syndrome in critically ill adults: A randomised, parallel-group, multicentre, single-blind controlled trial. Lancet Respir. Med. 2015, 3, 943–952. [Google Scholar] [CrossRef]
- Friedli, N.; Stanga, Z.; Culkin, A.; Crook, M.; Laviano, A.; Sobotka, L.; Kressig, R.W.; Kondrup, J.; Mueller, B.; Schuetz, P. Management and prevention of refeeding syndrome in medical inpatients: An evidence-based and consensus-supported algorithm. Nutrition 2018, 47, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedli, N.; Stanga, Z.; Sobotka, L.; Culkin, A.; Kondrup, J.; Laviano, A.; Mueller, B.; Schuetz, P. Revisiting the refeeding syndrome: Results of a systematic review. Nutrition 2017, 35, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golden, N.H.; Katzman, D.K.; Sawyer, S.M.; Ornstein, R.M.; Rome, E.S.; Garber, A.K.; Kohn, M.; Kreipe, R.E. Update on the medical management of eating disorders in adolescents. J. Adolesc. Health 2015, 56, 370–375. [Google Scholar] [CrossRef]
- Yamazaki, T.; Inada, S.; Sawada, M.; Sekine, R.; Kubota, N.; Fukatsu, K.; Yoshiuchi, K. Diets with high carbohydrate contents were associated with refeeding hypophosphatemia: A retrospective study in Japanese inpatients with anorexia nervosa. Int. J. Eat. Disord. 2021, 54, 88–94. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, G.; Goldin, J. The refeeding syndrome and glucose load. Int. J. Eat. Disord. 2011, 44, 182–185. [Google Scholar] [CrossRef]
- Funayama, M.; Mimura, Y.; Takata, T.; Koreki, A.; Ogino, S.; Kurose, S.; Shimizu, Y. Hypokalemia in patients with anorexia nervosa during refeeding is associated with binge–purge behavior, lower body mass index, and hypoalbuminemia. J. Eat. Disord. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Funayama, M.; Mimura, Y.; Takata, T.; Koreki, A.; Ogino, S.; Kurose, S. Body mass index and blood urea nitrogen to creatinine ratio predicts refeeding hypophosphatemia of anorexia nervosa patients with severe malnutrition. J. Eat. Disord. 2021, 9, 1. [Google Scholar] [CrossRef]
- Madden, S.; Miskovic-Wheatley, J.; Clarke, S.; Touyz, S.; Hay, P.; Kohn, M.R. Outcomes of a rapid refeeding protocol in Adolescent Anorexia Nervosa. J. Eat. Disord. 2015, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, S.; Franklin, R.C.; Russell, J.; Abraham, S. A review of feeding methods used in the treatment of anorexia nervosa. J. Eat. Disord. 2013, 1, 36. [Google Scholar] [CrossRef] [Green Version]
- Agostino, H.; Erdstein, J.; Meglio, G. Di Shifting Paradigms: Continuous Nasogastric Feeding With High Caloric Intakes in Anorexia Nervosa. J. Adolesc. Health 2013, 53, 590–594. [Google Scholar] [CrossRef]
- Parker, E.; Flood, V.; Halaki, M.; Wearne, C.; Anderson, G.; Gomes, L.; Clarke, S.; Wilson, F.; Russell, J.; Frig, E.; et al. Study protocol for a randomised controlled trial investigating two different refeeding formulations to improve safety and efficacy of hospital management of adolescent and young adults admitted with anorexia nervosa. BMJ Open 2020, 10, e038242. [Google Scholar] [CrossRef]
- Nguyen, N.; Dow, M.; Woodside, B.; German, J.B.; Quehenberger, O.; Shih, P.A.B. Food-intake normalization of dysregulated fatty acids in women with anorexia nervosa. Nutrients 2019, 11, 2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seitz, J.; Dahmen, B.; Keller, L.; Herpertz-Dahlmann, B. Gut Feelings: How Microbiota Might Impact the Development and Course of Anorexia Nervosa. Nutrients 2020, 12, 3295. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.B.; Morisseau, C.; Le, T.; Woodside, B.; German, J.B. Personalized polyunsaturated fatty acids as a potential adjunctive treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat. 2017, 133, 11–19. [Google Scholar] [CrossRef]
- Shih, P.B.; Yang, J.; Morisseau, C.; German, J.B.; Scott-Van Zeeland, A.A.; Armando, A.M.; Quehenberger, O.; Bergen, A.W.; Magistretti, P.; Berrettini, W.; et al. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa. Mol. Psychiatry 2016, 21, 537–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, R.D.S.; Campos, M.M. Protective effects of omega-3 fatty acids in cancer-related complications. Nutrients 2019, 11, 945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, O.M.; Abkenari, S.; Tong, Z.; Tedman, A.; Huerta-Yepez, S. Omega-3 Polyunsaturated Fatty Acids and Lung Cancer: Nutrition or Pharmacology? Nutr. Cancer 2021, 73, 541–561. [Google Scholar] [CrossRef]
- Collu, R.; Post, J.M.; Scherma, M.; Giunti, E.; Fratta, W.; Lutz, B.; Fadda, P.; Bindila, L. Altered brain levels of arachidonic acid-derived inflammatory eicosanoids in a rodent model of anorexia nervosa. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2020, 1865, 158578. [Google Scholar] [CrossRef]
- Lee, S.; Ng, K.L.; Kwok, K.P.S.; Thomas, J.J.; Becker, A.E. Gastrointestinal dysfunction in Chinese patients with fat-phobic and nonfat-phobic anorexia nervosa. Transcult. Psychiatry 2012, 49, 678–695. [Google Scholar] [CrossRef]
- Steinglass, J.; Foerde, K.; Kostro, K.; Shohamy, D.; Walsh, B.T. Restrictive food intake as a choice—A paradigm for study. Int. J. Eat. Disord. 2015, 48, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Baskaran, C.; Carson, T.L.; Reyes, K.J.C.; Becker, K.R.; Slattery, M.J.; Tulsiani, S.; Eddy, K.T.; Anderson, E.J.; Hubbard, J.L.; Misra, M.; et al. Macronutrient intake associated with weight gain in adolescent girls with anorexia nervosa. Int. J. Eat. Disord. 2017, 50, 1050. [Google Scholar] [CrossRef]
- Manos, B.E.; Bravender, T.D.; Harrison, T.M.; Lange, H.L.H.; Cottrill, C.B.; Abdel-Rasoul, M.; Bonny, A.E. A pilot randomized controlled trial of omega-3 fatty acid supplementation for the treatment of anxiety in adolescents with anorexia nervosa. Int. J. Eat. Disord. 2018, 51, 1367–1372. [Google Scholar] [CrossRef]
- Woo, J.; Couturier, J.; Pindiprolu, B.; Picard, L.; Maertens, C.; Leclerc, A.; Findlay, S.; Johnson, N.; Grant, C.; Kimber, M. Acceptability and tolerability of omega-3 fatty acids as adjunctive treatment for children and adolescents with eating disorders. Eat. Disord. 2017, 25, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, S. Polyunsaturated fatty acids as putative cognitive enhancers. Med. Hypotheses 2012, 79, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, S.; Rabinovitz, S. The Role of Essential Fatty Acids in Anorexia Nervosa and Obesity. Crit. Rev. Food Sci. Nutr. 2016, 56, 2021–2035. [Google Scholar] [CrossRef] [PubMed]
- Avraham, Y.; Saidian, M.; Burston, J.J.; Mevorach, R.; Vorobiev, L.; Magen, I.; Kunkes, E.; Borges, B.; Lichtman, A.H.; Berry, E.M. Fish oil promotes survival and protects against cognitive decline in severely undernourished mice by normalizing satiety signals. J. Nutr. Biochem. 2011, 22, 766–776. [Google Scholar] [CrossRef] [Green Version]
- Huang, T.; Zheng, J.; Chen, Y.; Yang, B.; Wahlqvist, M.L.; Li, D. High consumption of Ω-3 polyunsaturated fatty acids decrease plasma homocysteine: A meta-analysis of randomized, placebo-controlled trials. Nutrition 2011, 27, 863–867. [Google Scholar] [CrossRef] [PubMed]
- Oudman, E.; Wijnia, J.W.; Oey, M.J.; van Dam, M.J.; Postma, A. Preventing Wernicke’s encephalopathy in anorexia nervosa: A systematic review. Psychiatry Clin. Neurosci. 2018, 72, 774–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franques, J.; Chiche, L.; Mathis, S. Sensory Neuronopathy Revealing Severe Vitamin B12 Deficiency in a Patient with Anorexia Nervosa: An Often-Forgotten Reversible Cause. Nutrients 2017, 9, 281. [Google Scholar] [CrossRef]
- Hanachi, M.; Dicembre, M.; Rives-Lange, C.; Ropers, J.; Bemer, P.; Zazzo, J.F.; Poupon, J.; Dauvergne, A.; Melchior, J.C. Micronutrients deficiencies in 374 severely malnourished anorexia nervosa inpatients. Nutrients 2019, 11, 792. [Google Scholar] [CrossRef] [Green Version]
- Gatti, D.; El Ghoch, M.; Viapiana, O.; Ruocco, A.; Chignola, E.; Rossini, M.; Giollo, A.; Idolazzi, L.; Adami, S.; Dalle Grave, R. Strong relationship between vitamin D status and bone mineral density in anorexia nervosa. Bone 2015, 78, 212–215. [Google Scholar] [CrossRef]
- Veronese, N.; Solmi, M.; Rizza, W.; Manzato, E.; Sergi, G.; Santonastaso, P.; Caregaro, L.; Favaro, A.; Correll, C.U. Vitamin D status in anorexia nervosa: A meta-analysis. Int. J. Eat. Disord. 2015, 48, 803–813. [Google Scholar] [CrossRef]
- Tasegian, A.; Curcio, F.; Dalla Ragione, L.; Rossetti, F.; Cataldi, S.; Codini, M.; Ambesi-Impiombato, F.S.; Beccari, T.; Albi, E. Hypovitaminosis D3, Leukopenia, and Human Serotonin Transporter Polymorphism in Anorexia Nervosa and Bulimia Nervosa. Mediat. Inflamm. 2016, 2016, 8046479. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.C.; Huang, Y.C.; Huang, W.L. The effect of vitamin D supplement on negative emotions: A systematic review and meta-analysis. Depress. Anxiety 2020, 37, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Vellekkatt, F.; Menon, V. Efficacy of Vitamin D supplementation in major depression: A meta-analysis of randomized controlled trials. J. Postgrad. Med. 2019, 65, 74–80. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jeon, S.W.; Lim, W.J.; Oh, K.S.; Shin, D.W.; Cho, S.J.; Park, J.H.; Shin, Y.C. The relationship between serum vitamin D levels, C-reactive protein, and anxiety symptoms. Psychiatry Investig. 2020, 17, 312–319. [Google Scholar] [CrossRef]
- Swinbourne, J.; Hunt, C.; Abbott, M.; Russell, J.; St Clare, T.; Touyz, S. The comorbidity between eating disorders and anxiety disorders: Prevalence in an eating disorder sample and anxiety disorder sample. Aust. N. Z. J. Psychiatry 2012, 46, 118–131. [Google Scholar] [CrossRef]
- Riquin, E.; Raynal, A.; Mattar, L.; Lalanne, C.; Hirot, F.; Huas, C.; Duclos, J.; Berthoz, S.; Godart, N.; EVHAN Group. Is the Severity of the Clinical Expression of Anorexia Nervosa Influenced by an Anxiety, Depressive, or Obsessive-Compulsive Comorbidity Over a Lifetime? Front. Psychiatry 2021, 12, 658416. [Google Scholar] [CrossRef] [PubMed]
- Khera, D.; Sharma, B.; Singh, K. Case Report: Copper deficiency as a cause of neutropenia in a case of coeliac disease. BMJ Case Rep. 2016, 2016, bcr2016214874. [Google Scholar] [CrossRef]
- DM, M. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review. Exp. Biol. Med. (Maywood) 2016, 241, 1316–1322. [Google Scholar] [CrossRef] [Green Version]
- Puchkova, L.V.; Broggini, M.; Polishchuk, E.V.; Ilyechova, E.Y.; Polishchuk, R.S. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Nutrition 2019, 11, 1364. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, B.; Robison, G.; Osborn, J.; Kay, M.; Thompson, P.; Davis, K.; Zakharova, T.; Antipova, O.; Pushkar, Y. On the nature of the Cu-rich aggregates in brain astrocytes. Redox Biol. 2017, 11, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Ziomber, A.; Surowka, A.D.; Antkiewicz-Michaluk, L.; Romanska, I.; Wrobel, P.; Szczerbowska-Boruchowska, M. Combined brain Fe, Cu, Zn and neurometabolite analysis-a new methodology for unraveling the efficacy of transcranial direct current stimulation (tDCS) in appetite control. Metallomics 2018, 10, 397–405. [Google Scholar] [CrossRef]
- Nowak, G. Zinc, future mono/adjunctive therapy for depression: Mechanisms of antidepressant action. Pharmacol. Rep. 2015, 67, 659–662. [Google Scholar] [CrossRef]
- Doboszewska, U.; Wlaź, P.; Nowak, G.; Radziwoń-Zaleska, M.; Cui, R.; Młyniec, K. Zinc in the Monoaminergic Theory of Depression: Its Relationship to Neural Plasticity. Neural Plast. 2017, 2017, 3682752. [Google Scholar] [CrossRef]
- Prakash, A.; Bharti, K.; Majeed, A.B.A. Zinc: Indications in brain disorders. Fundam. Clin. Pharmacol. 2015, 29, 131–149. [Google Scholar] [CrossRef]
- Petrilli, M.A.; Kranz, T.M.; Kleinhaus, K.; Joe, P.; Getz, M.; Johnson, P.; Chao, M.V.; Malaspina, D. The emerging role for zinc in depression and psychosis. Front. Pharmacol. 2017, 8, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a gatekeeper of immune function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Sakae, K.; Suka, M.; Yanagisawa, H. Polaprezinc (Zinc-l-Carnosine Complex) as an Add-on Therapy for Binge Eating Disorder and Bulimia Nervosa, and the Possible Involvement of Zinc Deficiency in These Conditions: A Pilot Study. J. Clin. Psychopharmacol. 2020, 40, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, H.; Bikdeli, B.; Wessler, J.; Gupta, A.; Jacoby, D.L. Zinc Deficiency as a Reversible Cause of Heart Failure. Tex. Hear. Inst. J. 2020, 47, 152. [Google Scholar] [CrossRef]
- Portbury, S.D.; Adlard, P.A. Zinc Signal in Brain Diseases. Int. J. Mol. Sci. 2017, 18, 2506. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, B.; Kubera, M.; Nowak, G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Lang, U.E.; Beglinger, C.; Schweinfurth, N.; Walter, M.; Borgwardt, S. Nutritional aspects of depression. Cell. Physiol. Biochem. 2015, 37, 1029–1043. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Um, P.; Dickerman, B.A.; Liu, J. Zinc, magnesium, selenium and depression: A review of the evidence, potential mechanisms and implications. Nutrients 2018, 10, 584. [Google Scholar] [CrossRef] [Green Version]
- Zepf, F.D.; Sungurtekin, I.; Glass, F.; Elstrodt, L.; Peetz, D.; Hintereder, G.; Kratzsch, J.; Biskup, C.S.; Poustka, F.; Wöckel, L. Differences in zinc status and the leptin axis in anorexic and recovered adolescents and young adults: A pilot study. Food Nutr. Res. 2012, 56, 10941. [Google Scholar] [CrossRef] [Green Version]
- Brandys, M.K.; Kas, M.J.H.; Van Elburg, A.A.; Campbell, I.C.; Adan, R.A.H. A meta-analysis of circulating BDNF concentrations in anorexia nervosa. World J. Biol. Psychiatry 2011, 12, 444–454. [Google Scholar] [CrossRef]
- Pillai, A.; Bruno, D.; Sarreal, A.S.; Hernando, R.T.; Saint-Louis, L.A.; Nierenberg, J.; Ginsberg, S.D.; Pomara, N.; Mehta, P.D.; Zetterberg, H.; et al. Plasma BDNF levels vary in relation to body weight in females. PLoS ONE 2012, 7, e39358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinc Is the Most Important Trace Element. Available online: https://pubmed.ncbi.nlm.nih.gov/25096007/ (accessed on 16 August 2021).
- Abdollahi, S.; Toupchian, O.; Jayedi, A.; Meyre, D.; Tam, V.; Soltani, S. Zinc Supplementation and Body Weight: A Systematic Review and Dose-Response Meta-analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, C.L.; Gritzner, S. How does zinc supplementation benefit anorexia nervosa? Eat. Weight Disord. 2006, 11, e109–e111. [Google Scholar] [CrossRef]
- Hermens, D.F.; Simcock, G.; Dutton, M.; Bouças, A.P.; Can, A.T.; Lilley, C.; Lagopoulos, J. Anorexia nervosa, zinc deficiency and the glutamate system: The ketamine option. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 101, 109921. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, M.; Hashimoto, K.; Schmidt, U.; Tchanturia, K.; Campbell, I.C.; Collier, D.A.; Iyo, M.; Treasure, J. Serum glutamine, set-shifting ability and anorexia nervosa. Ann. Gen. Psychiatry 2010, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ernst, J.; Böker, H.; Hättenschwiler, J.; Schüpbach, D.; Northoff, G.; Seifritz, E.; Grimm, S. The association of interoceptive awareness and alexithymia with neurotransmitter concentrations in insula and anterior cingulate. Soc. Cogn. Affect. Neurosci. 2014, 9, 857–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naaijen, J.; Zwiers, M.P.; Amiri, H.; Williams, S.C.R.; Durston, S.; Oranje, B.; Brandeis, D.; Boecker-Schlier, R.; Ruf, M.; Wolf, I.; et al. Fronto-striatal glutamate in autism spectrum disorder and obsessive compulsive disorder. Neuropsychopharmacology 2017, 42, 2456–2465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mithieux, G. Gut Microbiota and Host Metabolism: What Relationship. Neuroendocrinology 2018, 106, 352–356. [Google Scholar] [CrossRef]
- Slyepchenko, A.; Maes, M.; Jacka, F.N.; Köhler, C.A.; Barichello, T.; McIntyre, R.S.; Berk, M.; Grande, I.; Foster, J.A.; Vieta, E.; et al. Gut Microbiota, Bacterial Translocation, and Interactions with Diet: Pathophysiological Links between Major Depressive Disorder and Non-Communicable Medical Comorbidities. Psychother. Psychosom. 2016, 86, 31–46. [Google Scholar] [CrossRef] [Green Version]
- Van de Wouw, M.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Microbiota-gut-brain axis: Modulator of host metabolism and appetite. J. Nutr. 2017, 147, 727–745. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Kosciolek, T.; Eyler, L.T.; Knight, R.; Jeste, D.V. Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. J. Psychiatr. Res. 2018, 99, 50–61. [Google Scholar] [CrossRef]
- Morita, C.; Tsuji, H.; Hata, T.; Gondo, M.; Takakura, S.; Kawai, K.; Yoshihara, K.; Ogata, K.; Nomoto, K.; Miyazaki, K.; et al. Gut Dysbiosis in Patients with Anorexia Nervosa. PLoS ONE 2015, 10, e0145274. [Google Scholar] [CrossRef] [Green Version]
- Mack, I.; Cuntz, U.; Grmer, C.; Niedermaier, S.; Pohl, C.; Schwiertz, A.; Zimmermann, K.; Zipfel, S.; Enck, P.; Penders, J. Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci. Rep. 2016, 6, 26752. [Google Scholar] [CrossRef] [Green Version]
- Borgo, F.; Riva, A.; Benetti, A.; Casiraghi, M.C.; Bertelli, S.; Garbossa, S.; Anselmetti, S.; Scarone, S.; Pontiroli, A.E.; Morace, G.; et al. Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites and psychological tests. PLoS ONE 2017, 12, e0179739. [Google Scholar] [CrossRef] [PubMed]
- Million, M.; Angelakis, E.; Maraninchi, M.; Henry, M.; Giorgi, R.; Valero, R.; Vialettes, B.; Raoult, D. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int. J. Obes. 2013, 37, 1460–1466. [Google Scholar] [CrossRef] [Green Version]
- Hanachi, M.; Manichanh, C.; Schoenenberger, A.; Pascal, V.; Levenez, F.; Cournède, N.; Doré, J.; Melchior, J.C. Altered host-gut microbes symbiosis in severely malnourished anorexia nervosa (AN) patients undergoing enteral nutrition: An explicative factor of functional intestinal disorders? Clin. Nutr. 2019, 38, 2304–2310. [Google Scholar] [CrossRef]
- Mack, I.; Penders, J.; Cook, J.; Dugmore, J.; Mazurak, N.; Enck, P. Is the Impact of Starvation on the Gut Microbiota Specific or Unspecific to Anorexia Nervosa? A Narrative Review Based on a Systematic Literature Search. Curr. Neuropharmacol. 2018, 16, 1131. [Google Scholar] [CrossRef]
- Liu, R.T.; Walsh, R.F.L.; Sheehan, A.E. Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci. Biobehav. Rev. 2019, 102, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Volokh, O.; Klimenko, N.; Berezhnaya, Y.; Tyakht, A.; Nesterova, P.; Popenko, A.; Alexeev, D. Human Gut Microbiome Response Induced by Fermented Dairy Product Intake in Healthy Volunteers. Nutrients 2019, 11, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocks, T.; West, M.; Hockey, M.; Aslam, H.; Lane, M.; Loughman, A.; Jacka, F.N.; Ruusunen, A. Possible use of fermented foods in rehabilitation of anorexia nervosa: The gut microbiota as a modulator. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 107, 110201. [Google Scholar] [CrossRef]
- Kim, B.; Hong, V.M.; Yang, J.; Hyun, H.; Im, J.J.; Hwang, J.; Yoon, S.; Kim, J.E. A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function. Prev. Nutr. Food Sci. 2016, 21, 297. [Google Scholar] [CrossRef] [Green Version]
- Trombetti, A.; Carrier, E.; Perroud, A.; Lang, F.; Herrmann, F.R.; Rizzoli, R. Influence of a fermented protein-fortified dairy product on serum insulin-like growth factor-I in women with anorexia nervosa: A randomized controlled trial. Clin. Nutr. 2016, 35, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.; et al. Dietary intervention impact on gut microbial gene richness. Nature 2013, 500, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [Green Version]
- Duranti, S.; Ruiz, L.; Lugli, G.A.; Tames, H.; Milani, C.; Mancabelli, L.; Mancino, W.; Longhi, G.; Carnevali, L.; Sgoifo, A.; et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci. Rep. 2020, 10, 14112. [Google Scholar] [CrossRef] [PubMed]
- Chudzik, A.; Orzyłowska, A.; Rola, R.; Stanisz, G.J. Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain–Gut–Microbiome Axis. Biomolecules 2021, 11, 1000. [Google Scholar] [CrossRef]
- Pandey, K.R.; Naik, S.R.; Vakil, B.V. Probiotics, prebiotics and synbiotics—A review. J. Food Sci. Technol. 2015, 52, 7577. [Google Scholar] [CrossRef]
- Ruusunen, A.; Rocks, T.; Jacka, F.; Loughman, A. The gut microbiome in anorexia nervosa: Relevance for nutritional rehabilitation. Psychopharmacology 2019, 236, 1545–1558. [Google Scholar] [CrossRef] [Green Version]
- Kells, M.; Kelly-Weeder, S. Nasogastric Tube Feeding for Individuals With Anorexia Nervosa: An Integrative Review. J. Am. Psychiatr. Nurses Assoc. 2016, 22, 449–468. [Google Scholar] [CrossRef]
- Berntson, L.; Agback, P.; Dicksved, J. Changes in fecal microbiota and metabolomics in a child with juvenile idiopathic arthritis (JIA) responding to two treatment periods with exclusive enteral nutrition (EEN). Clin. Rheumatol. 2016, 35, 1501–1506. [Google Scholar] [CrossRef]
- Krezalek, M.A.; Yeh, A.; Alverdy, J.C.; Morowitz, M. Influence of nutrition therapy on the intestinal microbiome. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Pierre, J.F. Gastrointestinal immune and microbiome changes during parenteral nutrition. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G246–G256. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jowik, K.; Tyszkiewicz-Nwafor, M.; Słopień, A. Anorexia Nervosa—What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature. Nutrients 2021, 13, 3819. https://doi.org/10.3390/nu13113819
Jowik K, Tyszkiewicz-Nwafor M, Słopień A. Anorexia Nervosa—What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature. Nutrients. 2021; 13(11):3819. https://doi.org/10.3390/nu13113819
Chicago/Turabian StyleJowik, Katarzyna, Marta Tyszkiewicz-Nwafor, and Agnieszka Słopień. 2021. "Anorexia Nervosa—What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature" Nutrients 13, no. 11: 3819. https://doi.org/10.3390/nu13113819
APA StyleJowik, K., Tyszkiewicz-Nwafor, M., & Słopień, A. (2021). Anorexia Nervosa—What Has Changed in the State of Knowledge about Nutritional Rehabilitation for Patients over the Past 10 Years? A Review of Literature. Nutrients, 13(11), 3819. https://doi.org/10.3390/nu13113819