Etiology of Anemia in Older Mexican Adults: The Role of Hepcidin, Vitamin A and Vitamin D
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Data Collection
2.2. Laboratory Analysis
2.3. Definition of Variables
2.4. Etiology of Anemia
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Role of VAD
4.2. Role of VDD
4.3. Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wouters, H.J.C.M.; van der Klauw, M.M.; de Witte, T.; Stauder, R.; Swinkels, D.W.; Wolffenbuttel, B.H.R.; Huls, G. Association of anemia with health-related quality of life and survival: A large population-based cohort study. Haematologica 2019, 104, 468. [Google Scholar] [CrossRef]
- De la Cruz-Góngora, V.; Rivera-Pasquel, M.; Shamah-Levy, T.; Villalpando-Hernández, S. Iron deficiency is not the main contributor to anemia in older Mexican adults: Results from the National Health and Nutrition Survey 2018–19. Salud Publica Mex. 2021, 63, 412–421. [Google Scholar] [CrossRef]
- Stauder, R.; Valent, P.; Theurl, I. Anemia at older age: Etiologies, clinical implications, and management. Blood 2018, 131, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Berliner, N. Anemia in the elderly. Trans. Am. Clin. Climatol. Assoc. 2013, 124, 230–237. [Google Scholar]
- Langer, A.L.; Ginzburg, Y.Z. Role of hepcidin-ferroportin axis in the pathophysiology, diagnosis, and treatment in anemia of chronic inflammation. Hemodial. Int. 2017, 21, 37–46. [Google Scholar] [CrossRef]
- Mora, J.R.; Iwata, M.; Von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Bacchetta, J.; Zaritsky, J.J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Zavala, K.; Nayak, A.; Wesseling-Perry, K.; Westerman, M.; Hollis, B.W.; et al. Suppression of iron-regulatory hepcidin by vitamin D. J. Am. Soc. Nephrol. 2014, 25, 564–572. [Google Scholar] [CrossRef] [Green Version]
- da Cunha, M.d.S.B.; Campos Hankins, N.A.; Arruda, S.F. Effect of vitamin A supplementation on iron status in humans: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2018, 59, 1767–1781. [Google Scholar] [CrossRef] [PubMed]
- Ernst, J.B.; Zittermann, A.; Pilz, S.; Kleber, M.E.; Scharnagl, H.; Brandenburg, V.M.; König, W.; Grammer, T.B.; März, W. Independent associations of vitamin D metabolites with anemia in patients referred to coronary angiography: The LURIC study. Eur. J. Nutr. 2017, 56, 1017–1024. [Google Scholar] [CrossRef]
- Perlstein, T.S.; Pande, R.; Berliner, N.; Vanasse, G.J. Prevalence of 25-hydroxyvitamin D deficiency in subgroups of elderly persons with anemia: Association with anemia of inflammation. Blood 2011, 117, 2800–2806. [Google Scholar] [CrossRef] [PubMed]
- Citelli, M.; Bittencourt, L.L.; Da Silva, S.V.; Pierucci, A.P.T.; Pedrosa, C. Vitamin a modulates the expression of genes involved in iron bioavailability. Biol. Trace Elem. Res. 2012, 149, 64–70. [Google Scholar] [CrossRef]
- Arruda, S.F.; Siqueira, E.M.d.A.; de Valência, F.F. Vitamin A deficiency increases hepcidin expression and oxidative stress in rat. Nutrition 2009, 25, 472–478. [Google Scholar] [CrossRef]
- WHO. WHO: Global Database on Body Mass Index; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Katz, S. Assessing self-maintenance: Activities of daily living, mobility, and instrumental activities of daily living. J. Am. Geriatr. Soc. 1983, 31, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Lawton, M.P.; Brody, E.M. Assessment of Older People: Self-Maintaining and Instrumental Activities of Daily Living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Holick, M.F. Why the IOM recommendations for vitamin D are deficient. J. Bone Miner. Res. 2011, 26, 455–457. [Google Scholar] [CrossRef]
- WHO. WHO Serum Retinol Concentrations for Determining the Prevalence of Vitamin A Deficiency in Populations; WHO: Geneva, Switzerland, 2011; pp. 3–7. [Google Scholar]
- Chan, M.; WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; WHO: Geneva, Switzerland, 2011; pp. 1–6. [Google Scholar]
- KDIGO; Society International Nephrology. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theurl, I.; Aigner, E.; Theurl, M.; Nairz, M.; Seifert, M.; Schroll, A.; Sonnweber, T.; Eberwein, L.; Witcher, D.R.; Murphy, A.T.; et al. Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: Diagnostic and therapeutic implications. Blood 2009, 113, 5277–5286. [Google Scholar] [CrossRef] [Green Version]
- Fedosov, S.N.; Brito, A.; Miller, J.W.; Green, R.; Allen, L.H. Combined indicator of vitamin B12 status: Modification for missing biomarkers and folate status and recommendations for revised cut-points. Clin. Chem. Lab. Med. 2015, 53, 1215–1225. [Google Scholar] [CrossRef]
- Yetley, E.A.; Pfeiffer, C.M.; Phinney, K.W.; Fazili, Z.; Lacher, D.A.; Bailey, R.L.; Blackmore, S.; Bock, J.L.; Brody, L.C.; Carmel, R.; et al. Biomarkers of folate status in NHANES: A roundtable summary. Am. J. Clin. Nutr. 2011, 94, 303S–312S. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M. Prevalence of anemia in persons 65 years and older in the United States: Evidence for a high rate of unexplained anemia. Blood 2004, 104, 2263–2268. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, L.; Semba, R.D.; Guralnik, J.M.; Ershler, W.B.; Bandinelli, S.; Patel, K.V.; Sun, K.; Woodman, R.C.; Andrews, N.C.; Cotter, R.J.; et al. Proinflammatory state, hepcidin, and anemia in older persons. Blood 2010, 115, 3810–3816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colchero, M.A.; Salgado, J.C.; Unar-Munguía, M.; Hernández-Ávila, M.; Rivera-Dommarco, J.A. Price elasticity of the demand for sugar sweetened beverages and soft drinks in Mexico. Econ. Hum. Biol. 2015, 19, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Waalen, J.; von Löhneysen, K.; Lee, P.; Xu, X.; Friedman, J.S. Erythropoietin, GDF15, IL6, hepcidin and testosterone levels in a large cohort of elderly individuals with anaemia of known and unknown cause. Eur. J. Haematol. 2011, 87, 107–116. [Google Scholar] [CrossRef] [PubMed]
- den Elzen, W.P.J.; de Craen, A.J.M.; Wiegerinck, E.T.; Westendorp, R.G.J.; Swinkels, D.W.; Gussekloo, J. Plasma hepcidin levels and anemia in old age. The Leiden 85-plus study. Haematologica 2013, 98, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, I.S.; Scazufca, M.; Lotufo, P.A.; Menezes, P.R.; Benseñor, I.M. Causes of recurrent or persistent anemia in older people from the results of the São Paulo Ageing & Health Study. Geriatr. Gerontol. Int. 2013, 13, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Stauder, R.; Bach, V.; Schruckmayr, G.; Sam, I.; Kemmler, G. Prevalence and possible causes of anemia in the elderly: A cross-sectional analysis of a large European university hospital cohort. Clin. Interv. Aging 2014, 9, 1187. [Google Scholar] [CrossRef] [Green Version]
- Tettamanti, M.; Lucca, U.; Gandini, F.; Recchia, A.; Mosconi, P.; Apolone, G.; Nobili, A.; Tallone, M.V.; Detoma, P.; Giacomin, A.; et al. Prevalence, incidence and types of mild anemia in the elderly: The “Health and Anemia” population-based study. Haematologica 2010, 95, 1849–1856. [Google Scholar] [CrossRef] [Green Version]
- Artz, A.S.; Thirman, M.J. Unexplained anemia predominates despite an intensive evaluation in a racially diverse cohort of older adults from a referral anemia clinic. J. Gerontol.—Ser. A Biol. Sci. Med. Sci. 2011, 66, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Goodnough, L.T. Anemia of chronic disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, V.E. Anemia in the Elderly Population. Trans. Am. Clin. Climatol. Assoc. 2013, 3, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Basto-Abreu, A.; Barrientos-Gutiérrez, T.; Rojas-Martínez, R.; Aguilar-Salinas, C.A.; López-Olmedo, N.; De la Cruz-Góngora, V.; Rivera-Dommarco, J.; Shamah-Levy, T.; Romero-Martínez, M.; Barquera, S.; et al. Prevalencia de diabetes y descontrol glucemico en Mexico: Resultados de la Ensanut 2016. Salud Publica Mex. 2020, 62, 50–59. [Google Scholar] [CrossRef]
- Gómez-Dantés, H.; Fullman, N.; Lamadrid-Figueroa, H.; Cahuana-Hurtado, L.; Darney, B.; Avila-Burgos, L.; Correa-Rotter, R.; Rivera, J.A.; Barquera, S.; González-Pier, E.; et al. Dissonant health transition in the states of Mexico, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2016, 388, 2386–2402. [Google Scholar] [CrossRef]
- Hamano, H.; Ikeda, Y.; Watanabe, H.; Horinouchi, Y.; Izawa-Ishizawa, Y.; Imanishi, M.; Zamami, Y.; Takechi, K.; Miyamoto, L.; Ishizawa, K.; et al. The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol. Dial. Transplant. 2017, 33, 586–597. [Google Scholar] [CrossRef]
- Xu, X.; Hall, J.; Byles, J.; Shi, Z. Dietary pattern, serum magnesium, ferritin, C-reactive protein and anaemia among older people. Clin. Nutr. 2017, 36, 444–451. [Google Scholar] [CrossRef]
- WHO. Iron Deficiency Anaemia: Assessment, Prevention, and Control. A Guide for Programme Managers; World Health Organization: Geneva, Switzerland, 2001; pp. 47–62. [Google Scholar]
- Brito, A.; Mujica-Coopman, M.F.; Olivares, M.; Lopez de Romana, D.; Cori, H.; Allen, L.H. Folate and Vitamin B12 Status in Latin America and the Caribbean: An Update. Food Nutr. Bull. 2015, 36, S109–S118. [Google Scholar] [CrossRef]
- Makipour, S.; Kanapuru, B.; Ershler, W.B. Unexplained Anemia in the Elderly. Semin. Hematol. 2008, 45, 250–254. [Google Scholar] [CrossRef] [Green Version]
- Artz, A.S.; Xue, Q.L.; Wickrema, A.; Hesdorffer, C.; Ferrucci, L.; Langdon, J.M.; Walston, J.D.; Roy, C.N. Unexplained anaemia in the elderly is characterised by features of low grade inflammation. Br. J. Haematol. 2014, 167, 286–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soysal, P.; Stubbs, B.; Lucato, P.; Luchini, C.; Solmi, M.; Peluso, R.; Sergi, G.; Isik, A.T.; Manzato, E.; Maggi, S.; et al. Inflammation and frailty in the elderly: A systematic review and meta-analysis. Ageing Res. Rev. 2016, 31, 1–8. [Google Scholar] [CrossRef]
- Polito, A.; Intorre, F.; Andriollo-Sanchez, M.; Azzini, E.; Raguzzini, A.; Meunier, N.; Ducros, V.; O’Connor, J.M.; Coudray, C.; Roussel, A.M.; et al. Estimation of intake and status of vitamin A, vitamin E and folate in older European adults: The ZENITH. Eur. J. Clin. Nutr. 2005, 59, S42–S47. [Google Scholar] [CrossRef] [Green Version]
- Min, K.-B.; Min, J.-Y. Relation of serum vitamin A levels to all-cause and cause-specific mortality among older adults in the NHANES III population. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1197–1203. [Google Scholar] [CrossRef]
- Kambe, T.; Tada-kambe, J.; Kuge, Y.; Yamaguchi-iwai, Y.; Nagao, M.; Sasaki, R. Retinoic acid stimulates erythropoietin gene transcription in embryonal carcinoma cells through the direct repeat of a steroid/thyroid hormone receptor response element half-site in the hypoxia-response enhancer. Blood J. Am. Soc. Hematol. 2011, 96, 3265–3271. [Google Scholar]
- Semba, R.D.; Bloem, M.W. The anemia of vitamin A deficiency: Epidemiology and pathogenesis. Eur. J. Clin. Nutr. 2002, 56, 271–281. [Google Scholar] [CrossRef] [Green Version]
- De La Cruz-Góngora, V.; Salinas-Rodríguez, A.; Villalpando, S.; Flores-Aldana, M. Serum retinol but not 25(OH)D status is associated with serum hepcidin levels in older Mexican adults. Nutrients 2019, 11, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, D.; Caccamo, D.; Lucisano, S.; Buemi, M.; Sebekova, K.; Teta, D.; De Nicola, L. Interplay of Vitamin D, erythropoiesis, and the renin-angiotensin system. Biomed Res. Int. 2015, 2015, 145828. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.M.; Tangpricha, V. Vitamin D and anemia: Insights into an emerging association. Curr. Opin. Endocrinol. Diabetes Obes. 2015, 22, 432–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.M.; Alvarez, J.A.; Kearns, M.D.; Hao, L.; Sloan, J.H.; Konrad, R.J.; Ziegler, T.R.; Zughaier, S.M.; Tangpricha, V. High-dose vitamin D3 reduces circulating hepcidin concentrations: A pilot, randomized, double-blind, placebo-controlled trial in healthy adults. Clin. Nutr. 2017, 36, 980–985. [Google Scholar] [CrossRef]
- Arabi, S.M.; Ranjbar, G.; Bahrami, L.S.; Vafa, M.; Norouzy, A. The effect of vitamin D supplementation on hemoglobin concentration: A systematic review and meta-analysis. Nutr. J. 2020, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, V.S.; Crozier, S.R.; D’angelo, S.; Prentice, A.; Cooper, C.; Harvey, N.C.; Jones, K.S.; Arden, N.K.; Bishop, N.J.; Carr, A.; et al. The effect of vitamin D supplementation on hepcidin, iron status, and inflammation in pregnant women in the United Kingdom. Nutrients 2019, 11, 190. [Google Scholar] [CrossRef] [Green Version]
- Hirani, V.; Cumming, R.G.; Blyth, F.; Naganathan, V.; Le Couteur, D.G.; Waite, L.M.; Handelsman, D.J.; Seibel, M.J. Cross-sectional and longitudinal associations between the active vitamin D metabolite (1,25 dihydroxyvitamin D) and haemoglobin levels in older Australian men: The Concord Health and Ageing in Men Project. Age 2015, 37, 9749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Total (%) | Non-Anemia Group n = 516 (%) | Anemia Group n = 291 (%) | p Value * |
---|---|---|---|---|
Sex (female) | 60.9 | 60.5 | 61.3 | 0.821 |
Age group, years | ||||
60–69 | 49.2 | 54.3 | 40.1 | |
70–79 | 34.5 | 33.9 | 35.5 | |
80+ | 16.3 | 11.8 | 24.4 | <0.001 |
Indigenous background | 33.7 | 30.4 | 39.7 | 0.008 |
Household wealth index | ||||
Tertile 1 | 33.5 | 29.9 | 40.1 | |
Tertile 2 | 34.8 | 36.1 | 32.3 | |
Tertile 3 | 31.7 | 34 | 27.7 | 0.014 |
Body mass index, range | ||||
Underweight | 0.9 | 0.2 | 2.2 | |
Normal | 21.8 | 17.2 | 30.1 | |
Overweight | 38 | 40.1 | 34.1 | |
Obese | 39.4 | 42.5 | 33.7 | <0.001 |
CRP > 5 mg/L | 33.7 | 31 | 38.7 | 0.029 |
AGP > 1 g/L | 7.6 | 5.2 | 11.8 | <0.001 |
IL-6 > 10 pg/dL | 10.7 | 7.6 | 16.4 | <0.001 |
Functional disability | ||||
ADL | 29.5 | 24.2 | 39 | <0.001 |
IADL | 42.3 | 36.6 | 52.6 | <0.001 |
Frailty | ||||
Not frail | 39.7 | 44.6 | 31.1 | |
Pre-frail | 47.2 | 45.3 | 50.5 | |
Frail | 13.1 | 10.1 | 18.5 | <0.001 |
Comorbidities as previously diagnosed by physician | ||||
Diabetes | 30.4 | 28.1 | 34.5 | 0.066 |
Hypertension | 49.9 | 49 | 51.6 | 0.508 |
Dyslipidemia | 35.2 | 34.1 | 37.3 | 0.397 |
Renal disease | 12.3 | 12.2 | 12.5 | 0.911 |
Arthritis | 20.4 | 18.4 | 24 | 0.068 |
Cirrhosis | 2.4 | 1.7 | 3.5 | 0.146 |
Cancer | 4.2 | 2.7 | 7.0 | 0.006 |
Pharmaceutical drug consumption (yes) | 74.0 | 71.5 | 78.4 | 0.036 |
NSAID consumption (yes) | 15.8 | 14 | 19.2 | 0.056 |
Current smoker (yes) | 24.8 | 26.7 | 21.3 | 0.089 |
Serum micronutrient deficiency | ||||
B12 deficiency | 9.0 | 8.1 | 10.5 | 0.303 |
Iron deficiency | 5.1 | 4.5 | 6.3 | 0.315 |
Vitamin A deficiency | 3.4 | 1.7 | 6.3 | 0.002 |
Vitamin A deficiency (adj.) ** | 2.6 | 1.5 | 4.5 | 0.008 |
Vitamin D deficiency | 9.7 | 7.75 | 13.2 | 0.018 |
Variable | Frequency (%) |
---|---|
Anemia | 35.7 |
Severity of anemia | |
Mild | 85.9 |
Moderate | 13.8 |
Severe | 0.3 |
Nutritional deficiencies | 7.0 |
ID | 1.1 |
VB12D | 5.6 |
ID + VB12D | 1.1 |
Chronic kidney disease | 29.3 |
Inflammation | 14.6 |
Multiple causes | 3.1 |
Unexplained | 45.0 |
Non-Anemia Group | Chronic Kidney Disease | Iron Deficiency | Inflammation | B12-Deficiency | Multiples Causes | Unknown | |
---|---|---|---|---|---|---|---|
Variable/(n sample) | (516) | (84) | (6) | (42) | (16) | (9) | (130) |
Sex (female) | 60.5 | 59.5 | 50 | 52.4 | 56.3 | 66.7 | 66.2 |
Indigenous background | 30.4 | 35.7 | 0 | 47.6 | 43.8 | 22.2 | 42.3 |
Age group, years | |||||||
60–69 | 54.3 | 34.5 | 50 | 28.6 | 31.3 | 44.4 | 47.7 |
70–79 | 33.9 | 34.5 | 50 | 40.5 | 37.5 | 44.4 | 33.1 |
80+ | 11.8 | 31 | 0 | 31 | 31.3 | 11.1 | 19.2 |
Household wealth index | |||||||
Tertile 1 | 29.9 | 43.9 | 16.7 | 39 | 37.5 | 66.7 | 37.5 |
Tertile 2 | 36.1 | 25.6 | 33.3 | 34.1 | 31.3 | 22.2 | 36.7 |
Tertile 3 | 34 | 30.5 | 50 | 26.8 | 31.3 | 11.1 | 25.8 |
Body mass index, range | |||||||
Normal | 17.4 | 24.4 | 40 | 46.2 | 37.5 | 22.2 | 32.8 |
Overweight/obese | 82.6 | 75.6 | 60 | 53.8 * | 62.5 | 77.8 | 67.2 |
Comorbidities as previously diagnosed by physician | |||||||
Type 2 diabetes | 28.1 | 48.8 * | 0 | 26.2 | 37.5 | 33.3 | 29.2 |
Hypertension | 49 | 64.3 | 66.7 | 35.7 | 50 | 77.8 | 46.2 |
Dyslipidemia | 34.1 | 46.4 | 50 | 16.7 | 25 | 22.2 | 40 |
Cancer | 2.7 | 9.5 * | 0 | 23.8 * | 0 | 22.2 | 0 |
Cirrhosis | 1.7 | 3.6 | 0 | 14.3 * | 0 | 11.1 | 0 |
Renal disease | 12.2 | 39.3 * | 0 | 0 | 0 | 33.3 | 0 |
Arthritis | 18.4 | 25 | 50 | 28.6 | 6.3 | 11.1 | 23.8 |
Alcohol consumption | 31.4 | 19 | 16.7 | 26.2 | 25 | 22.2 | 22.3 |
Current smoker | 26.7 | 20.2 | 33.3 | 19 | 25 | 44.4 | 20 |
Functional disability | |||||||
ALD | 24.2 | 44 * | 16.7 | 57.1 * | 25 | 66.7 | 30.8 |
IALD | 36.6 | 57.1 * | 16.7 | 66.7 * | 50 | 88.9 | 44.6 |
Not frail | 44.6 | 25 | 66.7 | 33.3 | 25 | 11.1 | 34.6 |
Pre-frail | 45.3 | 52.4 | 0 | 38.1 | 56.3 | 33.3 | 56.2 |
Frail | 10.1 | 22.6 * | 33.3 | 28.6 | 18.8 | 55.6 * | 9.2 |
Pharmaceutical drug consumption (yes) | 71.5 | 94 | 66.7 | 61.9 | 75 | 77.8 | 74.6 |
NSAID consumption (yes) | 14 | 19 | 50 | 14.3 | 18.8 | 22.2 | 19.2 |
SAID consumption (yes) | 2.7 | 2.4 | 0 | 2.4 | 6.3 | 11.1 | 0.8 |
Anemia severity | |||||||
Mild | - | 77.1 | 83.3 | 88.1 | 81.3 | 55.6 | 93.8 |
Moderate | - | 22.9 | 16.7 | 11.9 | 12.5 | 44.4 | 6.2 |
Severe | - | 0 | 0 | 0 | 6.3 | 0 | 0 |
Non-Anemia Group | Chronic Kidney Disease | Iron Deficiency | Inflammation | Vitamin B12 Deficiency | Multiple Cause | Unknown Cause | |
---|---|---|---|---|---|---|---|
Variable/(n sample) | (516) | (84) | (6) | (42) | (16) | (9) | (130) |
Vitamin D, range | |||||||
25(OH)D ≥ 75 nmol/L | 50.4 | 41.7 | 66.7 | 52.4 | 31.3 | 44.4 | 47.7 |
25(OH)D 50–74 nmol/L | 41.9 | 42.9 | 0 | 38.1 | 56.3 | 11.1 | 42.3 |
25(OH)D < 50 nmol/L | 7.8 | 15.5 | 33.3 | 9.5 | 12.5 | 44.4 * | 10 |
Retinol ≤ 20 μg/dL | 1.7 | 6 | 0 | 19 * | 6.3 | 0 | 3.1 |
Retinol ≤ 20 μg/dL (adj.) 1 | 1.6 | 4.6 | 0 | 11.4 * | 5.1 | 0 | 2.9 |
Vitamin B12 deficiency | 8.1 | 6 | 50 * | 0 | 100 | 66.7 * | 0 |
Iron deficiency | 4.5 | 7.1 | 100 | 7.1 | 0 | 33.3 * | 0 |
Ferritin < 15 ng/mL | 1.6 | 0 | 33.3 * | 4.8 | 0 | 0 | 0 |
Serum iron < 60 μg/dL | 4.1 | 16.7 * | 50 * | 54.8 * | 18.8 | 44.4 * | 0 |
Ferritin ≥ 350 ng/mL | 7 | 11.9 | 0 | 11.9 | 0 | 33.3 | 3.8 |
CRP, range | |||||||
0–3 mg/L | 49.6 | 44 | 100 | 26.2 | 50 | 33.3 | 53.8 |
3–10 mg/L | 36.8 | 36.9 | 0 | 28.6 | 31.3 | 33.3 | 40 |
>10 mg/L | 13.6 | 19 | 0 | 45.2 * | 18.8 | 33.3 | 6.2 |
AGP (>1 g/L) | 5.2 | 16.7 * | 0 | 28.6 * | 12.5 | 44.4 * | 1.5 |
IL6 (>10 pg/dL) | 7.6 | 17.9 * | 0 | 42.9 * | 12.5 | 33.3 | 6.9 |
Mean of biochemical biomarkers a | |||||||
25(OH)D (ng/mL) | 30.1 (25.3–36.5) | 27.9 (23.6–33.4) | 33.9 (18.2–43.3) | 30.9 (23.7–42.4) | 28.3 (25.7–38.1) | 26.7 (17.9–38.1) | 29.6 (24.2–34.2) |
Retinol (nmol/L) | 45 (36.3–55.6) | 52.8 (42.6–73) * | 39.4 (26.3–49.3) | 37.8 (28.5–44.8) | 42.9 (29.2–47.7) | 31.3 (28.5–33.1) | 45.3 (37.6–52.3) |
Hepcidin (mg/dL) | 13.1 (5.3–27.3) | 15.2 (5.2–35.6) | 16.7 (10.7–32.8) | 23 (5.9–43.1) * | 12.3 (7.2–30.6) | 18.8 (13.2–42.7) | 9.2 (4.2–22) |
CRP (mg/L) | 3 (1.6–6.5) | 3.6 (1.2–8.8) | 1.2 (0.8–1.6) | 7.7 (2.6–37.7) * | 3.1 (0.9–7.6) | 6.4 (2.1–15.5) | 2.8 (1.6–6.4) |
AGP (g/L) | 0.5 (0.4–0.7) | 0.6 (0.5–0.8) | 0.6 (0.5–0.7) | 0.7 (0.4–1.1) * | 0.6 (0.4–0.8) | 0.9 (0.8–1.2) * | 0.6 (0.4–0.7) |
IL6 (pg/mL) | 2.5 (1.4–4.5) | 4.5 (2.6–8) * | 2.3 (0.2–3.7) | 5.7 (2.3–21.4) * | 3.8 (1.7–5.2) | 8.8 (7.8–18.4) * | 2.6 (1.6–4.6) |
Iron (μg/dL) | 100.5 (83.9–123.6) | 79.8 (65.3–109.7) * | 72 (53.4–88.9) | 58.8 (48–86.1) * | 88.3 (63.2–111.7) | 88.7 (55.6–108) | 99.2 (79.3–129) |
Erythropoietin (miu/mL) | 10 (7.8–13.4) | 11.1 (8.2–16.1) | 18.6 (15.1–28.5) | 12.3 (8.3–17.5) | 12.9 (9.5–16.8) | 10.4 (7.1–14.3) | 10.5 (7.4–13.4) |
Ferritin (ng/mL) | 120.8 (75.7–198.6) | 122.1 (77.7–203.1) | 54.5 (13.1–84.6) | 121.7 (44.5–184.2) | 96.3 (72.7–129.6) | 244.8 (145.3–355.6) * | 118.8 (74.7–171.5) |
Pharmaceutical drugs consumed, number b | 3.3 ± 2.3 | 4.3 ± 2.7 * | 4.8 ± 3.6 | 4 ± 3.2 | 3.6 ± 2.1 | 4.4 ± 3.2 | 3.7 ± 2.4 |
Chronic comorbidities, number b | 2 ± 1.6 | 3.1 ± 1.7 * | 2.5 ± 0.8 | 2.1 ± 2 | 1.8 ± 1 | 3.1 ± 1.7 | 2 ± 1.7 |
Hemoglobin (g/dL) b | 13.7 ± 1.2 | 10.9 ± 1.1 | 11 ± 1.3 | 11.2 ± 1.1 | 11 ± 1.7 | 10.2 ± 1.2 | 11.3 ± 0.9 |
Chronic Kidney Disease | Nutritional | Inflammation | Multiple Cause | Unknown Cause | |
---|---|---|---|---|---|
Variables * | OR (CI95%) | OR (CI95%) | OR (CI95%) | OR (CI95%) | OR (CI95%) |
Hepcidin, ng/mL | 1.01 (1.01, 1.01) | 1.01 (1.00, 1.02) | 1.01 (1.00, 1.02) | 1.01 (0.99, 1.03) | 0.99 (0.97, 1.01) |
VA deficiency | 2.26 (0.95, 5.41) | 2.44 (0.02, 300) | 3.20 (2.31, 4.44) | 0 (0, 0) | 1.35 (0.31, 5.81) |
VD deficiency | 1.40 (0.47, 4.20) | 1.80 (1.04, 3.1) | 0.86 (0.07, 9.96) | 5.76 (4.78, 6.93) | 1.11 (0.81, 1.53) |
Log IL-6 | 1.29 (1.17, 1.43) | 0.97 (0.72, 1.32) | 1.91 (1.30, 2.82) | 3.68 (1.45, 9.35) | 1.08 (1.04, 1.11) |
Frailty | |||||
Pre-frail | 1.33 (0.89, 1.97) | 0.95 (0.53, 1.68) | 0.81 (0.09, 7.59) | 1.02 (0.83, 1.25) | 1.39 (1.07, 1.82) |
Frail | 1.51 (0.26, 8.64) | 1.51 (0.78, 2.93) | 1.15 (0.03, 47.32) | 5.76 (5.39, 6.17) | 0.83 (0.78, 0.88) |
Overweight/obese | 0.99 (0.81, 1.22) | 0.36 (0.08, 1.68) | 0.44 (0.15, 1.29) | 1.94 (0.55, 6.87) | 0.42 (0.25, 0.72) |
Age | 1.08 (1.06, 1.09) | 1.02 (0.93, 1.13) | 1.05 (1.00, 1.10) | 1.03 (0.9, 1.18) | 1.02 (1.01, 1.02) |
Sex | 0.82 (0.73, 0.91) | 0.66 (0.08, 5.22) | 0.88 (0.51, 1.53) | 0.55 (0.11, 2.63) | 1.26 (1.05, 1.51) |
Indigenous background | 0.83 (0.6, 1.14) | 0.98 (0.71, 1.36) | 1.48 (1.13, 1.95) | 0.48 (0.16, 1.46) | 1.47 (1.22, 1.77) |
Household wealth index, tertile | |||||
2 | 0.47 (0.22, 0.99) | 0.86 (0.64, 1.14) | 1.26 (0.55, 2.9) | 0.15 (0.08, 0.26) | 0.93 (0.57, 1.51) |
3 | 0.72 (0.58, 0.89) | 1.05 (0.19, 5.76) | 1.41 (1.23, 1.62) | 0.08 (0, 2.43) | 0.82 (0.44, 1.53) |
NSAID consumption | 1.85 (1.06, 3.24) | 3.24 (0.72, 14.49) | 1.19 (1.16, 1.22) | 1.38 (0.37, 5.17) | 1.6 (1.17, 2.2) |
Type 2 diabetes | 2.87 (1.16, 7.11) | 1.16 (0.65, 2.09) | 0.72 (0.16, 3.24) | 0.99 (0.63, 1.56) | 1.1 (0.32, 3.82) |
Intercept | 0 (0, 0) | 0.01 (0, 381.11) | 0 (0, 0) | 0 (0, 17.35) | 0.11 (0.09, 0.12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Cruz-Góngora, V.; Salinas-Rodríguez, A.; Flores-Aldana, M.; Villalpando, S. Etiology of Anemia in Older Mexican Adults: The Role of Hepcidin, Vitamin A and Vitamin D. Nutrients 2021, 13, 3814. https://doi.org/10.3390/nu13113814
De la Cruz-Góngora V, Salinas-Rodríguez A, Flores-Aldana M, Villalpando S. Etiology of Anemia in Older Mexican Adults: The Role of Hepcidin, Vitamin A and Vitamin D. Nutrients. 2021; 13(11):3814. https://doi.org/10.3390/nu13113814
Chicago/Turabian StyleDe la Cruz-Góngora, Vanessa, Aarón Salinas-Rodríguez, Mario Flores-Aldana, and Salvador Villalpando. 2021. "Etiology of Anemia in Older Mexican Adults: The Role of Hepcidin, Vitamin A and Vitamin D" Nutrients 13, no. 11: 3814. https://doi.org/10.3390/nu13113814
APA StyleDe la Cruz-Góngora, V., Salinas-Rodríguez, A., Flores-Aldana, M., & Villalpando, S. (2021). Etiology of Anemia in Older Mexican Adults: The Role of Hepcidin, Vitamin A and Vitamin D. Nutrients, 13(11), 3814. https://doi.org/10.3390/nu13113814