Measuring Skin Carotenoids Using Reflection Spectroscopy in a Low-Income School Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nutrition Knowledge
2.2. Anthropometrics
2.3. Skin Carotenoids
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stierman, B.; Ogden, C.L.; Yanovski, J.; Martin, C.B.; Sarafrazi, N.; Hales, C.M. Changes in adiposity among children and adolescents in the United States, 1999–2006 to 2011–2018. Am. J. Clin. Nutr. 2021, 114, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Rehm, C.D.; Onopa, J.; Mozaffarian, D. Trends in Diet Quality Among Youth in the United States, 1999–2016. JAMA 2020, 323, 1161–1174. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Okorie, C.; Qi, X.; Locke, J.; Rehman, S. Childhood and Adolescent Obesity in the United States: A Public Health Concern. Glob. Pediatr. Health 2019, 6, 2333794x19891305. [Google Scholar] [CrossRef] [Green Version]
- Thomson, J.L.; Tussing-Humphreys, L.M.; Goodman, M.; Landry, A. Diet quality in a nationally representative sample of American children by sociodemographic characteristics. Am. J. Clin. Nutr. 2019, 109, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Wambogo, E.A.; Ansai, N.; Ahulwalia, N.; Ogden, C.L. Fruit and Vegetable Consumption among Children and Adolescents in the United States, 2015–2018; NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2020; pp. 1–8. [Google Scholar]
- Landry, M.J.; van den Berg, A.E.; Asigbee, F.M.; Vandyousefi, S.; Ghaddar, R.; Davis, J.N. Child-Report of Food Insecurity Is Associated with Diet Quality in Children. Nutrients 2019, 11, 1574. [Google Scholar] [CrossRef] [Green Version]
- Molitor, F.; Sugerman, S.; Yu, H.; Biehl, M.; Aydin, M.; Levy, M.; Ponce, N.A. Reach of Supplemental Nutrition Assistance Program–Education (SNAP–Ed) Interventions and Nutrition and Physical Activity-Related Outcomes, California, 2011–2012. Prev. Chronic Dis. 2015, 12, E33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera, R.L.; Maulding, M.K.; Eicher-Miller, H. Effect of Supplemental Nutrition Assistance Program–Education (SNAP-Ed) on food security and dietary outcomes. Nutr. Rev. 2019, 77, 903–921. [Google Scholar] [CrossRef] [PubMed]
- Naja-Riese, A.; Keller, K.; Bruno, P.; Foerster, S.B.; Puma, J.; Whetstone, L.; MkNelly, B.; Cullinen, K.; Jacobs, L.; Sugerman, S. The SNAP-Ed Evaluation Framework: Demonstrating the impact of a national framework for obesity prevention in low-income populations. Transl. Behav. Med. 2019, 9, 970–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, D.; Contento, I.R.; Weekly, C. Position of the Academy of Nutrition and Dietetics, Society for Nutrition Education and Behavior, and School Nutrition Association: Comprehensive Nutrition Programs and Services in Schools. J. Acad. Nutr. Diet. 2018, 118, 913–919. [Google Scholar] [CrossRef]
- Committee on Progress in Preventing Childhood Obesity. Progress in Preventing Childhood Obesity: How Do We Measure Up? Institute of Medicine: Washington, DC, USA, 2007. [Google Scholar]
- Rochira, A.; Tedesco, D.; Ubiali, A.; Fantini, M.P.; Gori, D. School gardening activities aimed at obesity prevention improve body mass index and waist circumference parameters in school-aged children: A systematic review and meta-analysis. Child Obes. 2020, 16, 154–173. [Google Scholar] [CrossRef]
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting adult obesity from child-hood obesity: A systematic review and meta-analysis. Obes. Rev. 2016, 17, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscot, M.-J.; Thomson, R.J.; Juonala, M.; Sabin, M.A.; Burgner, D.P.; Lehtimäki, T.; Hutri-Kähönen, N.; Viikari, J.S.A.; Jokinen, E.; Tossavainen, P.; et al. BMI Trajectories Associated With Resolution of Elevated Youth BMI and Incident Adult Obesity. Pediatrics 2018, 141, e20172003. [Google Scholar] [CrossRef] [Green Version]
- Tugault-Lafleur, C.N.; Black, J.L.; Barr, S. A Systematic Review of Methods to Assess Children’s Diets in the School Context. Adv. Nutr. 2017, 8, 63–79. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.M.; Scherr, R.E.; Linnell, J.D.; Ermakov, I.V.; Gellermann, W.; Jahns, L.; Keen, C.L.; Miyamoto, S.; Steinberg, F.M.; Young, H.M.; et al. Evaluating the relationship between plasma and skin carotenoids and reported dietary intake in elementary school children to assess fruit and vegetable intake. Arch. Biochem. Biophys. 2015, 572, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Blom-Hoffman, J.; Leff, S.S.; Franko, D.L.; Weinstein, E.; Beakley, K.; Power, T.J. Consent Procedures and Participation Rates in School-Based Intervention and Prevention Research: Using a Multi-Component, Partnership-Based Approach to Recruit Participants. Sch. Ment. Health 2009, 1, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harnack, L.; Himes, J.H.; Anliker, J.; Clay, T.; Gittelsohn, J.; Jobe, J.B.; Ring, K.; Snyder, P.; Thompson, J.; Weber, J.L. Intervention-related Bias in Reporting of Food Intake by Fifth-Grade Children Participating in an Obesity Prevention Study. Am. J. Epidemiol. 2004, 160, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, L.D.; Zuelch, M.L.; Dimitratos, S.M.; Scherr, R.E. Adolescent Obesity: Diet Quality, Psychosocial Health, and Cardiometabolic Risk Factors. Nutrients 2019, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherr, R.; Linnell, J.D.; Dharmar, M.; Beccarelli, L.M.; Bergman, J.J.; Briggs, M.; Brian, K.M.; Feenstra, G.; Hillhouse, J.C.; Keen, C.L.; et al. A Multicomponent, School-Based Intervention, the Shaping Healthy Choices Program, Improves Nutrition-Related Outcomes. J. Nutr. Educ. Behav. 2017, 49, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Ventura, E.E.; Cook, L.T.; Gyllenhammer, L.E.; Gatto, N.M. LA Sprouts: A Gardening, Nutrition, and Cooking Intervention for Latino Youth Improves Diet and Reduces Obesity. J. Am. Diet. Assoc. 2011, 111, 1224–1230. [Google Scholar] [CrossRef]
- Qi, Y.; Hamzah, S.H.; Gu, E.; Wang, H.; Xi, Y.; Sun, M.; Rong, S.; Lin, Q. Is School Gardening Combined with Physical Activity Intervention Effective for Improving Childhood Obesity? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 2605. [Google Scholar] [CrossRef]
- Hoelscher, D.M.; Springer, A.E.; Ranjit, N.; Perry, C.L.; Evans, A.E.; Stigler, M.; Kelder, S.H. Reductions in Child Obesity Among Disadvantaged School Children With Community Involvement: The Travis County CATCH Trial. Obesity 2010, 18 (Suppl. S1), S36–S44. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, J.; Gellermann, W. Use of the Spectroscopy-Based Veggie Meter® to Objectively Assess Fruit and Vegetable Intake in Low-Income Adults. Nutrients 2021, 13, 2270. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, S.; Acciai, F.; Tasevska, N.; Ohri-Vachaspati, P. Using the Veggie Meter in Elementary Schools to Objectively Measure Fruit and Vegetable Intake: A Pilot Study. Methods Protoc. 2021, 4, 33. [Google Scholar] [CrossRef] [PubMed]
- May, K.; Pitts, S.J.; Carraway-Stage, V.; Kelley, C.; Burkholder, S.; Fang, X.; Zeng, A.; Lazorick, S. Use of the Veggie Meter® as a tool to objectively approximate fruit and vegetable intake among youth for evaluation of preschool and school-based interventions. J. Hum. Nutr. Diet. 2020, 33, 869–875. [Google Scholar] [CrossRef]
- Bakırcı-Taylor, A.L.; Reed, D.B.; McCool, B.; Dawson, J.A. mHealth Improved Fruit and Vegetable Accessibility and Intake in Young Children. J. Nutr. Educ. Behav. 2019, 51, 556–566. [Google Scholar] [CrossRef]
- Mayne, S.T.; Cartmel, B.; Scarmo, S.; Jahns, L.; Ermakov, I.V.; Gellermann, W. Resonance Raman spectroscopic evaluation of skin carotenoids as a biomarker of carotenoid status for human studies. Arch. Biochem. Biophys. 2013, 539, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Ermakov, I.V.; Ermakova, M.; Sharifzadeh, M.; Gorusupudi, A.; Farnsworth, K.; Bernstein, P.S.; Stookey, J.; Evans, J.; Arana, T.; Tao-Lew, L.; et al. Optical assessment of skin carotenoid status as a biomarker of vegetable and fruit intake. Arch. Biochem. Biophys. 2018, 646, 46–54. [Google Scholar] [CrossRef]
- Pitts, S.B.J.; Jahns, L.; Wu, Q.; Moran, N.; Bell, R.; Truesdale, K.P.; Laska, M.N. A non-invasive assessment of skin carotenoid status through reflection spectroscopy is a feasible, reliable and potentially valid measure of fruit and vegetable consumption in a diverse community sample. Public Health Nutr. 2018, 21, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Scherr, R.; Linnell, J.D.; Smith, M.H.; Briggs, M.; Bergman, J.; Brian, K.M.; Dharmar, M.; Feenstra, G.; Hillhouse, C.; Keen, C.L.; et al. The Shaping Healthy Choices Program: Design and Implementation Methodologies for a Multicomponent, School-Based Nutrition Education Intervention. J. Nutr. Educ. Behav. 2014, 46, e13–e21. [Google Scholar] [CrossRef]
- Taylor, J.C.; Zidenberg-Cherr, S.; Linnell, J.D.; Feenstra, G.; Scherr, R.E. Impact of a multicomponent, school-based nutrition intervention on students’ lunchtime fruit and vegetable availability and intake: A pilot study evaluating the Shaping Healthy Choices Program. J. Hunger Environ. Nutr. 2017, 13, 415–428. [Google Scholar] [CrossRef]
- Linnell, J.D.; Zidenberg-Cherr, S.; Briggs, M.; Scherr, R.; Brian, K.M.; Hillhouse, C.; Smith, M.H. Using a Systematic Approach and Theoretical Framework to Design a Curriculum for the Shaping Healthy Choices Program. J. Nutr. Educ. Behav. 2016, 48, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Fetter, D.S.; Scherr, R.E.; Linnell, J.D.; Dharmar, M.; Schaefer, S.E.; Zidenberg-Cherr, S. Effect of the Shaping Healthy Choices Program, a Multicomponent, School-Based Nutrition Intervention, on Physical Activity Intensity. J. Am. Coll. Nutr. 2018, 37, 472–478. [Google Scholar] [CrossRef]
- Bergman, J.; Linnell, J.D.; Scherr, R.E.; Ginsburg, D.C.; Brian, K.M.; Carter, R.; Donohue, S.S.; Klisch, S.; Lawry-Hall, S.; Pressman, J.; et al. Feasibility of Implementing a School Nutrition Intervention That Addresses Policies, Systems, and Environment. J. Ext. 2018, 56, 1FEA6. [Google Scholar]
- Fetter, D.S.; Dharmar, M.; Lawry-Hall, S.; Pressman, J.; Chapman, J.; Scherr, R.E. The Influence of Gain-Framed and Loss-Framed Health Messages on Nutrition and Physical Activity Knowledge. Glob. Pediatr. Health 2019, 6, 2333794X19857405. [Google Scholar] [CrossRef]
- Scherr, R.E.; Jones, A.M.; Colorafi, R.; Klisch, S.; Linnell, J.D.; Soule, K.E. Assessing the Effectiveness of an Extender Model Partnership in Implementing a Multicomponent, School-Based Nutrition Intervention. Health Promot. Pract. 2020, 1524839920920305. [Google Scholar] [CrossRef]
- Morris, J.L.; Zidenberg-Cherr, S. Nutrition to Grow On: A Garden-Enhanced Nutrition Education Curriculum for Upper Elementary School Children; California Department of Education: Sacramento, CA, USA, 2001. [Google Scholar]
- Burrows, T.L.; Warren, J.M.; Colyvas, K.; Garg, M.L.; Collins, C.E. Validation of Overweight Children’s Fruit and Vegetable Intake Using Plasma Carotenoids. Obesity 2009, 17, 162–168. [Google Scholar] [CrossRef]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and Development; Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2002; Volume 11, pp. 1–190. [Google Scholar]
- Barlow, S.E. Expert Committee Recommendations Regarding the Prevention, Assessment, and Treatment of Child and Adolescent Overweight and Obesity: Summary Report. Pediatrics 2007, 120 (Suppl. S4), S164–S192. [Google Scholar] [CrossRef] [Green Version]
- Ansu, V.; Dickinson, S.; Fly, A. Digit Variability in Carotenoid Scores Obtained with the Veggie Meter: A Pilot Study (P02-001-19). Curr. Dev. Nutr. 2019, 3, nzz029-p02. [Google Scholar] [CrossRef] [Green Version]
- Radtke, M.D.; Pitts, S.J.; Jahns, L.; Firnhaber, G.C.; Loofbourrow, B.M.; Zeng, A.; Scherr, R. Criterion-Related Validity of Spectroscopy-Based Skin Carotenoid Measurements as a Proxy for Fruit and Vegetable Intake: A Systematic Review. Adv. Nutr. 2020, 11, 1282–1299. [Google Scholar] [CrossRef]
- Collins, C.; Watson, J.; Burrows, T. Measuring dietary intake in children and adolescents in the context of overweight and obesity. Int. J. Obes. 2010, 34, 1103–1115. [Google Scholar] [CrossRef] [Green Version]
- Kroes, R.; Müller, D.; Lambe, J.; Löwik, M.; van Klaveren, J.; Kleiner, J.; Massey, R.; Mayer, S.; Urieta, I.; Verger, P.; et al. Assessment of intake from the diet. Food Chem. Toxicol. 2002, 40, 327–385. [Google Scholar] [CrossRef]
- Natarajan, L.; Flatt, S.W.; Sun, X.; Gamst, A.C.; Major, J.M.; Rock, C.L.; Al-Delaimy, W.; Thomson, C.A.; Newman, V.A.; Pierce, J.P.; et al. Validity and systematic error in measuring carotenoid consumption with dietary self-report instruments. Am. J. Epidemiol. 2006, 163, 770–778. [Google Scholar] [CrossRef]
- Shim, J.-S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Food and Nutrition Service. The Supplemental Nutrition Assistance Program Education (SNAP-Ed) Evaluation Framework: Nutrition, Physical Activity, and Obesity Prevention Indicators: Interpretive Guide to the SNAP-Ed Evaluation Framework; USDA: Arlington, VA, USA, 2016; Available online: https://snapedtoolkit.org/framework/index/ (accessed on 26 August 2021).
- Puma, J.E.; Young, M.; Foerster, S.; Keller, K.; Bruno, P.; Franck, K.; Naja-Riese, A. The SNAP-Ed Evaluation Framework: Nationwide Uptake and Implications for Nutrition Education Practice, Policy, and Research. J. Nutr. Educ. Behav. 2021, 53, 336–342. [Google Scholar] [CrossRef]
- SNAP-Ed Funding Allocations. Available online: https://snaped.fns.usda.gov/program-administration/snap-ed-funding-allocations (accessed on 11 August 2021).
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice-Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Jones, A.; Radtke, M.; Chodur, G.; Scherr, R. Assessing the Relationship Between Nutrition Knowledge and Skin Carotenoids in University Students. Curr. Dev. Nutr. 2020, 4, 1313. [Google Scholar] [CrossRef]
- Radtke, M.D.; Poe, M.; Stookey, J.; Pitts, S.J.; Moran, N.; Landry, M.J.; Rubin, L.P.; Stage, V.C.; Scherr, R. Recommendations for the Use of the Veggie Meter® for Spectroscopy-Based Skin Carotenoid Measurements in the Research Setting. Curr. Dev. Nutr. 2021, 5, nzab104. [Google Scholar] [CrossRef]
- Stookey, J.; Evans, J.; Chan, C.; Tao-Lew, L.; Arana, T.; Arthur, S. Healthy apple program to support child care centers to alter nutrition and physical activity practices and improve child weight: A cluster randomized trial. BMC Public Health 2017, 17, 965. [Google Scholar] [CrossRef] [Green Version]
- San Francisco Department of Public Health Website. Maternal, Child & Adolescent Health. Available online: https://www.sfdph.org/dph/comupg/oprograms/MCH/Epi.asp (accessed on 11 August 2021).
Characteristic | Percent (n) |
---|---|
Age | |
9 years | 97.0 (32) |
10 years | 3.0 (1) |
Sex | |
Female | 51.4 (18) |
Male | 48.6 (17) |
Race/ethnicity | |
American Indian/Alaskan Native | 2.9 (1) |
Asian/Pacific Islander | 20.0 (7) |
Caucasian/white, not Hispanic origin | 34.3 (12) |
Latino/Hispanic | 22.9 (8) |
Other | 2.9 (1) |
Multiple Selected | 14.3 (5) |
No response | 2.9 (1) |
Household income | |
$0–$19,000 | 5.7 (2) |
$20,000–$39,999 | 31.4 (11) |
$40,000–$59,999 | 17.1 (6) |
$60,000–$79,999 | 11.4 (4) |
$80,000–$99,999 | 5.7 (2) |
$100,000 or more | 22.9 (8) |
Mother Education (n = 25) | |
8th–11th | 4.0 (1) |
Finished high school or have a GED | 8.0 (2) |
Vocational/technical | 4.0 (1) |
Some college | 48.0 (12) |
Associate’s degree | 12.0 (3) |
Bachelor’s degree | 16.0 (4) |
Postgraduate | 8.0 (2) |
Father Education (n = 18) | |
8th–11th grade | 5.6 (1) |
Finished high school or have a GED | 16.7 (3) |
Vocational/technical | 11.1 (2) |
Some college | 33.3 (6) |
Associate’s degree | 5.6 (1) |
Bachelor’s degree | 22.2 (4) |
Postgraduate | 5.6 (1) |
Other Primary Parent Education (n = 4) | |
Finished high school or have a GED | 25.0 (1) |
Associate’s degree | 25.0 (1) |
Bachelor’s degree | 25.0 (1) |
Postgraduate | 25.0 (1) |
Other Secondary Parent Education (n = 4) | |
8th or less | 25.0 (1) |
Some college | 25.0 (1) |
Associate’s degree | 25.0 (1) |
Bachelor’s degree | 25.0 (1) |
Smoker in Household | |
Yes | 8.6 (3) |
No | 82.9 (29) |
No response | 8.6 (3) |
Fall 2018 Mean (SD) | Spring 2019 Mean (SD) | Fall 2019 Mean (SD) | F | p | |
---|---|---|---|---|---|
Nutrition Knowledge | 9.28 (3.31) a | 10.52 (3.27) a,b | 11.09 (3.51) b | 5.51 (2, 48) | 0.007 |
BMI Percentile | 63.99 (30.11) a | 65.56 (29.48) a | 66.71 (29.88) a | 2.137 (2, 68) | 0.126 |
VM Score | 156.20 (78.03) a | 211.00 (76.50) b | 195.43 (64.10) b | 6.63 (2, 68) | 0.002 |
Correlation Coefficient | p-Value | |
---|---|---|
Change in BMI Percentile-for-Age and Change in VM Score | ||
Fall 2018 to Spring 2019 | 0.157 | 0.354 |
Fall 2018 to Fall 2019 | 0.014 | 0.930 |
VM Score and Knowledge | ||
Fall 2018 | 0.269 | 0.034 |
Spring 2019 | −0.018 | 0.912 |
Fall 2019 | 0.068 | 0.514 |
Time Point | Change to Protocol | Observation That Led to Change | Anticipated Impact |
---|---|---|---|
Spring 2019 | Addition of hand-cleaning step using disposable hand sanitizing wipes | Presence of colored ink on some hands, which may artificially elevate VM score | Potential of reduced VM score due to elimination of pigments on hands due to snack foods or markers |
Spring 2019 | Addition of direction to create a line with removable tape for students to stand behind | Students would attempt to crowd around device, causing researchers to pause data collection repeatedly to ask students to move back | Potential to streamline data collection and reduce total time required |
Fall 2019 | Ring finger of non-dominant hand rather than index finger of dominant hand | Based on research suggesting ring finger of non-dominant hand [42] | Potential of reduced VM score due to variability of carotenoids in left versus right hands |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, A.M.; Keihner, A.; Mills, M.; MkNelly, B.; Khaira, K.K.; Pressman, J.; Scherr, R.E. Measuring Skin Carotenoids Using Reflection Spectroscopy in a Low-Income School Setting. Nutrients 2021, 13, 3796. https://doi.org/10.3390/nu13113796
Jones AM, Keihner A, Mills M, MkNelly B, Khaira KK, Pressman J, Scherr RE. Measuring Skin Carotenoids Using Reflection Spectroscopy in a Low-Income School Setting. Nutrients. 2021; 13(11):3796. https://doi.org/10.3390/nu13113796
Chicago/Turabian StyleJones, Anna M., Angie Keihner, MaryAnn Mills, Barbara MkNelly, Kamaljeet K. Khaira, Jona Pressman, and Rachel E. Scherr. 2021. "Measuring Skin Carotenoids Using Reflection Spectroscopy in a Low-Income School Setting" Nutrients 13, no. 11: 3796. https://doi.org/10.3390/nu13113796
APA StyleJones, A. M., Keihner, A., Mills, M., MkNelly, B., Khaira, K. K., Pressman, J., & Scherr, R. E. (2021). Measuring Skin Carotenoids Using Reflection Spectroscopy in a Low-Income School Setting. Nutrients, 13(11), 3796. https://doi.org/10.3390/nu13113796