The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Analysis
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Internal Validity and Risk of Bias
3.2. Participant and Study Characteristics
3.3. HIIT Protocols
3.4. Nitrate Supplementation
3.5. Meta-Analyses
4. Discussion
4.1. Power Output
4.2. Distance Covered
4.3. Other Measures
4.4. Exercise Level
4.5. Supplementation Strategy
4.6. Source of Nitrate and Beetroot Juice
4.7. Limitations and Future Considerations
4.8. Practical Implications
4.9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Study ID | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 | P11 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bernadi et al. 2018 [53] | x | x | x | o | o | o | O | x | x | x | x | 6 |
Ernest et al. 2016 [43] | o | x | x | o | x | x | X | x | x | x | x | 9 |
Kent et al. 2019 [35] | o | o | x | x | x | o | O | x | x | x | x | 7 |
Kokkinoplitis et al. 2014 [51] | x | x | x | x | x | o | O | x | x | x | x | 8 |
Martin et al. 2014 [52] | o | x | x | x | x | o | O | o | x | x | x | 7 |
Muggeridge et al. 2013 [38] | o | x | x | x | o | x | O | x | x | x | x | 8 |
Smith et al. 2019 [34] | o | x | x | o | x | x | O | x | x | x | x | 8 |
Aucouturier et al. 2015 [42] | x | x | x | x | x | o | O | x | x | x | x | 8 |
Christensen et al. 2013 [44] | o | x | x | o | x | o | O | x | x | x | x | 7 |
Jonvik et al. 2018 [33] | o | x | x | x | x | o | O | x | x | x | x | 8 |
Nyakayiru et al. 2017 [54] | o | x | x | o | x | o | O | o | x | x | x | 6 |
Pawlak-Chaouch et al. 2019 [36] | o | x | x | o | x | o | O | x | x | x | x | 7 |
Thompson et al. 2016 [7] | o | x | x | x | x | o | O | x | x | x | x | 8 |
Thompson et al. 2017 [32] | o | o | x | x | x | o | O | x | x | x | x | 7 |
Thompson et al. 2018 [50] | o | o | x | x | x | o | O | x | x | x | x | 7 |
Wylie et al. 2013 [22] | o | x | x | x | x | o | O | x | x | x | x | 8 |
Wylie et al. 2016 [8] | o | x | x | o | x | o | O | x | x | x | x | 7 |
Score for each point | 18% | 88% | 100% | 59% | 88% | 18% | 6% | 88% | 100% | 100% | 100% | 7.4 |
Appendix B
Appendix C
Study | Sample Size (n) | Age (Years) | Dosage | Study Design | Exercise Protocol | Primary Outcome |
---|---|---|---|---|---|---|
Cuenca et al. 2018 [57] | 15 | 22.4 ± 1.6 | 6.4 mmol (70 mL) | Randomised, placebo controlled, crossover, double-blind | A 30 s all-out Wingate test. Before and after the sprint exercise and at 30 s and 180 s post-exercise, three counter-movement jumps (CMJ) were performed. | Improved peak (3.9%) and mean (3.9%) power output. Reduced the time taken to reach Wpeak (17.9%) |
Domínguez et al. 2017 [56] | 15 | 21.46 ± 1.72 | 5.6 mmol (70 mL) | Randomised and double blind | A 30 s maximum intensity test on an inertial cycle ergometer. | No impact on the mean power. Peak power improved by 5.4%. Shorter time taken to attain peak power (−8.4%). |
Jodra et al. 2020 [58] | 15 | 23.0 ± 2.0 | 6.4 mmol (70 mL) | Randomised, crossover, double blind | A 30 s all-out Wingate cycling test. | Increased peak power output by 4.4%. Lower the time taken to reach peak (7.3 vs. 8.7 s). |
References
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sports Med. 2014, 44, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Kramer, S.J.; Baur, D.A.; Spicer, M.T.; Vukovich, M.D.; Ormsbee, M.J. The effect of six days of dietary nitrate supplementation on performance in trained CrossFit athletes. J. Int. Soc. Sports Nutr. 2016, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.M.; Vanhatalo, A.; Seals, D.R.; Rossman, M.J.; Piknova, B.; Jonvik, K.L. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med. Sci. Sports Exerc. 2021, 53, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Tamme, T.; Reinik, M.; Roasto, M.; Juhkam, K.; Tenno, T.; Kiis, A. Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. Food Addit. Contam. 2006, 23, 355–361. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.J.; Varnham, R.L.; DiMenna, F.J.; Breese, B.C.; Wylie, L.J.; Jones, A.M. Inorganic nitrate supplementation improves muscle oxygenation, O2 uptake kinetics, and exercise tolerance at high but not low pedal rates. J. Appl. Physiol. (1985) 2015, 118, 1396–1405. [Google Scholar] [CrossRef]
- Thompson, C.; Vanhatalo, A.; Jell, H.; Fulford, J.; Carter, J.; Nyman, L.; Bailey, S.J.; Jones, A.M. Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance. Nitric. Oxide 2016, 61, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Wylie, L.J.; Bailey, S.J.; Kelly, J.; Blackwell, J.R.; Vanhatalo, A.; Jones, A.M. Influence of beetroot juice supplementation on intermittent exercise performance. Eur. J. Appl. Physiol. 2016, 116, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoon, M.W.; Hopkins, W.G.; Jones, A.M.; Martin, D.T.; Halson, S.L.; West, N.P.; Johnson, N.A.; Burke, L.M. Nitrate supplementation and high-intensity performance in competitive cyclists. Appl. Physiol. Nutr. Metab. 2014, 39, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; Dimenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J. Appl. Physiol. (1985) 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [Green Version]
- Lansley, K.E.; Winyard, P.G.; Bailey, S.J.; Vanhatalo, A.; Wilkerson, D.P.; Blackwell, J.R.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Acute dietary nitrate supplementation improves cycling time trial performance. Med. Sci. Sports Exerc. 2011, 43, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Larsen, F.; Weitzberg, E.; Lundberg, J.; Ekblom, B. Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol. 2007, 191, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Bender, D.; Townsend, J.R.; Vantrease, W.C.; Marshall, A.C.; Henry, R.N.; Heffington, S.H.; Johnson, K.D. Acute beetroot juice administration improves peak isometric force production in adolescent males. Appl. Physiol. Nutr. Metab. 2018, 43, 816–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifford, T.; Berntzen, B.; Davison, G.W.; West, D.J.; Howatson, G.; Stevenson, E.J. Effects of Beetroot Juice on Recovery of Muscle Function and Performance between Bouts of Repeated Sprint Exercise. Nutrients 2016, 8, 506. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.L.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.C.L.; Herreros, P.V.; Garnacho-Castaño, M.V. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peacock, O.; Tjønna, A.E.; James, P.; Wisløff, U.; Welde, B.; Böhlke, N.; Smith, A.; Stokes, K.; Cook, C.; Sandbakk, O. Dietary nitrate does not enhance running performance in elite cross-country skiers. Med. Sci. Sports Exerc. 2012, 44, 2213–2219. [Google Scholar] [CrossRef]
- Bescós, R.; Rodríguez, F.A.; Iglesias, X.; Ferrer, M.D.; Iborra, E.; Pons, A. Acute administration of inorganic nitrate reduces VO(2peak) in endurance athletes. Med. Sci. Sports Exerc. 2011, 43, 1979–1986. [Google Scholar] [CrossRef] [Green Version]
- Bescós, R.; Sureda, A.; Tur, J.A.; Pons, A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012, 42, 99–117. [Google Scholar] [CrossRef]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic. Biol. Med. 2010, 48, 342–347. [Google Scholar] [CrossRef]
- Flueck, J.L.; Bogdanova, A.; Mettler, S.; Perret, C. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise. Appl. Physiol. Nutr. Metab. 2016, 41, 421–429. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Ryan, L. A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. J. Funct. Foods 2011, 3, 329–334. [Google Scholar] [CrossRef]
- Wylie, L.; Mohr, M.; Krustrup, P.; Jackman, S.; Ermιdis, G.; Kelly, J.; Black, M.; Bailey, S.; Vanhatalo, A.; Jones, A. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance. Eur. J. Appl. Physiol. 2013, 113, 1673–1684. [Google Scholar] [CrossRef]
- Lansley, K.E.; Winyard, P.G.; Fulford, J.; Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Gilchrist, M.; Benjamin, N.; Jones, A.M. Dietary nitrate supplementation reduces the O2 cost of walking and running: A placebo-controlled study. J. Appl. Physiol. 2011, 110, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.; Dougall, H.; Johnston, P.; Green, S.; Brogan, R.; Leifert, C.; Smith, L.; Golden, M.; Benjamin, N. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1995, 1, 546–551. [Google Scholar] [CrossRef]
- Peri, L.; Pietraforte, D.; Scorza, G.; Napolitano, A.; Fogliano, V.; Minetti, M. Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: A new biological function for polyphenols with a catechol group? Free Radic. Biol. Med. 2005, 39, 668–681. [Google Scholar] [CrossRef]
- Rocha, B.S.; Gago, B.; Barbosa, R.M.; Laranjinha, J. Dietary polyphenols generate nitric oxide from nitrite in the stomach and induce smooth muscle relaxation. Toxicology 2009, 265, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Stamler, J.S.; Meissner, G. Physiology of nitric oxide in skeletal muscle. Physiol. Rev. 2001, 81, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.H.; Reid, M.B.; Allen, D.G.; Westerblad, H. Effect of nitric oxide on single skeletal muscle fibres from the mouse. J. Physiol. 1998, 509, 577–586. [Google Scholar] [CrossRef]
- Ferguson, S.K.; Holdsworth, C.T.; Wright, J.L.; Fees, A.J.; Allen, J.D.; Jones, A.M.; Musch, T.I.; Poole, D.C. Microvascular oxygen pressures in muscles comprised of different fibre types: Impact of dietary nitrate supplementation. Nitric Oxide 2015, 48, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Roelofs, E.J.; Hirsch, K.R.; Trexler, E.T.; Mock, M.G.; Smith-Ryan, A.E. The effects of pomegranate extract on anaerobic exercise performance & cardiovascular responses. J. Int. Soc. Sports Nutr. 2015, 12, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Wylie, L.J.; Blackwell, J.R.; Fulford, J.; Black, M.I.; Kelly, J.; McDonagh, S.T.; Carter, J.; Bailey, S.J.; Vanhatalo, A.; et al. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training. J. Appl. Physiol. (1985) 2017, 122, 642–652. [Google Scholar] [CrossRef] [Green Version]
- Jonvik, K.L.; Nyakayiru, J.; Van Dijk, J.W.; Maase, K.; Ballak, S.B.; Senden, J.M.G.; Van Loon, L.J.C.; Verdijk, L.B. Repeated-sprint performance and plasma responses following beetroot juice supplementation do not differ between recreational, competitive and elite sprint athletes. Eur. J. Sport Sci. 2018, 18, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Muggeridge, D.J.; Easton, C.; Ross, M.D. An acute dose of inorganic dietary nitrate does not improve high-intensity, intermittent exercise performance in temperate or hot and humid conditions. Eur. J. Appl. Physiol. 2019, 119, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Kent, G.L.; Dawson, B.; McNaughton, L.R.; Cox, G.R.; Burke, L.M.; Peeling, P. The effect of beetroot juice supplementation on repeat-sprint performance in hypoxia. J. Sports Sci. 2019, 37, 339–346. [Google Scholar] [CrossRef]
- Pawlak-Chaouch, M.; Boissière, J.; Munyaneza, D.; Gamelin, F.X.; Cuvelier, G.; Berthoin, S.; Aucouturier, J. Beetroot Juice Does Not Enhance Supramaximal Intermittent Exercise Performance in Elite Endurance Athletes. J. Am. Coll. Nutr. 2019, 38, 729–738. [Google Scholar] [CrossRef]
- Domínguez, R.; Maté-Muñoz, J.L.; Cuenca, E.; García-Fernández, P.; Mata-Ordoñez, F.; Lozano-Estevan, M.C.; Veiga-Herreros, P.; da Silva, S.F.; Garnacho-Castaño, M.V. Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. J. Int. Soc. Sports Nutr. 2018, 15, 2. [Google Scholar] [CrossRef] [Green Version]
- Muggeridge, D.J.; Howe, C.C.; Spendiff, O.; Pedlar, C.; James, P.E.; Easton, C. The effects of a single dose of concentrated beetroot juice on performance in trained flatwater kayakers. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 498–506. [Google Scholar] [CrossRef]
- Haddaway, N.R.; McGuinness, L.A. PRISMA2020: R Package and ShinyApp for Producing PRISMA 2020 Compliant Flow Diagrams (Version 0.0.1); Zenodo; CERN: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Green, S.; Higgins, J.P. Defining the Review Question and Developing Criteria for Including Studies. In Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Hoboken, NJ, USA, 2008; pp. 81–94. [Google Scholar]
- Aucouturier, J.; Boissière, J.; Pawlak-Chaouch, M.; Cuvelier, G.; Gamelin, F.-X. Effect of dietary nitrate supplementation on tolerance to supramaximal intensity intermittent exercise. Nitric Oxide 2015, 49, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Ernest, G.R.; Linda, R.P.; Andrew, R.C.; James, C.M. Increase in Maximal Cycling Power With Acute Dietary Nitrate Supplementation. Int. J. Sports Physiol. Perform. 2016, 11, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of nitrate supplementation on VO2 kinetics and endurance of elite cyclists. Scand. J. Med. Sci. 2013, 23, e21–e31. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Valverde, D.; Montoya-Rodríguez, J.; Azofeifa-Mora, C.; Sanchez-Urena, B. Effectiveness of beetroot juice derived nitrates supplementation on fatigue resistance during repeated-sprints: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 1–12. [Google Scholar] [CrossRef]
- Moseley, A.M.; Elkins, M.R.; Van der Wees, P.J.; Pinheiro, M.B. Using research to guide practice: The Physiotherapy Evidence Database (PEDro). Braz. J. Phys. Ther. 2020, 24, 384–391. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (Updated February 2021). 2021. Available online: www.training.cochrane.org/handbook (accessed on 1 September 2021).
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Thompson, C.; Vanhatalo, A.; Kadach, S.; Wylie, L.J.; Fulford, J.; Ferguson, S.K.; Blackwell, J.R.; Bailey, S.J.; Jones, A.M. Discrete physiological effects of beetroot juice and potassium nitrate supplementation following 4-wk sprint interval training. J. Appl. Physiol. (1985) 2018, 124, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Kokkinoplitis, K.; Chester, N. The effect of beetroot juice on repeated sprint performance and muscle force production. J. Phys. Educ. Sport 2014, 14, 242–247. [Google Scholar] [CrossRef]
- Martin, K.; Smee, D.; Thompson, K.G.; Rattray, B. No Improvement of Repeated-Sprint Performance with Dietary Nitrate. Int. J. Sports Physiol. Perform. 2014, 9, 845–850. [Google Scholar] [CrossRef]
- Bernardi, B.B.; Schoenfeld, B.J.; Alves, R.C.; Urbinati, K.S.; McAnulty, S.R.; Junior, T.P.S. Acute Supplementation with Beetroot Juice Does Not Enhance Exercise Performance among Well-trained Athletes: A Randomised Crossover Study. J. Exerc. Physiol. Online 2018, 21, 1–12. [Google Scholar]
- Nyakayiru, J.; Jonvik, K.L.; Trommelen, J.; Pinckaers, P.J.; Senden, J.M.; van Loon, L.J.; Verdijk, L.B. Beetroot Juice Supplementation Improves High-Intensity Intermittent Type Exercise Performance in Trained Soccer Players. Nutrients 2017, 9, 314. [Google Scholar] [CrossRef] [Green Version]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Garnacho-Castaño, M.V.; Cuenca, E.; García-Fernández, P.; Muñoz-González, A.; de Jesús, F.; Lozano-Estevan, M.D.C.; da Silva, S.F.; Veiga-Herreros, P.; Maté-Muñoz, J.L. Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test. Nutrients 2017, 9, 1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuenca, E.; Jodra, P.; Pérez-López, A.; González-Rodríguez, L.G.; da Silva, S.F.; Veiga-Herreros, P.; Domínguez, R. Effects of Beetroot Juice Supplementation on Performance and Fatigue in a 30-s All-Out Sprint Exercise: A Randomised, Double-Blind Cross-Over Study. Nutrients 2018, 10, 1222. [Google Scholar] [CrossRef] [Green Version]
- Jodra, P.; Domínguez, R.; Sánchez-Oliver, A.J.; Veiga-Herreros, P.; Bailey, S.J. Effect of Beetroot Juice Supplementation on Mood, Perceived Exertion, and Performance During a 30-Second Wingate Test. Int. J. Sports Physiol. Perform. 2020, 15, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary nitrate increases tetanic [Ca2+] i and contractile force in mouse fast-twitch muscle. J. Physiol. 2012, 590, 3575–3583. [Google Scholar] [CrossRef]
- Whitfield, J.; Gamu, D.; Heigenhauser, G.J.F.; LJC, V.A.N.L.; Spriet, L.L.; Tupling, A.R.; Holloway, G.P. Beetroot Juice Increases Human Muscle Force without Changing Ca2+-Handling Proteins. Med. Sci. Sports Exerc. 2017, 49, 2016–2024. [Google Scholar] [CrossRef]
- Porcelli, S.; Pugliese, L.; Rejc, E.; Pavei, G.; Bonato, M.; Montorsi, M.; La Torre, A.; Rasica, L.; Marzorati, M. Effects of a Short-Term High-Nitrate Diet on Exercise Performance. Nutrients 2016, 8, 534. [Google Scholar] [CrossRef] [Green Version]
- Muggeridge, D.J.; Sculthorpe, N.; James, P.E.; Easton, C. The effects of dietary nitrate supplementation on the adaptations to sprint interval training in previously untrained males. J. Sci. Med. Sport 2017, 20, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. Med. Sci. Sports Exerc. 2015, 47, 1643–1651. [Google Scholar] [CrossRef] [Green Version]
- Burke, L.M. Practical Issues in Evidence-Based Use of Performance Supplements: Supplement Interactions, Repeated Use and Individual Responses. Sports Med. 2017, 47, 79–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, E.J.; Coggan, A.R. What’s in Your Beet Juice? Nitrate and Nitrite Content of Beet Juice Products Marketed to Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Baião, D.d.S.; da Silva, D.V.; Del Aguila, E.M.; Paschoalin, V.M.F. Nutritional, bioactive and physicochemical characteristics of different beetroot formulations. Food Addit. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Wruss, J.; Waldenberger, G.; Huemer, S.; Uygun, P.; Lanzerstorfer, P.; Müller, U.; Höglinger, O.; Weghuber, J. Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. J. Food Compos. Anal. 2015, 42, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Best, R.; McDonald, K.; Hurst, P.; Pickering, C. Can taste be ergogenic? Eur. J. Nutr. 2021, 60, 45–54. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Jablonska, P.; Rembialkowska, E. Analysis of organic and conventional beetroot juice assortment in Warsaw shops and consumer sensory evaluation of selected products. Build. Org. Bridges 2014, 3, 917–920. [Google Scholar]
- Coggan, A.R.; Baranauskas, M.N.; Hinrichs, R.J.; Liu, Z.; Carter, S.J. Effect of dietary nitrate on human muscle power: A systematic review and individual participant data meta-analysis. J. Int. Soc. Sports Nutr. 2021, 18, 66. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Sample Size (n) | Age (Years) | Exercise Level and Fitness, VO2peak/max (mL/kg/min) | A/C | Beetroot Juice Supplementation | Study Design | Exercise Protocol | Primary Outcome |
---|---|---|---|---|---|---|---|---|---|
Bernardi et al. [53] | 2018 | 10 | 24.9 ± 4.6 | Well-trained competitive mixed martial arts athletes. | A | 9.3 mmol (400 mL) | Randomised, crossover, double blind | 20 all-out 6 s sprints, 24 s of recovery. | No significant improvement in peak and mean power. Peak power (BR: 10.54 ± 0.62 W/kg vs. PL: 10.52 ± 0.48 W/kg; p > 0.05). Mean power (BR: 7.88 ± 0.38 W/kg vs. PL: 7.74 ± 0.48 W/kg; p > 0.05). |
Ernest et al. [43] | 2016 | 13 | 25.9 ± 7.5 | Competitively trained athletes. | A | 2 × 11.2 mmol (2 × 70 mL) | Randomised, repeated measures, crossover, double blind | Maximal inertial-load cycling trials 4 × (3–4 s, 5 min passive rest) followed by maximal isokinetic cycling (30 s). | Peak power increased with BR (Pre: 1160 ± 301 W, post: 1229 ± 317 W) compared to PL (pre: 1191 ± 298 W, post: 1213 ± 300 W). Change in peak power post BR = 6.0 ± 2.6% compared to PL = 2.0 ± 3.8% (p = 0.014). |
Kent et al. [35] | 2019 | 12 | 22.3 ± 2.6 | Team-sport athletes. VO2 peak = 53.1 ± 8.7 | A | 12.9 mmol (2 × 70 mL) | Repeated measures, counter-balanced, double blind | 4 sets of 9 × 4 s Repeat-Sprint Efforts, 16 s active recovery, and 6 s passive rest recovery per sprint. Sets were separated by 3 min of low-intensity cycling. | No significant difference in peak and mean power output. Peak power (BR: 1152 ± 194 W vs. PL: 1164 ± 139 W), mean power (BR: 779 ± 156 W vs. PL: 804 ± 122 W). |
Kokkinoplitis et al. [51] | 2014 | 7 | 25.2 ± 3.3 | Healthy men. Exercise level not specified. | A | 6.45 mmol (70 mL) | Randomised, crossover, double blind | Repeated high intensity sprints (5 × 6 s) on a non-motorised treadmill with 30 s of recovery. | No significant difference in mean peak power and strength. Mean peak power (BR: 4133.5 ± 674.4 W vs. PL: 3838.3 ± 603.1 W; p = 0.79). |
Martin et al. [52] | 2014 | 16 | M22.3 ± 2.1, F20.7 ± 1.3 | Team-sport athletes. V02max = 57.4 ± 8.5(M); V02max = 47.2 ± 8.5(F) | A | 4.84 mmol (70 mL) | Randomised, crossover, double blind | 8 s sprints with 30 s recovery on a cycle ergometer to exhaustion. | No significant difference in mean power output and mean peak power. Mean power (BR: 447 ± 104 W vs. PL: 444 ± 117 W; p = 0.797), mean peak power (BR: 447 ± 104 W vs. PL: 444 ± 117 W; p = 0.196). |
Muggeridge et al. [38] | 2013 | 8 | 31.0 ± 15.0 | Trained. VO2peak = 49.0± 6.1 | A | 5 mmol (70 mL) | Randomised, crossover | 15 min steady-state paddling followed by five 10 s maximal effort SIT, 50 s active recovery. After 5 min rest, complete 1 km TT. | No difference in either peak power in the sprints or TT performance between conditions. Peak power (BR: 420 ± 23 W vs. PL: 404 ± 24 W; p = 0.59). |
Smith et al. [34] | 2019 | 12 | 22.0 ± 4.0 | Recreationally trained. | A | 6.2 mmol (70 mL) | Randomised, counter- balanced, crossover, double blind | 20 maximal 6 s sprints, 114 s of active recovery. | No significant improvement in peak and mean power. Peak power (BR: 659 ± 100 W vs. PL: 693 ± 139 W; p = 0.056), mean power (BR: 543 ± 29 W vs. PL: 575 ± 38 W; p = 0.081). |
Aucouturier et al. [42] | 2015 | 12 | 22.8 ± 3.1 | Recreation team sport players. VO2peak = 46.6 ± 3.4 | C | 5.48 mmol/day for 3 days (500 mL) | Randomised, crossover, single blind | Cycle ergometer: number of sets until exhaustion (15 s at 170% maximal aerobic power, 30 s passive recovery periods). | Number of repetitions before exhaustion was significantly higher with BR compared PL (26.1 ± 10.7 vs. 21.8 ± 8.0, p < 0.05). Mean power output (BR: 472.5 ± 42.5 W vs. PL: 468.8 ± 43.4 W). |
Christensen et al. [44] | 2013 | 10 | 29.0 ± 4.0 | Highly trained cyclists. VO2max = 72.1 ± 4.5 | C | 8.06 mmol/day for 6 days | Randomised, crossover, single blind | VO2 kinetics (3 × 6 min at 298 ± 28 W), endurance (120 min preload followed by a 400 kcal time trial). Repeated sprint test (cycle ergometer): 6 × 20 s sprints, 100 s active recovery. | No significant difference in VO2 kinetics, exercise economy, time trial, peak, and mean power. Average peak power (BR: 746 ± 111 W vs. PL: 745 ± 121 W), mean power (BR: 630 ± 84 W vs. PL: 630 ± 92 W). |
Jonvik et al. [33] | 2018 | 52 | 27.0 ± 6.0 | Recreational cyclists (n = 20), national talent speed-skaters (n = 22) and Olympic-level track cyclists (n = 10) | C | 12.9 mmol/day (140 mL) for 6 days | Randomised, crossover, double blind | 3 30 s Wingate tests (4 min active recovery). | No significant difference in peak and mean power output. Time to peak power improved by 2.8%. Peak power (BR: 1338 ± 30 W vs. PL: 1333 ± 30 W; p = 0.62). |
Nyakayiru et al. [54] | 2017 | 32 | 23.0 ± 1.0 | Trained soccer players | C | 12.9 mmol/day (2 × 70 mL) for 6 days | Randomised, placebo-controlled, crossover, double blind | Yo-Yo IR1. | Performance (distance covered) improved by 3.4 ± 1.3%. Distance (BR: 1623 ± 48 m vs. PL: 1574 ± 47 m; p = 0.027). |
Pawlak-Chaouch et al. [36] | 2019 | 9 | 21.7 ± 3.7 | Elite. VO2max > 65 | C | 5.2 mmol/day (500 mL) for 3 days | Randomised, placebo-controlled, crossover, single blind | SIE test until exhaustion. 15 s cycling at 170% of the maximal aerobic power, 30 s passive recovery. | No significant difference in mean power, total work completed and total repetitions. Mean power (BR: 579.2 ± 57.7 W vs. PL: 578.9 ± 54.3W). |
Thompson et al. [7] | 2016 | 36 | 24.0 ± 4.0 | Competitive team sport players | C | 6.4 mmol/day (70 mL) for 5 days | Randomised, crossover, double blind | Maximal 20 m sprints followed by the Yo-Yo IR1; 10 s active recovery, 5 min passive recovery. | 1.2% improvement in 20 m sprint; 3.9% improvement in distance covered. Distance (BR: 1422 ± 502 vs. PL: 1369 ± 505 m; p < 0.05). |
Thompson et al. [32] | 2017 | 36 | M27.0 ± 8.0, F23.0 ± 4.0 | Recreationally active. VO2peak = 50.4 ± 11.4(M); VO2peak = 39.8 ± 5.8(F) | C | 13 mmol/day (2 × 70 mL) for 28 days | Randomised to matched independent groups, double blind | SIT with supplementation for 28 days or without training intervention. Two severe-intensity step tests, 3 min and 20 min passive recovery repeat until task failure. Training session, Wingate all out, 30 s (4 and 5 times), rest 4 min. | No performance improvement in TTE trial. Peak WR (BR: 321 ± 91 W vs. PL: 318 ± 73 W; p > 0.05). |
Thompson et al. [50] | 2018 | 30 | M25.0 ± 6.0, F22.0 ± 3.0 | Recreationally active. VO2peak = 46.6 ± 7.5 (M). VO2peak = 39.9 ± 3.9 (F). | C | 12.8 mmol/day (2 × 70 mL) for 28 days | Randomised to matched independent groups, double blind | Two bouts of severe-intensity cycling, the first for 3 min and the second until task failure; 4-wk supervised SIT program (Wingate 30 s, 4 min rest). | No significant improvement in peak work rate. TTE increased in SIT BR (71%), SIT (47%) and SIT KNO3 (42%). |
Wylie et al. [22] | 2013 | 14 | 22.0 ± 2.0 | Recreational team-sport players. VO2max = 52 ± 7 | C | 7 × 70 mL (4.1 mmol). Around 29 mmol in 36 h | Randomised, crossover, double blind | Yo-Yo IR1. | Distance covered was 4.2% greater with BR compared to PL. Distance (BR: 1704 ± 304 m vs. PL: 1636 ± 288 m; p < 0.05). |
Wylie et al. [8] | 2016 | 10 | 21.0 ± 1.0 | Team-sport players. VO2peak = 58 ± 8 | C | 8.2 mmol/day (2 × 70 mL) for 5 days. Test day 2 × 70 mL, and post-test 70 mL | Randomised, crossover, double blind | Twenty-four 6 s all-out sprints, 24 s of recovery; seven 30 s all-out sprints, 240 s of recovery, and six 60 s self-paced maximal efforts, 60 s of recovery; on days 3, 4, and 5 of supplementation, respectively. | Mean power output was significantly greater (5.4%) with BR relative to PL in the 24×6 s protocol only. 24 × 6 s protocol mean power (BR: 568 ± 136 W vs. PL: 539 ± 136 W; p < 0.05), peak power (BR: 792 ± 159 W vs. PL: 782 ± 154 W; p > 0.05); 7×30 s protocol mean power (BR: 558 ± 95 vs. PL: 562 ± 94 W; p > 0.05), peak power (BR: 768 ± 157 vs. PL: 776 ± 142 W; p > 0.05); 6×60 s protocol mean power (BR: 374 ± 57 W vs. PL: 375 ± 59 W; p > 0.05). |
Study | Year | Exercise Level | A/C | Suppl. | Total NO3 Loaded (mmol) | Last Dose (h) | Source of Beetroot | % NOx Increase | Erg * |
---|---|---|---|---|---|---|---|---|---|
Bernardi et al. [53] | 2018 | Trained | A | 9.3 mmol (400 mL) | 9.3 | 2 | Produced in house | No | |
Ernest et al. [43] | 2016 | Trained | A | 2 × 11.2 mmol (2 × 70 mL) | 22.4 | 2.5 | Beet it, James White Drinks Ltd., Ipswich, UK | Yes | |
Kent et al. [35] | 2019 | Trained | A | 12.9 mmol (2 × 70 mL) | 12.9 | 2 | Beet it, James White Drinks Ltd., Ipswich, UK | No | |
Kokkinoplitisk et al. [51] | 2014 | Recreationally active | A | 6.45 mmol (70 mL) | 6.45 | 3 | Beet It, James White Drinks Ltd., Ipswich, UK | No | |
Martin et al. [52] | 2014 | Trained | A | 4.84 mmol (70 mL) | 4.84 | 2 | Beet It, James White Drinks Ltd., Ipswich, UK | 1600% increase in | No |
Muggeridge et al. [38] | 2013 | Trained | A | 5 mmol (70 mL) | 5 | 3 | Beet IT organic shot, James White Drinks Ltd., Ipswich, UK | 360% increase in . 32% increase in | No |
Smith et al. [34] | 2019 | Recreationally active | A | 6.2 mmol (70 mL) | 6.2 | 3 | Beet-It-Pro Elite Shot, James White Drinks Ltd., Ipswich, UK | No | |
Aucouturier et al. [42] | 2015 | Recreationally active | C | 5.48 mmol/day for 3 days (500 mL) | 16.44 | 3 | Pajottenlander TM, Belgium | 970% increase in . 108% increase in | Yes |
Christensen et al. [44] | 2013 | Trained | C | 8.06 mmol/day for 6 days | 48.36 | 3 | Beet it, James White Drinks Ltd., Ipswich, UK | 298% increase in plasma NOx (nitrate + nitrite). | No |
Jonvik et al. [33] | 2018 | Recreationally trained and elite | C | 12.9 mmol/day (140 mL) for 6 days | 77.4 | 3 | Beet it, James White Drinks Ltd., Ipswich, UK | 1600% increase in . 400% increase in | No |
Nyakayiru et al. [54] | 2017 | Trained | C | 12.9 mmol/day (2 × 70 mL) for 6 days | 77.4 | 2.5 | Beet It, James White Drinks Ltd., Ipswich, UK | 1100% increase . 240% increase in . 669% increase in salivary | Yes |
Pawlak-Chaouch et al. [36] | 2019 | Elite | C | 5.2 mmol/day (500 mL) for 3 days | 15.6 | 2 | Pajottenlander TM, Belgium. | 325% increase in NOx | No |
Thompson et al. [7] | 2016 | Trained | C | 6.4 mmol/day (70 mL) for 5 days | 32 | 2.5 | Beet it, James White Drinks Ltd., Ipswich, UK | 659% increase in . 226% increase in | Yes |
Thompson et al. [32] | 2017 | Recreationally active | C | 13 mmol/day (2 × 70 mL) for 28 days | 364 | 2.5 | Beet It, James White Drinks Ltd., Ipswich, UK | 960–1050% increase in 3. 690–715% increase in | No |
Thompson et al. [50] | 2018 | Recreationally active | C | 12.8 mmol/day (2 × 70 mL) for 28 days | 358.4 | 2.5 | Beet it, James White Drinks Ltd., Ipswich, UK | 559% increase in | No |
Wylie et al. [22] | 2013 | Recreationally active | C | 7 × 70 mL (4.1 mmol). Around 29 mmol in 36 h | 29 | 2.5 and 1.5 | Beet it, James White Drinks Ltd., Ipswich, UK | 2972% increase in . 395% increase in | Yes |
Wylie et al. [8] | 2016 | Recreationally active | C | 8.2 mmol/day (2 × 70 mL) for 5 days. Test day 2 × 70 mL, and post-test 70 mL | 49.2 | 2.5 and post test | Beet It, James White Drinks Ltd., Ipswich, UK | 238% increase in | Yes |
Product | Beet It Sport Nitrate 400 Shot a | Beet It Organic Beetroot Juice b | Pajottenlander Red Beetroot Juice c | Beetroot Juice |
---|---|---|---|---|
Energy | 88 kcal/373 kJ | 32 kcal/142 kJ | 43 kcal/181 KJ | 95 kcal/399 kJ 1 |
Protein | 3.7 g | 0.8 g | 1.0 g | 0.7 g 1 |
Total Fat | 0.0 g | 0.0 g | <0.5 g | 0.2 g 1 |
Carbohydrate | 18.0 g | 7.6 g | 8.5 g | 22.6 g 1 |
Total Sugars | 17.0 g | 6.8 g | 7.0 g | 12.1 g 1 |
Sodium | 480 mg | 80 mg | 50 mg | 43.9 mg 2 |
Nitrate | 571 mg (400 mg per 70 mL) | 80 mg | Not declared | 99.2 mg 1 |
Ingredients | Concentrated beetroot juice (98%), lemon juice (2%); made from concentrates. | Organic redbeet juice (90%), organic apple juice (10%); not from concentrate. | 100% lactofermented red beetroot juice | Beetroot Juice |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, T.H.; Sim, A.; Burns, S.F. The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3674. https://doi.org/10.3390/nu13113674
Wong TH, Sim A, Burns SF. The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis. Nutrients. 2021; 13(11):3674. https://doi.org/10.3390/nu13113674
Chicago/Turabian StyleWong, Tak Hiong, Alexiaa Sim, and Stephen F. Burns. 2021. "The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis" Nutrients 13, no. 11: 3674. https://doi.org/10.3390/nu13113674
APA StyleWong, T. H., Sim, A., & Burns, S. F. (2021). The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis. Nutrients, 13(11), 3674. https://doi.org/10.3390/nu13113674