α1-Acid Glycoprotein and Dietary Intake in End-Stage Renal Disease Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Participants
2.2. Clinical and Nutritional Assessment
2.3. Laboratory Tests and Calculations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, A.R.; Grams, M.E.; Ballew, S.; Bilo, H.; Correa, A.; Evans, M.; Gutierrez, O.M.; Hosseinpanah, F.; Iseki, K.; Kenealy, T.; et al. Adiposity and risk of decline in glomerular filtration rate: Meta-analysis of individual participant data in a global consortium on behalf of the CKD Prognosis Consortium (CKD-PC). BMJ 2019, 364, k5301. [Google Scholar] [CrossRef] [Green Version]
- Rhee Connie, M.; Ahmadi, S.-F.; Kamyar, K.-Z. The dual roles of obesity in chronic kidney disease: A review of the current literature. Curr. Opin. Nephrol. Hypertens. 2016, 25, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Nurmohamed, S.A.; Nubé, M.J. Reverse epidemiology: Paradoxical observations in haemodialysis patients. Neth. J. Med. 2005, 63, 376–381. [Google Scholar] [PubMed]
- Kalantar-Zadeh, K.; Block, G.; Humphreys, M.H.; Kopple, J.D. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003, 63, 793–808. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R. Response to Body Mass Index-Mortality Paradox in Hemodialysis: Can It Be Explained by Blood Pressure? Hypertension 2012, 59, 1014–1020. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Abbott, K.; Salahudeen, A.K.; Kilpatrick, R.D.; Horwich, T.B. Survival advantages of obesity in dialysis patients. Am. J. Clin. Nutr. 2005, 81, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.-S.; Kim, H.-S.; Kim, J.K.; Park, M.; Choi, S.J. Nutritional Status and Dietary Management According to Hemodialysis Duration. Clin. Nutr. Res. 2019, 8, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Heimbürger, O.; Lindholm, B.; Kaysen, G.A.; Bergström, J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrol. Dial. Transplant. 2000, 15, 953–960. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmann, M.K.; Levin, N.W. Potential Interplay between Nutrition and Inflammation in Dialysis Patients. Contrib. Nephrol. 2008, 161, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Codoceo, R.; Bajo, M.A.; Iglesias, P.; Díez, J.J.; Barril, G.; Cigarrán, S.; Alvarez, V.; Celadilla, O.; Fernandez-Perpen, A.; et al. Eating Behavior Disorders in Uremia: A Question of Balance in Appetite Regulation. Semin. Dial. 2004, 17, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Block, G.; McAllister, C.J.; Humphreys, M.H.; Kopple, J.D. Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am. J. Clin. Nutr. 2004, 80, 299–307. [Google Scholar] [CrossRef]
- Ligresti, G.; Aplin, A.; Dunn, B.E.; Morishita, A.; Nicosia, R.F. The Acute Phase Reactant Orosomucoid-1 Is a Bimodal Regulator of Angiogenesis with Time-and Context-Dependent Inhibitory and Stimulatory Properties. PLoS ONE 2012, 7, e41387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfadda, A.A.; Fatma, S.; Chishti, M.A.; Al-Naami, M.Y.; Elawad, R.; Mendoza, C.D.O.; Jo, H.; Lee, Y.S. Orosomucoid serum concentrations and fat depot-specific mRNA and protein expression in humans. Mol. Cells 2011, 33, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Yang, Y.; Qin, Z.; Cai, J.; Guo, X.; Tang, Y.; Wan, J.; Su, D.-F.; Liu, X. The Acute-Phase Protein Orosomucoid Regulates Food Intake and Energy Homeostasis via Leptin Receptor Signaling Pathway. Diabetes 2016, 65, 1630–1641. [Google Scholar] [CrossRef] [Green Version]
- Agra, R.M.; Varela-Román, A.; Ferreiro, R.G.; Viñuela, J.E.; Castro-Pais, A.; Fernández-Trasancos, Á.; Díaz-Rodríguez, E.; Álvarez, E.; Carreira, M.C.; Casanueva, F.F.; et al. Orosomucoid as prognosis factor associated with inflammation in acute or nutritional status in chronic heart failure. Int. J. Cardiol. 2017, 228, 488–494. [Google Scholar] [CrossRef]
- Lee, Y.S.; Choi, J.W.; Hwang, I.; Lee, J.W.; Lee, J.H.; Kim, A.Y.; Huh, J.Y.; Koh, Y.J.; Koh, G.Y.; Son, H.J.; et al. Adipocytokine Orosomucoid Integrates Inflammatory and Metabolic Signals to Preserve Energy Homeostasis by Resolving Immoderate Inflammation. J. Biol. Chem. 2010, 285, 22174–22185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Streja, E.; Rhee, C.M.; Soohoo, M.; Feng, M.; Brunelli, S.M.; Kovesdy, C.P.; Gillen, D.; Kalantar-Zadeh, K.; Chen, J.L.T. Lean Body Mass and Survival in Hemodialysis Patients and the Roles of Race and Ethnicity. J. Ren. Nutr. 2016, 26, 26–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maraj, M.; Hetwer, P.; Dumnicka, P.; Ceranowicz, P.; Mazur-Laskowska, M.; Ząbek-Adamska, A.; Warzecha, Z.; Kuśnierz-Cabala, B.; Kuźniewski, M. Acute Phase Proteins and Vitamin D Seasonal Variation in End-Stage Renal Disease Patients. J. Clin. Med. 2020, 9, 807. [Google Scholar] [CrossRef] [Green Version]
- Daugirdas, J.T. Second generation logarithmic estimates of single-pool variable volume Kt/V: An analysis of error. J. Am. Soc. Nephrol. 1993, 4, 1205–1213. [Google Scholar] [CrossRef]
- Garred, L.J.; Tang, W.; Barichello, D.L.; Canaud, B. Equations for the Calculation of the Protein Catabolic Rate from Predialysis and Postdialysis Urea Concentrations and Residual Renal Clearance in Stable Hemodialysis Patients. Blood Purif. 1997, 15, 157–168. [Google Scholar] [CrossRef]
- Yanai, M.; Satomura, A.; Uehara, Y.; Murakawa, M.; Takeuchi, M.; Kumasaka, K. Circannual Rhythm of Laboratory Test Parameters among Chronic Haemodialysis Patients. Blood Purif. 2008, 26, 196–203. [Google Scholar] [CrossRef] [PubMed]
- A Cahill, S.P.; Tuplin, E.; Holahan, M.R. Circannual changes in stress and feeding hormones and their effect on food-seeking behaviors. Front. Neurosci. 2013, 7, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.-J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia Dla Populacji Polski I Ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego, Państwowy Zakład Higieny: Warszawa, Poland, 2020; ISBN 9788365870285. [Google Scholar]
- Piccoli, G.B.; Moio, M.R.; Fois, A.; Sofronie, A.; Gendrot, L.; Cabiddu, G.; D’Alessandro, C.; Cupisti, A. The Diet and Haemodialysis Dyad: Three Eras, Four Open Questions and Four Paradoxes. A Narrative Review, Towards a Personalized, Patient-Centered Approach. Nutrients 2017, 9, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waheed, A.A.; Pedraza, F.; Lenz, O.; Isakova, T. Phosphate control in end-stage renal disease: Barriers and opportunities. Nephrol. Dial. Transplant. 2013, 28, 2961–2968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moe, S.M.; Zidehsarai, M.P.; Chambers, M.A.; Jackman, L.A.; Radcliffe, J.S.; Trevino, L.L.; Donahue, S.E.; Asplin, J.R. Vegetarian Compared with Meat Dietary Protein Source and Phosphorus Homeostasis in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowska, M.; Rutkowski, B.; Dębska-Ślizień, A. Vitamins and Microelement Bioavailability in Different Stages of Chronic Kidney Disease. Nutrients 2017, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Bresnahan, K.A.; Tanumihardjo, S.A. Undernutrition, the Acute Phase Response to Infection, and Its Effects on Micronutrient Status Indicators. Adv. Nutr. 2014, 5, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Makoff, R.; Dwyer, J.; Rocco, M.V. Folic acid, pyridoxine, cobalamin, and homocysteine and their relationship to cardiovascular disease in end-stage renal disease. J. Ren. Nutr. 1996, 6, 2–11. [Google Scholar] [CrossRef]
- Makoff, R. Water-Soluble Vitamin Status in Patients with Renal Disease Treated with Hemodialysis or Peritoneal Dialysis. J. Ren. Nutr. 1991, 1, 56–73. [Google Scholar] [CrossRef]
- K/DOQI, National Kidney Foundation clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2000, 35, S17–S104. [CrossRef]
- Zhang, Y.; Coello, P.A.; Brożek, J.; Wiercioch, W.; Etxeandia-Ikobaltzeta, I.; Akl, E.A.; Meerpohl, J.J.; Alhazzani, W.; Carrasco-Labra, A.; Morgan, R.L.; et al. Using patient values and preferences to inform the importance of health outcomes in practice guideline development following the GRADE approach. Health Qual. Life Outcomes 2017, 15, 1–10. [Google Scholar] [CrossRef]
- Lopes, A.A. The Malnutrition-Inflammation Score: A Valid Nutritional Tool to Assess Mortality Risk in Kidney Transplant Patients. Am. J. Kidney Dis. 2011, 58, 7–9. [Google Scholar] [CrossRef]
- Dessì, M.; Noce, A.; Agnoli, A.; De Angelis, S.; Fuiano, L.; Tozzo, C.; Taccone-Gallucci, M.; Fuiano, G.; Federici, G. The usefulness of the prognostic inflammatory and nutritional index (PINI) in a haemodialysis population. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 811–815. [Google Scholar] [CrossRef]
- Kundin, W.D.; Mechali, P.; Hollinshead, A.C.; Miller, H.; Bensimon, H. Cancer serum index: A useful nonspecific test as a parameter in multimodality screening and assessment of patients with cancer of the prostate. Prostate 1981, 2, 207–217. [Google Scholar] [CrossRef]
- Lopes, A.A.; Elder, S.J.; Ginsberg, N.; Andreucci, V.E.; Cruz, J.M.; Fukuhara, S.; Mapes, D.L.; Saito, A.; Pisoni, R.L.; Saran, R.; et al. Lack of appetite in haemodialysis patients associations with patient characteristics, indicators of nutritional status and outcomes in the international DOPPS. Nephrol. Dial. Transplant. 2007, 22, 3538–3546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.E.; Laing, D.G.; Wilkes, F.J.; Kainer, G. Smell and taste function in children with chronic kidney disease. Pediatr. Nephrol. 2010, 25, 1497–1504. [Google Scholar] [CrossRef]
- Burge, J.C.; Schemmel, R.A.; Park, H.S.; Greene, J.A. Taste acuity and zinc status in chronic renal disease. J. Am. Diet. Assoc. 1984, 84, 1203–1206. [Google Scholar] [CrossRef]
- Dobell, E.; Chan, M.; Williams, P.; Allman, M. Food preferences and food habits of patients with chronic renal failure undergoing dialysis. J. Am. Diet. Assoc. 1993, 93, 1129–1135. [Google Scholar] [CrossRef]
- Carrero, J.J.; Aguilera, A.; Stenvinkel, P.; Gil, F.; Selgas, R.; Lindholm, B. Appetite Disorders in Uremia. J. Ren. Nutr. 2008, 18, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, A.; Selgas, R.; Codoceo, R.; Bajo, A. Uremic Anorexia: A Consequence of Persistently High Brain Serotonin Levels? The Tryptophan/Serotonin Disorder Hypothesis. Perit. Dial. Int. 2000, 20, 810–816. [Google Scholar] [CrossRef]
- Mak, R.H.; Cheung, W.; Cone, R.D.; Marks, D.L. Orexigenic and anorexigenic mechanisms in the control of nutrition in chronic kidney disease. Pediatr. Nephrol. 2005, 20, 427–431. [Google Scholar] [CrossRef]
- Carrero, J.J.; Qureshi, A.R.; Axelsson, J.; Avesani, C.M.; Suliman, M.E.; Kato, S.; Bárány, P.; Snaedal-Jonsdottir, S.; Alvestrand, A.; Heimbürger, O.; et al. Comparison of nutritional and inflammatory markers in dialysis patients with reduced appetite. Am. J. Clin. Nutr. 2007, 85, 695–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossola, M.; Tazza, L.; Giungi, S.; Luciani, G. Anorexia in hemodialysis patients: An update. Kidney Int. 2006, 70, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R. Inhibition of growth by pro-inflammatory cytokines: An integrated view. J. Anim. Sci. 1997, 75, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Nordfors, L.; Lönnqvist, F.; Heimbürger, O.; Danielsson, A.; Schalling, M.; Stenvinkel, P. Low leptin gene expression and hyperleptinemia in chronic renal failure. Kidney Int. 1998, 54, 1267–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunfeld, C.; Zhao, C.; Fuller, J.; Pollack, A.; Moser, A.; Friedman, J.; Feingold, K.R. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters: A role for leptin in the anorexia of infection. J. Clin. Investig. 1996, 97, 2152–2157. [Google Scholar] [CrossRef]
- Iikuni, N.; Lam, Q.L.K.; Lu, L.; Matarese, G.; La Cava, A. Leptin and Inflammation. Curr. Immunol. Rev. 2008, 4, 70–79. [Google Scholar] [CrossRef]
- Ceciliani, F.; Lecchi, C. The Immune Functions of α1Acid Glycoprotein. Curr. Protein Pept. Sci. 2019, 20, 505–524. [Google Scholar] [CrossRef] [PubMed]
- Archer, E.; Marlow, M.L.; Lavie, C.J. Controversy and debate: Memory-Based Methods Paper 1: The fatal flaws of food frequency questionnaires and other memory-based dietary assessment methods. J. Clin. Epidemiol. 2018, 104, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.S.; Luiz, R.R.; Hoffman, D.J.; Ferriolli, E.; Pfrimer, K.; Moura, A.S.; Sichieri, R.; A Pereira, R. Misreport of energy intake assessed with food records and 24-h recalls compared with total energy expenditure estimated with DLW. Eur. J. Clin. Nutr. 2016, 70, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
Characteristics | HD Patients (n = 59) |
---|---|
Age, years | 57.9 ± 14.1 |
Female, n (%) | 24 (40.7) |
BMI, kg/m2 | 25.1 ± 5.3 |
Dialysis duration time, months | 67.5 (23–159.5) |
Treatment with phosphate binders, n (%) | 46 (77.9) |
Vitamin D supplementation, n (%) | 25 (42.4) |
Treatment with erythropoietin analogues, n (%) | 28 (47.5) |
Iron supplementation, n (%) | 13 (22.0) |
History of kidney transplantation, n (%) | 12 (20.3) |
Comorbidities: | |
Diabetes, n (%) | 21 (35.6) |
Cardiovascular disease, n (%) | 51 (86.4) |
Dyslipidemia, n (%) | 20 (33.9) |
Hypertension, n (%) | 49 (83.1) |
Physical activity level: | |
Low, n (%) | 47 (79.7) |
Moderate, n (%) | 12 (20.3) |
Kt/V | 1.43 (1.22; 1.62) |
nPCR, g/kg/day | 1.11 ± 0.32 |
Laboratory Parameters | HD Patients (n = 59) | Reference Interval |
---|---|---|
RBC (×106/μL) | W: 3.58 ± 0.39; M: 3.63 (3.44; 3.86) | W: 3.5–5.0; M: 4.5–6.5 |
HGB (g/dL) | W: 11.0 ± 0.9; M: 10.9 ± 1.3 | W: 11.0–15.0; M: 12.0–17.0 |
HCT (%) | W: 34.1 ± 3.2; M: 33.5 ± 3.8 | W: 37.0–47.0; M: 40.0–54.0 |
MCV (fL) | 91.9 (88.8–95.8) | 82.0–92.0 |
MCHC (g/dL) | 32.6 ± 0.8 | 32.0–36.0 |
RDW-CV (%) | 14.8 (13.8; 16.2) | 11.0–15.0 |
PLT (×103/μL) | 193.5 (161.00; 266.50) | 125–340 |
Vitamin D (ng/mL) | 21.44 (14.17; 33.36) | 30–80 |
Albumin (g/L) | 38 (35; 40.5) | 35.0–50.0 |
Prealbumin (g/L) | 0.375 ± 0.112 | 0.2–0.4 |
CRP (mg/L) | 3.87 (1.8; 12.73) | <5.0 |
AGP (g/L) | 1.345 (1.160; 1.615) | 0.5–1.2 |
Calcium (mmol/L) | 2.19 ± 0.22 | 2.15–2.55 |
Phosphate (mmol/L) | 1.68 ± 0.47 | 0.81–1.45 |
iPTH (pg/mL) | 316 (119.5; 636.8) | 15–65 |
Sodium (mmol/L) | 139.2 ± 2.2 | 136–145 |
Potassium (mmol/L) | 5.40 ± 0.71 | 3.5–5.1 |
Iron (μmol/L) | 13.03 ± 4.20 | 5.83–34.5 |
TIBC (μmol/L) | 39.91 ± 9.35 | 40.8–76.6 |
UIBC (μmol/L) | W: 27.06 ± 10.72; M: 29.05 ± 10.09 | W: 24.2–70.1; M: 22.3–61.7 |
sFlt-1 (pg/mL) | 129.8 (117.8; 949.1) | 63.3–108.3 * |
RDA | Diet Content in HD Patients (n = 59) | Patients Who Meet RDA, n (%) | |
---|---|---|---|
Energy (kcal/day) | 25–35 kcal/kg a | 1400.3 ± 401.3 | 8 (14) |
Total protein (g/day) | 1–1.2 g/kg a | 52.5 ± 14.9 | 6 (10) |
Animal protein (g/day) | N/A | 31.9 ± 10.5 | N/A |
Plant protein (g/day) | N/A | 18.7 (14.5; 22.5) | N/A |
Fat (g/day) | 20–35% total energy b | 49.8 ± 16.8 | 13 (22) c 28 (47) d |
Carbohydrates (g/day) | 45–65% total energy b | 189.7 (152.5; 225.9) | 10 (17) c 50 (85) d |
Fiber (g/day) | 19–65 yo: 25 b >65 yo: 20 b | 13.3 ± 3.9 | 1 (2) |
Calcium (mg/day) | Adjust calcium intake with consideration of use of vitamin D analogs and calcimimetics in order to avoid hypercalcemia or calcium overload a | 244.1 (199.0; 341.5) | N/A |
Phosphate (mg/day) | Adjust dietary phosphorus intake to maintain serum phosphate levels in the normal range a | 748.7 ± 217.9 | N/A |
Sodium (mg/day) |
| 1513.9 ± 594.6 | 1. 45 (76) 2. N/A |
Potassium (mg/day) | Adjust dietary potassium intake to maintain serum potassium within the normal range a | 1976.3 ± 564.7 | N/A |
Zinc (mg/day) | W: 8 b | 5.3 ± 1.7 | 7 (30) |
M: 11 b | 7.6 ± 1.7 | 0 (0) | |
Iron (mg/day) | W: 19–50 yo: 18 b >51 yo: 10 b | 6.0 ± 1.8 | 7 (30) |
M: 10 b | 8.0 ± 1.7 | 1 (3) | |
Magnesium (mg/day) | W: 19–30 yo: 310 b >31 yo: 320 b | 146.7 ± 47.0 | 0 (0) |
M: 420 b | 189.9 ± 48.8 | 0 (0) | |
Copper (mg/day) | 0.9 b | 0.73 ± 0.22 | 13 (22) |
Manganese (mg/day) | W: 1.8 b | 2.8 ± 1.1 | 20 (87) |
M: 2.3 b | 3.2 ± 1.0 | 25 (69) | |
Vitamin A (μg/day) | W: 700 b | 579.6 ± 261.8 | 10 (42) |
M: 900 b | 621.3 (417.1; 917.8) | 5 (14) | |
β-carotene (μg/day) | Not defined | 1393.4 (662.3; 292.4) | N/A |
Vitamin B1 (Thiamine) (mg/day) | W: 1.1 b | 0.7 ± 0.2 | 6 (26) |
M: 1.3 b | 1.0 ± 0.3 | 6 (17) | |
Vitamin B2 (Riboflavin) (mg/day) | W: 1.1 b | 0.7 ± 0.2 | 6 (26) |
M: 1.3 b | 1.03 ± 0.28 | 4 (11) | |
Vitamin B3 (Niacin) (mg/day) | W: 14 b | 9.8 ± 2.9 | 11 (48) |
M: 16 b | 14.84 ± 3.39 | 9 (25) | |
Vitamin B6 (mg/day) | W: 19–50 yo: 1.3 b >51 yo: 1.5 b | 1.1 ± 0.3 | 9 (39) |
M: 19–50 yo: 1.3 b >51 yo: 1.7 b | 1.48 ± 0.38 | 9 (25) | |
Vitamin B12 (µg/day) | 2.4 b | 1.73 (1.14; 2.74) | 16 (27) |
Folate (μg/day) | 400 b | 171 ± 51.7 | 0 (0) |
Vitamin C (mg/day) | W: 75 ab | 41.3 (33.2; 68.4) | 6 (26) |
M: 90 ab | 53.7 (40.2; 88.2) | 6 (17) | |
Vitamin D (µg/day) | 15 b | 1.6 (0.88; 2.33) | 1 (2) |
Vitamin E (mg/day) | W: 8 b | 5.2 ± 2.4 | 6 (26) |
M: 10 b | 6.9 ± 2.3 | 1 (3) |
Laboratory Tests | AGP (g/L) | |
---|---|---|
R | p | |
CRP (mg/L) | 0.66 | <0.001 |
PLT (×103/μL) | 0.29 | 0.028 |
Iron (μmol/L) | −0.47 | <0.001 |
TIBC (μmol/L) | −0.30 | 0.023 |
sFlt-1 (pg/mL) | 0.41 | 0.001 |
Independent Variable | Model 1 | Model 2 | ||
---|---|---|---|---|
β ± SE | p | β ± SE | p | |
log (plant protein intake) | −0.04 ± 0.10 | 0.6 | −0.24 ± 0.14 | 0.09 |
log (CRP) | 0.50 ± 0.12 | <0.001 | 0.46 ± 0.13 | 0.001 |
log (PLT) | 0.25 ± 0.10 | 0.016 | 0.21 ± 0.11 | 0.059 |
Iron | −0.16 ± 0.10 | 0.1 | −0.17 ± 0.11 | 0.1 |
log (TIBC) | −0.07 ± 0.11 | 0.5 | −0.13 ± 0.12 | 0.2 |
log (sFlt-1) | 0.08 ± 0.10 | 0.4 | 0.08 ± 0.11 | 0.5 |
Regression model | R2 = 0.55 | <0.001 | R2 = 0.58 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maraj, M.; Hetwer, P.; Kuśnierz-Cabala, B.; Maziarz, B.; Dumnicka, P.; Kuźniewski, M.; Ceranowicz, P. α1-Acid Glycoprotein and Dietary Intake in End-Stage Renal Disease Patients. Nutrients 2021, 13, 3671. https://doi.org/10.3390/nu13113671
Maraj M, Hetwer P, Kuśnierz-Cabala B, Maziarz B, Dumnicka P, Kuźniewski M, Ceranowicz P. α1-Acid Glycoprotein and Dietary Intake in End-Stage Renal Disease Patients. Nutrients. 2021; 13(11):3671. https://doi.org/10.3390/nu13113671
Chicago/Turabian StyleMaraj, Małgorzata, Paulina Hetwer, Beata Kuśnierz-Cabala, Barbara Maziarz, Paulina Dumnicka, Marek Kuźniewski, and Piotr Ceranowicz. 2021. "α1-Acid Glycoprotein and Dietary Intake in End-Stage Renal Disease Patients" Nutrients 13, no. 11: 3671. https://doi.org/10.3390/nu13113671
APA StyleMaraj, M., Hetwer, P., Kuśnierz-Cabala, B., Maziarz, B., Dumnicka, P., Kuźniewski, M., & Ceranowicz, P. (2021). α1-Acid Glycoprotein and Dietary Intake in End-Stage Renal Disease Patients. Nutrients, 13(11), 3671. https://doi.org/10.3390/nu13113671