Changes in Quantity and Sources of Dietary Fiber from Adopting Healthy Low-Fat vs. Healthy Low-Carb Weight Loss Diets: Secondary Analysis of DIETFITS Weight Loss Diet Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Strategy
2.3. Dietary Assessment
2.4. Statistical Analysis
3. Results
3.1. Demographics
3.2. Macronutrients
3.3. Fiber Intake
3.3.1. Fiber Intake by Diet Group—Total and by Major Food Groups
3.3.2. Fiber Intake Change in Similar Direction
3.3.3. Fiber Intake Changes in Opposite Directions
3.3.4. Miscellaneous Sources of Fiber Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kendall, C.W.C.; Esfahani, A.; Jenkins, D.J.A. The link between dietary fibre and human health. Food Hydrocoll. 2010, 24, 42–48. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.M.; Miller, M.J.; Freund, G.G. The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism 2012, 61, 1058–1066. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.B. Plant-based foods and prevention of cardiovascular disease: An overview. Am. J. Clin. Nutr. 2003, 78 (Suppl. 3), 544s–551s. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.; O’Reilly, E.; Augustsson, K.; Fraser, G.E.; Goldbourt, U.; Heitmann, B.L.; Hallmans, G.; Knekt, P.; Liu, S.; Pietinen, P.; et al. Dietary fiber and risk of coronary heart disease: A pooled analysis of cohort studies. Arch. Intern. Med. 2004, 164, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Buil-Cosiales, P.; Zazpe, I.; Toledo, E.; Corella, D.; Salas-Salvado, J.; Diez-Espino, J.; Ros, E.; Fernandez-Creuet Navajas, J.; Santos-Lozano, J.M.; Aros, F.; et al. Fiber intake and all-cause mortality in the Prevencion con Dieta Mediterranea (PREDIMED) study. Am. J. Clin. Nutr. 2014, 100, 1498–1507. [Google Scholar] [CrossRef]
- DGA Committees. Dietary Guidelines for Americans 2020–2025; Government Printing Office: Washington, DC, USA, 2020.
- McKee, L.H.; Latner, T.A. Underutilized sources of dietary fiber: A review. Plant Foods Hum. Nutr. 2000, 55, 285–304. [Google Scholar] [CrossRef]
- McGill, C.R.; Birkett, A.; Fulgonii, V.L., III. Healthy Eating Index-2010 and food groups consumed by US adults who meet or exceed fiber intake recommendations NHANES 2001–2010. Food Nutr. Res. 2016, 60, 29977. [Google Scholar] [CrossRef] [PubMed]
- Bachman, J.L.; Reedy, J.; Subar, A.F.; Krebs-Smith, S.M. Sources of Food Group Intakes among the US Population, 2001–2002. J. Am. Diet. Assoc. 2008, 108, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A.; Hu, T.; Reynolds, K.; Yao, L.; Bunol, C.; Liu, Y.; Chen, C.S.; Klag, M.J.; Whelton, P.K.; He, J. Effects of Low-Carbohydrate and Low-Fat Diets. Ann. Intern. Med. 2014, 161, 309–318. [Google Scholar] [CrossRef]
- Shan, Z.; Guo, Y.; Hu, F.B.; Liu, L.; Qi, Q. Association of low-carbohydrate and low-fat diets with mortality among US adults. JAMA Intern. Med. 2020, 180, 513–523. [Google Scholar] [CrossRef]
- Department of Agriculture (USDA); Department of Health and Human Services (HHS). 2020–2025 Dietary Guidelines for Americans, 9th ed.; Department of Agriculture (USDA); Department of Health and Human Services (HHS): Washington, DC, USA, 2020.
- Gardner, C.D.; Trepanowski, J.F.; Del Gobbo, L.C.; Hauser, M.E.; Rigdon, J.; Ioannidis, J.P.; Desai, M.; King, A.C. Effect of low-fat vs low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: The DIETFITS randomized clinical trial. JAMA J. Am. Med. Assoc. 2018, 319, 667–679. [Google Scholar] [CrossRef]
- Stanton, M.V.; Robinson, J.L.; Kirkpatrick, S.M.; Farzinkhou, S.; Avery, E.C.; Rigdon, J.; Offringa, L.C.; Trepanowski, J.F.; Hauser, M.E.; Hartle, J.C.; et al. DIETFITS study (diet intervention examining the factors interacting with treatment success)—Study design and methods. Contemp. Clin. Trials 2017, 53, 151–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schakel, S.; Buzzard, I.M.; Gebhardt, S.E. Procedures for Estimating Nutrient Values for Food Composition Databases. J. Food Compos. Anal. 1997, 10, 102–114. [Google Scholar] [CrossRef] [Green Version]
- Schakel, S. Maintaining a nutrient database in a changing marketplace: Keeping pace with changing food products—A research perspective. J. Food Compos. Anal. 2001, 14, 315–322. [Google Scholar] [CrossRef]
- Schakel, S.F.; Sievert, Y.A.; Buzzard, I.M. Sources of data for developing and maintaining a nutrient database. J. Am. Diet. Assoc. 1988, 88, 1268–1271. [Google Scholar] [PubMed]
- Dranse, H.J.; Kelly, M.E.; Hudson, B.D. Drugs or diet?—Developing novel therapeutic strategies targeting the free fatty acid family of GPCRs. Br. J. Pharmacol. 2013, 170, 696–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; Available online: https://www.R-project.Org (accessed on 26 November 2019).
- Holscher, H.D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 2017, 8, 172–184. [Google Scholar] [CrossRef]
- Paola Vitaglione, I.M.; Ferracane, R.; Rivellese, A.A.; Giacco, R.; Ercolini, D.; Gibbons, S.M.; la Storia, A.; Gilbert, J.A.; Jonnalagadda, S.; Thielecke, F.; et al. Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: Role of polyphenols bound to cereal dietary fiber. Am. J. Clin. Nutr. 2015, 101, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasane, P.; Jha, A.; Sabikhi, L.; Kumar, A. Unnikrishnan VS. Nutritional advantages of oats and opportunities for its processing as value added foods—A review. J. Food Sci. Technol. 2015, 52, 662–675. [Google Scholar] [CrossRef] [Green Version]
- Cooper, R. Re-Discovering Ancient Wheat Varieties as Functional Foods. J. Tradit. Complement. Med. 2015, 5, 138–143. [Google Scholar] [CrossRef] [Green Version]
- US Department of Agriculture. USDA Food Composition Databases; Agricultural Research Services: Washington, DC, USA, 2018.
- Sharma, S.; Cruickshank, J.K.; Green, D.M.; Vik, S.; Tome, A.; Kolonel, L.N. Impact of diet on mortality from stroke: Results from the U.S. multiethnic cohort study. J. Am. Coll. Nutr. 2013, 32, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Vik, S.; Kolonel, L.N. Fruit and vegetable consumption, ethnicity and risk of fatal ischemic heart disease. J. Nutr. Health Aging 2014, 18, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Chan, D.S.; Vieira, A.R.; Rosenblatt, D.A.; Vieira, R.; Greenwood, D.C.; Norat, T. Fruits, vegetables and breast cancer risk: A systematic review and meta-analysis of prospective studies. Breast Cancer Res. Treat. 2012, 134, 479–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellavia, A.; Larsson, S.C.; Bottai, M.; Wolk, A.; Orsini, N. Fruit and vegetable consumption and all-cause mortality: A dose-response analysis. Am. J. Clin. Nutr. 2013, 98, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Muller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature 2016, 535, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Francescone, R.; Hou, V.; Grivennikov, S.I. Microbiome, inflammation, and cancer. Cancer J. 2014, 20, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Klurfeld, D.M.; Davis, C.D.; Karp, R.W.; Allen-Vercoe, E.; Chang, E.B.; Chassaing, B.; Fahey, G.C., Jr.; Hamaker, B.R.; Holscher, H.D.; Lampe, J.W. Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome. Am. J. Physiol.-Endocrinol. Metab. 2018, 315, E1087–E1097. [Google Scholar] [CrossRef] [PubMed]
- Martens, E.C. Fibre for the future. Nature 2016, 529, 158–159. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.A.; Grant, L.J.; Gidley, M.J.; Mikkelsen, D. Gut fermentation of dietary fibres: Physico-chemistry of plant cell walls and implications for health. Int. J. Mol. Sci. 2017, 18, 2203. [Google Scholar] [CrossRef] [Green Version]
- Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Wang, J.; Sailer, M.; Theis, S.; Verbeke, K.; Raes, J. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 2017, 66, 1968–1974. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Tuncil, Y.E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 2014, 426, 3838–3850. [Google Scholar] [CrossRef] [PubMed]
- Office of Nutrition and Food Labeling. Review of the Scientific Evidence on the Physiological Effects of Certain Non-Digestible Carbohydrates; U.S. Food & Drug Administration, Ed.; 2018. Available online: https://www.fda.gov/food/food-labeling-nutrition/review-scientific-evidence-physiological-effects-certain-non-digestible-carbohydrates (accessed on 12 October 2021).
- Li, F.; Hullar, M.A.; Schwarz, Y.; Lampe, J.W. Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit- and vegetable-free diet. J. Nutr. 2009, 139, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Holscher, H.D.; Guetterman, H.M.; Swanson, K.S.; An, R.; Matthan, N.R.; Lichtenstein, A.H.; Novotny, J.A.; Baer, D.J. Walnut consumption alters the gastrointestinal microbiota, microbially derived secondary bile acids, and health markers in healthy adults: A randomized controlled trial. J. Nutr. 2018, 148, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Yang, J.; Woo, S.L.; Lee, R.-P.; Huang, J.; Rasmusen, A.; Carpenter, C.L.; Thames, G.; Gilbuena, I.; Tseng, C.-H. Hass avocado inclusion in a weight-loss diet supported weight loss and altered gut microbiota: A 12-week randomized, parallel-controlled trial. Curr. Dev. Nutr. 2019, 3, nzz068. [Google Scholar] [CrossRef] [Green Version]
- Fragiadakis, G.K.; Wastyk, H.C.; Robinson, J.L.; Sonnenburg, E.D.; Sonnenburg, J.L.; Gardner, C.D. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. Am. J. Clin. Nutr. 2020, 111, 1127–1136. [Google Scholar] [CrossRef]
- Weber, J.; Reid, P.; Greaves, K.; DeLany, J.; Stanford, V.; Going, S.; Howell, W.; Houtkooper, L. Validity of self-reported energy intake in lean and obese young women, using two nutrient databases, compared with total energy expenditure assessed by doubly labeled water. Eur. J. Clin. Nutr. 2001, 55, 940–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Robinson, J.L.; Gardner, C.D.; Hall, K.D. Objective versus Self-Reported Energy Intake Changes During Low-Carbohydrate and Low-Fat Diets. Obesity 2019, 27, 420–426. [Google Scholar] [CrossRef] [PubMed]
HLF 2 (n = 305) | HLC 3 (n = 304) | |
---|---|---|
Sex | ||
Women | 167 (54.8%) | 179 (58.9%) |
Men | 138 (45.2%) | 125 (41.1%) |
Age | 39.3 (±6.8) | 40.2 (±6.7) |
Education | ||
Less than high school | 2 (0.7%) | 4 (1.3%) |
High school graduate | 5 (1.6%) | 11 (3.6%) |
Some college | 63 (20.7%) | 67 (22.0%) |
College graduate or more | 234 (76.7%) | 221 (72.7%) |
Missing | 1 (0.3%) | 1 (0.3%) |
Race/ethnicity4 | ||
White | 176 (57.7%) | 182 (59.9%) |
Hispanic | 67 (22.0%) | 61 (20.1%) |
Asian | 30 (9.8%) | 30 (9.9%) |
African American | 10 (3.3%) | 13 (4.3%) |
AI/AN/PI | 3 (1.0%) | 0 (0.0%) |
Other | 19 (6.2%) | 18 (5.9%) |
Weight (kg) | ||
Women | 90.7 (±11.5) | 88.9 (±12.5) |
Men | 105.7 (±13.9) | 106.8 (±13.7) |
Total | 97.5 (±14.7) | 96.3 (±15.7) |
BMI (kg/m2) | ||
Women | 33.3 (±3.4) | 32.9 (±3.4) |
Men | 33.5 (±3.4) | 33.8 (±3.4) |
Total | 33.4 (±3.4) | 33.3 (±3.4) |
Body fat (%) | ||
Women | 41.0 (±3.9) | 40.4 (±4.0) |
Men | 29.9 (±4.5) | 30.3 (±4.7) |
Total | 36.3 (±6.9) | 36.5 (±6.6) |
Missing | 77 (25.2%) | 66 (21.7%) |
HLC | HLF | HLC Minus HLF | p-Value 1 | |
---|---|---|---|---|
Total fiber (g) | ||||
Baseline | 21.63 (20.61, 22.65) | 22.01 (21, 23.03) | −0.38 (−1.82, 1.06) | 0.6049 |
3-month change | −5.7 (−6.76, −4.63) | 2.07 (1.01, 3.13) | −7.77 (−9.27, −6.26) | <0.0001 |
6-month change | −4.62 (−5.72, −3.53) | 1.46 (0.35, 2.58) | −6.09 (−7.65, −4.53) | <0.0001 |
12-month change | −3.29 (−4.42, −2.15) | 0.33 (−0.81, 1.47) | −3.61 (−5.22, −2) | <0.0001 |
Fiber per 1000 calories (g/1000 kcal) | ||||
Baseline | 10.1 (9.55, 10.65) | 10.57 (10.01, 11.12) | −0.46 (−1.24, 0.32) | 0.2451 |
3-month change | 0.36 (−0.24, 0.97) | 5.65 (5.05, 6.26) | −5.29 (−6.14, −4.43) | <0.0001 |
6-month change | 0.9 (0.27, 1.52) | 4.54 (3.91, 5.17) | −3.64 (−4.53, −2.76) | <0.0001 |
12-month change | 1.14 (0.5, 1.79) | 3.13 (2.48, 3.77) | −1.98 (−2.9, −1.07) | <0.0001 |
Vegetables (g) | ||||
Baseline | 3.79 (3.4, 4.18) | 3.48 (3.09, 3.87) | 0.31 (−0.24, 0.86) | 0.274 |
3-month change | 1.63 (1.17, 2.09) | 1.01 (0.55, 1.47) | 0.63 (−0.02, 1.28) | 0.0586 |
6-month change | 1.68 (1.2, 2.15) | 1.29 (0.81, 1.77) | 0.39 (−0.29, 1.06) | 0.2598 |
12-month change | 1.22 (0.73, 1.71) | 0.57 (0.08, 1.06) | 0.65 (−0.05, 1.34) | 0.0673 |
Refined grains (g) | ||||
Baseline | 2.65 (2.46, 2.84) | 2.91 (2.72, 3.1) | −0.26 (−0.53, 0) | 0.0515 |
3-month change | −1.58 (−1.83, −1.34) | −0.79 (−1.04, −0.55) | −0.79 (−1.14, −0.44) | <0.0001 |
6-month change | −1.32 (−1.58, −1.07) | −0.68 (−0.94, −0.43) | −0.64 (−1, −0.28) | 0.0004 |
12-month change | −1.35 (−1.61, −1.09) | −1.03 (−1.3, −0.77) | −0.31 (−0.68, 0.06) | 0.0964 |
Whole grains (g) | ||||
Baseline | 2.13 (1.84, 2.41) | 2.92 (2.64, 3.21) | −0.79 (−1.2, −0.39) | 0.0001 |
3-month change | −1.21 (−1.58, −0.84) | 0.57 (0.2, 0.94) | −1.78 (−2.3, −1.26) | <0.0001 |
6-month change | −0.81 (−1.19, −0.43) | 0.65 (0.27, 1.04) | −1.46 (−2, −0.92) | <0.0001 |
12-month change | −0.94 (−1.33, −0.55) | 0.9 (0.51, 1.29) | −1.84 (−2.39, −1.29) | <0.0001 |
Some whole grains (g) | ||||
Baseline | 0.76 (0.54, 0.97) | 0.88 (0.66, 1.09) | −0.12 (−0.42, 0.19) | 0.4516 |
3-month change | −0.55 (−0.8, −0.3) | 0.15 (−0.1, 0.4) | −0.7 (−1.05, −0.35) | 0.0001 |
6-month change | −0.5 (−0.76, −0.25) | 0.19 (−0.07, 0.45) | −0.69 (−1.05, −0.32) | 0.0002 |
12-month change | −0.36 (−0.63, −0.1) | 0.21 (−0.06, 0.47) | −0.57 (−0.94, −0.19) | 0.0029 |
Protein/fat (g) | ||||
Baseline | 1.8 (1.56, 2.04) | 1.44 (1.2, 1.67) | 0.36 (0.03, 0.7) | 0.0346 |
3-month change | 0.91 (0.61, 1.22) | −0.56 (−0.87, −0.26) | 1.48 (1.05, 1.9) | <0.0001 |
6-month change | 0.83 (0.52, 1.14) | −0.38 (−0.69, −0.06) | 1.21 (0.76, 1.65) | <0.0001 |
12-month change | 0.8 (0.48, 1.12) | −0.5 (−0.82, −0.17) | 1.3 (0.84, 1.75) | <0.0001 |
Fruits (g) | ||||
Baseline | 2.64 (2.34, 2.94) | 2.97 (2.67, 3.28) | −0.33 (−0.76, 0.1) | 0.1288 |
3-month change | −0.37 (−0.73, −0.01) | 0.71 (0.35, 1.08) | −1.08 (−1.6, −0.57) | <0.0001 |
6-month change | −0.35 (−0.72, 0.02) | 0.38 (0, 0.76) | −0.73 (−1.26, −0.19) | 0.0075 |
12-month change | −0.23 (−0.62, 0.16) | 0.34 (−0.05, 0.72) | −0.57 (−1.11, −0.02) | 0.0428 |
Legumes (g) | ||||
Baseline | 1.18 (0.87, 1.48) | 2.14 (1.83, 2.44) | −0.96 (−1.4, −0.52) | <0.0001 |
3-month change | −0.47 (−0.86, −0.08) | −0.05 (−0.43, 0.34) | −0.42 (−0.97, 0.12) | 0.1288 |
6-month change | −0.36 (−0.76, 0.04) | 0.03 (−0.37, 0.43) | −0.39 (−0.95, 0.18) | 0.1771 |
12-month change | −0.34 (−0.75, 0.07) | 0.21 (−0.2, 0.62) | −0.55 (−1.13, 0.03) | 0.0626 |
Dairy (g) | ||||
Baseline | 0.53 (0.43, 0.64) | 0.66 (0.55, 0.76) | −0.13 (−0.27, 0.02) | 0.0989 |
3-month change | −0.1 (−0.23, 0.03) | 0.2 (0.06, 0.33) | −0.3 (−0.49, −0.11) | 0.0021 |
6-month change | −0.15 (−0.29, −0.01) | 0.34 (0.2, 0.48) | −0.49 (−0.68, −0.29) | <0.0001 |
12-month change | −0.11 (−0.25, 0.03) | 0.26 (0.12, 0.4) | −0.37 (−0.57, −0.17) | 0.0003 |
Potatoes/starch (g) | ||||
Baseline | 1.12 (0.98, 1.26) | 1.09 (0.95, 1.24) | 0.03 (−0.17, 0.23) | 0.7849 |
3-month change | −0.44 (−0.63, −0.24) | −0.07 (−0.27, 0.12) | −0.36 (−0.63, −0.09) | 0.0091 |
6-month change | −0.39 (−0.59, −0.2) | −0.25 (−0.45, −0.05) | −0.14 (−0.42, 0.14) | 0.3148 |
12-month change | −0.34 (−0.55, −0.14) | −0.06 (−0.26, 0.14) | −0.28 (−0.57, 0) | 0.0539 |
Sweets (g) | ||||
Baseline | 0.43 (0.37, 0.49) | 0.39 (0.33, 0.45) | 0.03 (−0.05, 0.12) | 0.4531 |
3-month change | −0.16 (−0.24, −0.08) | −0.19 (−0.27, −0.1) | 0.03 (−0.09, 0.15) | 0.6253 |
6-month change | −0.14 (−0.22, −0.05) | −0.09 (−0.18, −0.01) | −0.05 (−0.17, 0.07) | 0.4614 |
12-month change | −0.15 (−0.24, −0.06) | −0.11 (−0.2, −0.02) | −0.04 (−0.17, 0.08) | 0.4983 |
Beverages (g) | ||||
Baseline | 1.06 (0.94, 1.18) | 0.87 (0.75, 0.99) | 0.19 (0.02, 0.36) | 0.0311 |
3-month change | 0.11 (0.01, 0.21) | −0.01 (−0.11, 0.09) | 0.12 (−0.02, 0.26) | 0.0876 |
6-month change | 0.13 (0.02, 0.23) | 0.04 (−0.06, 0.14) | 0.08 (−0.06, 0.23) | 0.2551 |
12-month change | 0.12 (0.02, 0.23) | −0.02 (−0.13, 0.08) | 0.15 (0, 0.3) | 0.0531 |
Miscellaneous (g) | ||||
Baseline | 0.19 (0.11, 0.28) | 0.2 (0.12, 0.29) | −0.01 (−0.13, 0.11) | 0.8782 |
3-month change | −0.07 (−0.18, 0.05) | −0.04 (−0.15, 0.08) | −0.03 (−0.2, 0.13) | 0.7128 |
6-month change | 0.05 (−0.07, 0.17) | 0.01 (−0.11, 0.14) | 0.04 (−0.13, 0.21) | 0.6753 |
12-month change | −0.03 (−0.16, 0.09) | −0.02 (−0.14, 0.11) | −0.02 (−0.19, 0.16) | 0.8619 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Offringa, L.C.; Hartle, J.C.; Rigdon, J.; Gardner, C.D. Changes in Quantity and Sources of Dietary Fiber from Adopting Healthy Low-Fat vs. Healthy Low-Carb Weight Loss Diets: Secondary Analysis of DIETFITS Weight Loss Diet Study. Nutrients 2021, 13, 3625. https://doi.org/10.3390/nu13103625
Offringa LC, Hartle JC, Rigdon J, Gardner CD. Changes in Quantity and Sources of Dietary Fiber from Adopting Healthy Low-Fat vs. Healthy Low-Carb Weight Loss Diets: Secondary Analysis of DIETFITS Weight Loss Diet Study. Nutrients. 2021; 13(10):3625. https://doi.org/10.3390/nu13103625
Chicago/Turabian StyleOffringa, Lisa C., Jennifer C. Hartle, Joseph Rigdon, and Christopher D. Gardner. 2021. "Changes in Quantity and Sources of Dietary Fiber from Adopting Healthy Low-Fat vs. Healthy Low-Carb Weight Loss Diets: Secondary Analysis of DIETFITS Weight Loss Diet Study" Nutrients 13, no. 10: 3625. https://doi.org/10.3390/nu13103625
APA StyleOffringa, L. C., Hartle, J. C., Rigdon, J., & Gardner, C. D. (2021). Changes in Quantity and Sources of Dietary Fiber from Adopting Healthy Low-Fat vs. Healthy Low-Carb Weight Loss Diets: Secondary Analysis of DIETFITS Weight Loss Diet Study. Nutrients, 13(10), 3625. https://doi.org/10.3390/nu13103625