Risk Factors for Failure of Direct Oral Feeding Following a Totally Minimally Invasive Esophagectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Perioperative Procedure
2.3. Definitions
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Postoperative Outcomes
3.3. Nutritional Protocol Deviation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Voeten, D.M.; den Bakker, C.M.; Heineman, D.J.; Ket, J.C.F.; Daams, F.; van der Peet, D.L. Definitive Chemoradiotherapy Versus Trimodality Therapy for Resectable Oesophageal Carcinoma: Meta-analyses and Systematic Review of Literature. World J. Surg. 2019, 43, 1271–1285. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qin, J.; Jing, S.; Liu, Q.; Cheng, Y.; Wang, Y.; Cao, F. Clinical complete response after chemoradiotherapy for carcinoma of thoracic esophagus: Is esophagectomy always necessary? A systematic review and meta-analysis. Thorac. Cancer 2018, 9, 1638–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Liu, H.; Diao, C.; Wang, X.; Gao, M.; Li, Z.; Song, L.; Gao, X.; Han, J.; Wang, F.; et al. Prognosis of surgery combined with different adjuvant therapies in esophageal cancer treatment: A network meta-analysis. Oncotarget 2017, 8, 36339–36353. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb-Vedi, E.; Kauppila, J.H.; Malietzis, G.; Nilsson, M.; Markar, S.R.; Lagergren, J. Long-term Survival in Esophageal Cancer After Minimally Invasive Compared to Open Esophagectomy: A Systematic Review and Meta-analysis. Ann. Surg. 2019, 270, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Yibulayin, W.; Abulizi, S.; Lv, H.; Sun, W. Minimally invasive oesophagectomy versus open esophagectomy for resectable esophageal cancer: A meta-analysis. World J. Surg. Oncol. 2016, 14, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Zhang, L.; Wang, H.; Ma, X.; Shi, B.; Chen, W.; He, J.; Wang, K.; Liu, P.; Ren, Y. Superiority of Minimally Invasive Oesophagectomy in Reducing In-Hospital Mortality of Patients with Resectable Oesophageal Cancer: A Meta-Analysis. PLoS ONE 2015, 10, e0132889. [Google Scholar] [CrossRef] [Green Version]
- Findlay, J.M.; Gillies, R.S.; Millo, J.; Sgromo, B.; Marshall, R.E.; Maynard, N.D. Enhanced recovery for esophagectomy: A systematic review and evidence-based guidelines. Ann. Surg. 2014, 259, 413–431. [Google Scholar] [CrossRef]
- Weijs, T.J.; Berkelmans, G.H.; Nieuwenhuijzen, G.A.; Dolmans, A.C.; Kouwenhoven, E.A.; Rosman, C.; Ruurda, J.P.; van Workum, F.; van Det, M.J.; Silva Corten, L.C.; et al. Immediate Postoperative Oral Nutrition Following Esophagectomy: A Multicenter Clinical Trial. Ann. Thorac. Surg. 2016, 102, 1141–1148. [Google Scholar] [CrossRef] [Green Version]
- Berkelmans, G.H.K.; Fransen, L.F.C.; Dolmans-Zwartjes, A.C.P.; Kouwenhoven, E.A.; van Det, M.J.; Nilsson, M.; Nieuwenhuijzen, G.A.P.; Luyer, M.D.P. Direct Oral Feeding Following Minimally Invasive Esophagectomy (NUTRIENT II trial): An International, Multicenter, Open-label Randomized Controlled Trial. Ann. Surg. 2020, 271, 41–47. [Google Scholar] [CrossRef]
- Fransen, L.F.C.; Janssen, T.; Aarnoudse, M.; Nieuwenhuijzen, G.A.P.; Luyer, M.D.P. Direct Oral Feeding After a Minimally Invasive Esophagectomy: A Single-Center Prospective Cohort Study. Ann. Surg. 2020. [Google Scholar] [CrossRef]
- Klevebro, F.; Johar, A.; Lagergren, J.; Lagergren, P. Outcomes of nutritional jejunostomy in the curative treatment of esophageal cancer. Dis. Esophagus 2019, 32, doy113. [Google Scholar] [CrossRef]
- Weijs, T.J.; Berkelmans, G.H.; Nieuwenhuijzen, G.A.; Ruurda, J.P.; van Hillegersberg, R.; Soeters, P.B.; Luyer, M.D. Routes for early enteral nutrition after esophagectomy. A systematic review. Clin. Nutr. 2015, 34, 1–6. [Google Scholar] [CrossRef]
- Sun, H.B.; Li, Y.; Liu, X.B.; Zhang, R.X.; Wang, Z.F.; Lerut, T.; Liu, C.C.; Fiorelli, A.; Chao, Y.K.; Molena, D.; et al. Early Oral Feeding Following McKeown Minimally Invasive Esophagectomy: An Open-label, Randomized, Controlled, Noninferiority Trial. Ann. Surg. 2018, 267, 435–442. [Google Scholar] [CrossRef]
- Berkelmans, G.H.; van Workum, F.; Weijs, T.J.; Nieuwenhuijzen, G.A.; Ruurda, J.P.; Kouwenhoven, E.A.; van Det, M.J.; Rosman, C.; van Hillegersberg, R.; Luyer, M.D. The feeding route after esophagectomy: A review of literature. J. Thorac. Dis. 2017, 9, S785–S791. [Google Scholar] [CrossRef] [Green Version]
- Han-Geurts, I.J.; Hop, W.C.; Verhoef, C.; Tran, K.T.; Tilanus, H.W. Randomized clinical trial comparing feeding jejunostomy with nasoduodenal tube placement in patients undergoing oesophagectomy. Br. J. Surg. 2007, 94, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Iwaya, T.; Endo, F.; Nikai, H.; Sato, K.; Baba, S.; Chiba, T.; Kimura, T.; Takahara, T.; Nitta, H.; et al. Evaluation of the need for routine feeding jejunostomy for enteral nutrition after esophagectomy. J. Thorac. Dis. 2018, 10, 6854–6862. [Google Scholar] [CrossRef] [PubMed]
- Kidane, B.; Kaaki, S.; Hirpara, D.H.; Shen, Y.C.; Bassili, A.; Allison, F.; Waddell, T.K.; Darling, G.E. Emergency department use is high after esophagectomy and feeding tube problems are the biggest culprit. J. Thorac. Cardiovasc. Surg. 2018, 156, 2340–2348. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Van der Sluis, P.C.; Verhage, R.J.; van der Horst, S.; van der Wal, W.M.; Ruurda, J.P.; van Hillegersberg, R. A new clinical scoring system to define pneumonia following esophagectomy for cancer. Dig. Surg. 2014, 31, 108–116. [Google Scholar] [CrossRef]
- Low, D.E.; Alderson, D.; Cecconello, I.; Chang, A.C.; Darling, G.E.; D’Journo, X.B.; Griffin, S.M.; Holscher, A.H.; Hofstetter, W.L.; Jobe, B.A.; et al. International Consensus on Standardization of Data Collection for Complications Associated with Esophagectomy: Esophagectomy Complications Consensus Group (ECCG). Ann. Surg. 2015, 262, 286–294. [Google Scholar] [CrossRef]
- Berkelmans, G.H.K.; Kingma, B.F.; Fransen, L.F.C.; Nieuwenhuijzen, G.A.P.; Ruurda, J.P.; van Hillegersberg, R.; Luyer, M.D.P. Feeding protocol deviation after esophagectomy: A retrospective multicenter study. Clin. Nutr. 2020, 39, 1258–1263. [Google Scholar] [CrossRef]
- Kamarajah, S.K.; Lin, A.; Tharmaraja, T.; Bharwada, Y.; Bundred, J.R.; Nepogodiev, D.; Evans, R.P.T.; Singh, P.; Griffiths, E.A. Risk factors and outcomes associated with anastomotic leaks following esophagectomy: A systematic review and meta-analysis. Dis. Esophagus 2020, 33, doz089. [Google Scholar] [CrossRef] [Green Version]
- Li, S.J.; Wang, Z.Q.; Li, Y.J.; Fan, J.; Zhang, W.B.; Che, G.W.; Liu, L.X.; Chen, L.Q. Diabetes mellitus and risk of anastomotic leakage after esophagectomy: A systematic review and meta-analysis. Dis. Esophagus 2017, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Molena, D.; Mungo, B.; Stem, M.; Lidor, A.O. Incidence and risk factors for respiratory complications in patients undergoing esophagectomy for malignancy: A NSQIP analysis. Semin. Thorac. Cardiovasc. Surg. 2014, 26, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Schlottmann, F.; Strassle, P.D.; Patti, M.G. Transhiatal vs. Transthoracic Esophagectomy: A NSQIP Analysis of Postoperative Outcomes and Risk Factors for Morbidity. J. Gastrointest. Surg. 2017, 21, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Watanabe, M.; Baba, Y.; Iwagami, S.; Ishimoto, T.; Iwatsuki, M.; Sakamoto, Y.; Miyamoto, Y.; Ozaki, N.; Baba, H. Risk factors for pulmonary complications after esophagectomy for esophageal cancer. Surg. Today 2014, 44, 526–532. [Google Scholar] [CrossRef]
- Gockel, I.; Exner, C.; Junginger, T. Morbidity and mortality after esophagectomy for esophageal carcinoma: A risk analysis. World J. Surg. Oncol. 2005, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Kamarajah, S.K.; Madhavan, A.; Chmelo, J.; Navidi, M.; Wahed, S.; Immanuel, A.; Hayes, N.; Griffin, S.M.; Phillips, A.W. Impact of Smoking Status on Perioperative Morbidity, Mortality, and Long-Term Survival Following Transthoracic Esophagectomy for Esophageal Cancer. Ann. Surg. Oncol. 2021, 28, 4905–4915. [Google Scholar] [CrossRef]
- Yoshida, N.; Nakamura, K.; Kuroda, D.; Baba, Y.; Miyamoto, Y.; Iwatsuki, M.; Hiyoshi, Y.; Ishimoto, T.; Imamura, Y.; Watanabe, M.; et al. Preoperative Smoking Cessation is Integral to the Prevention of Postoperative Morbidities in Minimally Invasive Esophagectomy. World J. Surg. 2018, 42, 2902–2909. [Google Scholar] [CrossRef]
- Hagens, E.R.C.; van Berge Henegouwen, M.I.; Cuesta, M.A.; Gisbertz, S.S. The extent of lymphadenectomy in esophageal resection for cancer should be standardized. J. Thorac. Dis. 2017, 9, S713–S723. [Google Scholar] [CrossRef] [Green Version]
- Ma, G.W.; Situ, D.R.; Ma, Q.L.; Long, H.; Zhang, L.J.; Lin, P.; Rong, T.H. Three-field vs. two-field lymph node dissection for esophageal cancer: A meta-analysis. World J. Gastroenterol. 2014, 20, 18022–18030. [Google Scholar] [CrossRef]
- Ye, T.; Sun, Y.; Zhang, Y.; Zhang, Y.; Chen, H. Three-field or two-field resection for thoracic esophageal cancer: A meta-analysis. Ann. Thorac. Surg. 2013, 96, 1933–1941. [Google Scholar] [CrossRef]
- Herzberg, J.; Strate, T.; Guraya, S.Y.; Honarpisheh, H. Risk factors for anastomotic leakage after surgical resections for esophageal cancer. Langenbeck’s Arch. Surg. 2021, 406, 1859–1866. [Google Scholar] [CrossRef]
- Rutegard, M.; Lagergren, P.; Rouvelas, I.; Lagergren, J. Intrathoracic anastomotic leakage and mortality after esophageal cancer resection: A population-based study. Ann. Surg. Oncol. 2012, 19, 99–103. [Google Scholar] [CrossRef]
- Akizuki, E.; Kimura, Y.; Nobuoka, T.; Imamura, M.; Nagayama, M.; Sonoda, T.; Hirata, K. Reconsideration of postoperative oral intake tolerance after pancreaticoduodenectomy: Prospective consecutive analysis of delayed gastric emptying according to the ISGPS definition and the amount of dietary intake. Ann. Surg. 2009, 249, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Jeong, O.; Ryu, S.Y.; Park, Y.K. Postoperative Functional Recovery after Gastrectomy in Patients Undergoing Enhanced Recovery After Surgery: A Prospective Assessment Using Standard Discharge Criteria. Medicine 2016, 95, e3140. [Google Scholar] [CrossRef]
- Elrazek, A.E.; Elbanna, A.E.; Bilasy, S.E. Medical management of patients after bariatric surgery: Principles and guidelines. World J. Gastrointest. Surg. 2014, 6, 220–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grass, F.; Schafer, M.; Demartines, N.; Hubner, M. Normal Diet within Two Postoperative Days-Realistic or Too Ambitious? Nutrients 2017, 9, 1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, L.; Jia, C.; Rouvelas, I.; Lagergren, P. Risk factors for malnutrition after oesophageal and cardia cancer surgery. Br. J. Surg. 2008, 95, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Takahashi, M.; Urushihara, T.; Nakamura, Y.; Yamada, M.; Lee, S.W.; Tanaka, S.; Miki, A.; Ikeda, M.; Nakada, K. Predictive factors for body weight loss and its impact on quality of life following gastrectomy. World J. Gastroenterol. 2017, 23, 4823–4830. [Google Scholar] [CrossRef] [PubMed]
- Carroll, P.A.; Yeung, J.C.; Darling, G.E. Elimination of Routine Feeding Jejunostomy after Esophagectomy. Ann. Thorac. Surg. 2020, 110, 1706–1713. [Google Scholar] [CrossRef] [PubMed]
- Koterazawa, Y.; Oshikiri, T.; Hasegawa, H.; Yamamoto, M.; Kanaji, S.; Yamashita, K.; Matsuda, T.; Nakamura, T.; Suzuki, S.; Kakeji, Y. Routine placement of feeding jejunostomy tube during esophagectomy increases postoperative complications and does not improve postoperative malnutrition. Dis. Esophagus 2020, 33, doz021. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Devin, C.L.; Pucci, M.J.; Berger, A.C.; Rosato, E.L.; Palazzo, F. Optimal timing and route of nutritional support after esophagectomy: A review of the literature. World J. Gastroenterol. 2019, 25, 4427–4436. [Google Scholar] [CrossRef]
- Van Workum, F.; Stenstra, M.; Berkelmans, G.H.K.; Slaman, A.E.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; van den Wildenberg, F.J.H.; Polat, F.; Irino, T.; Nilsson, M.; et al. Learning Curve and Associated Morbidity of Minimally Invasive Esophagectomy: A Retrospective Multicenter Study. Ann. Surg. 2019, 269, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Claassen, L.; van Workum, F.; Rosman, C. Learning curve and postoperative outcomes of minimally invasive esophagectomy. J. Thorac. Dis. 2019, 11, S777–S785. [Google Scholar] [CrossRef] [PubMed]
- Yerokun, B.A.; Sun, Z.; Yang, C.J.; Gulack, B.C.; Speicher, P.J.; Adam, M.A.; D’Amico, T.A.; Onaitis, M.W.; Harpole, D.H.; Berry, M.F.; et al. Minimally Invasive Versus Open Esophagectomy for Esophageal Cancer: A Population-Based Analysis. Ann. Thorac. Surg. 2016, 102, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauppila, J.H.; Helminen, O.; Kyto, V.; Gunn, J.; Lagergren, J.; Sihvo, E. Short-Term Outcomes Following Minimally Invasive and Open Esophagectomy: A Population-Based Study from Finland and Sweden. Ann. Surg. Oncol. 2018, 25, 326–332. [Google Scholar] [CrossRef]
- Thirunavukarasu, P.; Gabriel, E.; Attwood, K.; Kukar, M.; Hochwald, S.N.; Nurkin, S.J. Nationwide analysis of short-term surgical outcomes of minimally invasive esophagectomy for malignancy. Int. J. Surg. 2016, 25, 69–75. [Google Scholar] [CrossRef]
- Van der Werf, L.R.; Busweiler, L.A.D.; van Sandick, J.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; Dutch Upper, G.I.C.A.g. Reporting National Outcomes After Esophagectomy and Gastrectomy According to the Esophageal Complications Consensus Group (ECCG). Ann. Surg. 2020, 271, 1095–1101. [Google Scholar] [CrossRef]
No Deviation | Deviation from Protocol | ||||
---|---|---|---|---|---|
(n = 116) | (n = 49) | p-Value | |||
Age, years | 65 | (9) | 64 | (8) | 0.600 |
Sex, male | 99 | (85.3) | 32 | (65.3) | 0.004 |
BMI, kg/m2 | 26.1 | (23.4–29.3) | 25.0 | (23.5–29.2) | 0.651 |
Weight loss, kg | 0 | (0–5) | 3 | (0–7) | 0.402 |
Preoperative tube feeding | 25 | (21.6) | 16 | (32.7) | 0.132 |
Smoking history | 92 | (79.3) | 40 | (81.6) | 0.733 |
Active smoker (or quit <1 year) | 33 | (28.7) | 17 | (34.7) | 0.445 |
Alcohol consumption | 0.552 | ||||
Daily | 38 | (33.0) | 15 | (30.6) | |
Weekly | 18 | (15.7) | 5 | (10.2) | |
Comorbidity | 74 | (63.8) | 32 | (65.3) | 0.853 |
Cardiac | 17 | (14.7) | 8 | (16.3) | 0.784 |
Pulmonary | 23 | (19.8) | 11 | (22.4) | 0.704 |
Vascular | 40 | (34.5) | 17 | (34.7) | 0.979 |
Diabetes | 15 | (12.9) | 4 | (8.2) | 0.381 |
Obesity | 25 | (21.6) | 10 | (20.4) | 0.870 |
ASA Class | 0.189 | ||||
II | 86 | (74.1) | 32 | (65.3) | |
III | 27 | (23.3) | 17 | (34.7) | |
IV | 3 | (2.6) | 0 | ||
Histology | 0.082 | ||||
Adenocarcinoma | 105 | (90.5) | 38 | (77.6) | |
Squamous cell carcinoma | 10 | (8.6) | 10 | (20.4) | |
Undifferentiated | 1 | (0.9) | 1 | (2.0) | |
(c)TNM stage | 0.018 | ||||
0 | 1 | (0.9) | 1 | (2.0) | |
I | 4 | (3.4) | 9 | (18.4) | |
II | 22 | (19.0) | 9 | (18.4) | |
III | 61 | (52.6) | 23 | (46.9) | |
IV | 28 | (24.1) | 7 | (14.3) |
OR | 95% CI | p-Value | |
---|---|---|---|
Univariable | |||
Sex (female vs. male) | 3.1 | (1.4–6.8) | 0.005 |
ASA Score (III + IV vs. II) | 1.5 | (0.7–3.1) | 0.252 |
Histology (SCC vs. AC + undifferentiated) | 2.7 | (1.1–7.0) | 0.039 |
Tumor stage (cTNM III + IV vs. 0-II) | 0.5 | (0.2–0.9) | 0.033 |
Preoperative tube feeding (yes vs. no) | 1.8 | (0.8–3.7) | 0.134 |
Multivariable | |||
Sex (female vs. male) | 3.5 | (1.5–8.1) | 0.004 |
ASA Score (III + IV vs. II) | 2.2 | (1.0–4.8) | 0.048 |
Histology (SCC vs. AC + undifferentiated) | 2.4 | (0.9–6.4) | 0.091 |
OR | 95% CI | p-Value | |
---|---|---|---|
Univariable | |||
Sex (female vs. male) | 2.0 | (0.8–5.3) | 0.147 |
ASA Score (III + IV vs. II) | 2.4 | (1.0–5.4) | 0.040 |
Histology (SCC vs. AC + undifferentiated) | 4.3 | (1.6–12.0) | 0.004 |
Tumor stage (cTNM III + IV vs. 0-II) | 0.4 | (0.2–0.9) | 0.032 |
Preoperative tube feeding (yes vs. no) | 1.7 | (0.7–4.2) | 0.217 |
Multivariable | |||
ASA Score (III + IV vs. II) | 2.8 | (1.2–6.8) | 0.019 |
Histology (SCC vs. AC + undifferentiated) | 5.2 | (1.8–15.1) | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janssen, H.J.B.; Gantxegi, A.; Fransen, L.F.C.; Nieuwenhuijzen, G.A.P.; Luyer, M.D.P. Risk Factors for Failure of Direct Oral Feeding Following a Totally Minimally Invasive Esophagectomy. Nutrients 2021, 13, 3616. https://doi.org/10.3390/nu13103616
Janssen HJB, Gantxegi A, Fransen LFC, Nieuwenhuijzen GAP, Luyer MDP. Risk Factors for Failure of Direct Oral Feeding Following a Totally Minimally Invasive Esophagectomy. Nutrients. 2021; 13(10):3616. https://doi.org/10.3390/nu13103616
Chicago/Turabian StyleJanssen, Henricus J. B., Amaia Gantxegi, Laura F. C. Fransen, Grard A. P. Nieuwenhuijzen, and Misha D. P. Luyer. 2021. "Risk Factors for Failure of Direct Oral Feeding Following a Totally Minimally Invasive Esophagectomy" Nutrients 13, no. 10: 3616. https://doi.org/10.3390/nu13103616
APA StyleJanssen, H. J. B., Gantxegi, A., Fransen, L. F. C., Nieuwenhuijzen, G. A. P., & Luyer, M. D. P. (2021). Risk Factors for Failure of Direct Oral Feeding Following a Totally Minimally Invasive Esophagectomy. Nutrients, 13(10), 3616. https://doi.org/10.3390/nu13103616