Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota
Abstract
:1. Introduction
2. High-Amylose Maize
3. β-Glucan
4. Wheat Fiber
5. Pectin
6. Inulin-Type Fructans
7. Soluble Corn Fiber
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hammond, R.A.; Levine, R. The economic impact of obesity in the United States. Diabetes Metab. Syndr. Obes. 2010, 3, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Roberfroid, M.B. Inulin-type fructans: Functional food ingredients. J. Nutr. 2007, 137, 2493S–2502S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, S.J.; Kim, G.; Lim, M.Y.; Song, E.J.; Jung, D.H.; Kum, J.S.; Nam, Y.D.; Park, C.S.; Seo, D.H. The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express 2018, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, F.; Larsen, N.; de Mello Tieghi, T.; Adorno, M.A.T.; Kot, W.; Saad, S.M.I.; Jespersen, L.; Sivieri, K. Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Appl. Microbiol. Biotechnol. 2018, 102, 8827–8840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, E.S.; Byrne, C.S.; Morrison, D.J.; Murphy, K.G.; Preston, T.; Tedford, C.; Garcia-Perez, I.; Fountana, S.; Serrano-Contreras, J.I.; Holmes, E.; et al. Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-over trial. Gut 2019, 68, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- Cluny, N.L.; Eller, L.K.; Keenan, C.M.; Reimer, R.A.; Sharkey, K.A. Interactive effects of oligofructose and obesity predisposition on gut hormones and microbiota in diet-induced obese rats. Obesity 2015, 23, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Neyrinck, A.M.; Fava, F.; Knauf, C.; Burcelin, R.G.; Tuohy, K.M.; Gibson, G.R.; Delzenne, N.M. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 2007, 50, 2374–2383. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Delzenne, N.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef] [Green Version]
- Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013, 45, e66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Régnier, M.; Van Hul, M.; Knauf, C.; Cani, P.D. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J. Endocrinol. 2021, 248, R67–R82. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Yao, Y.; Ju, S.Y. Short chain fatty acids and fecal microbiota abundance in humans with obesity: A systematic review and meta-analysis. Nutrients 2019, 11, 2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roediger, W.E. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982, 83, 424–429. [Google Scholar] [CrossRef]
- Lin, H.V.; Frassetto, A.; Kowalik, E.J., Jr.; Nawrocki, A.R.; Lu, M.M.; Kosinski, J.R.; Hubert, J.A.; Szeto, D.; Yao, X.; Forrest, G.; et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 2012, 7, e35240. [Google Scholar] [CrossRef]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Brooks, L.; Viardot, A.; Tsakmaki, A.; Stolarczyk, E.; Howard, J.K.; Cani, P.D.; Everard, A.; Sleeth, M.L.; Psichas, A.; Anastasovskaj, J.; et al. Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansion to increase satiety. Mol. Metab. 2017, 6, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Fan, C.; Li, P.; Lu, Y.; Chang, X.; Qi, K. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Sci. Rep. 2016, 6, 37589. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Gao, Z.; Zhang, J.; Ye, X.; Xu, A.; Ye, J.; Jia, W. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes 2012, 61, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Licciardi, P.V.; Ververis, K.; Karagiannis, T.C. Histone deacetylase inhibition and dietary short-chain Fatty acids. ISRN Allergy 2011, 2011, 869647. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Bai, J.; Li, M.S.; Zhang, J.Y.; Sun, X.J.; Dong, Y. Supplementation of fermented barley extracts with lactobacillus plantarum dy-1 inhibits obesity via a UCP1-dependent mechanism. Biomed. Environ. Sci. 2019, 32, 578–591. [Google Scholar] [CrossRef] [PubMed]
- Konings, E.; Schoffelen, P.F.; Stegen, J.; Blaak, E.E. Effect of polydextrose and soluble maize fibre on energy metabolism, metabolic profile and appetite control in overweight men and women. Br. J. Nutr. 2014, 111, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Murga-Garrido, S.M.; Hong, Q.; Cross, T.L.; Hutchison, E.R.; Han, J.; Thomas, S.P.; Vivas, E.I.; Denu, J.; Ceschin, D.G.; Tang, Z.Z.; et al. Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome 2021, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Feng, R.; Li, Y.; Lin, S.; Zhang, W.; Li, Y.; Sun, C.; Li, S. Histidine supplementation alleviates inflammation in the adipose tissue of high-fat diet-induced obese rats via the NF-κB- and PPARγ-involved pathways. Br. J. Nutr. 2014, 112, 477–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasaoka, S.; Tsuboyama-Kasaoka, N.; Kawahara, Y.; Inoue, S.; Tsuji, M.; Ezaki, O.; Kato, H.; Tsuchiya, T.; Okuda, H.; Nakajima, S. Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition 2004, 20, 991–996. [Google Scholar] [CrossRef]
- Zhang, J.X.; Lundin, E.; Hallmans, G.; Adlercreutz, H.; Andersson, H.; Bosaeus, I.; Aman, P.; Stenling, R.; Dahlgren, S. Effect of rye bran on excretion of bile acids, cholesterol, nitrogen, and fat in human subjects with ileostomies. Am. J. Clin. Nutr. 1994, 59, 389–394. [Google Scholar] [CrossRef]
- Powthong, P.; Jantrapanukorn, B.; Suntornthiticharoen, P.; Luprasong, C. An In Vitro Study on the Effects of Selected Natural Dietary Fiber from Salad Vegetables for Lowering Intestinal Glucose and Lipid Absorption. Recent. Pat. Food Nutr. Agric. 2021, 12. [Google Scholar] [CrossRef]
- Rebello, C.J.; Chu, Y.F.; Johnson, W.D.; Martin, C.K.; Han, H.; Bordenave, N.; Shi, Y.; O’Shea, M.; Greenway, F.L. The role of meal viscosity and oat beta-glucan characteristics in human appetite control: A randomized crossover trial. Nutr. J. 2014, 13, 49. [Google Scholar] [CrossRef]
- Dikeman, C.L.; Fahey, G.C. Viscosity as related to dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 649–663. [Google Scholar] [CrossRef]
- Keenan, M.J.; Janes, M.; Robert, J.; Martin, R.J.; Raggio, A.M.; McCutcheon, K.L.; Pelkman, C.; Tulley, R.; Goita, M.; Durham, H.A.; et al. Resistant starch from high amylose maize (HAM-RS2) reduces body fat and increases gut bacteria in ovariectomized (OVX) rats. Obesity 2013, 21, 981–984. [Google Scholar] [CrossRef] [Green Version]
- Vidrine, K.; Ye, J.; Martin, R.J.; McCutcheon, K.L.; Raggio, A.M.; Pelkman, C.; Durham, H.A.; Zhou, J.; Senevirathne, R.N.; Williams, C.; et al. Resistant starch from high amylose maize (HAM-RS2) and dietary butyrate reduce abdominal fat by a different apparent mechanism. Obesity 2014, 22, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Sun, Y. Influencing factor of resistant starch formation and application in cereal products: A review. Int. J. Biol. Macromol. 2020, 149, 424–431. [Google Scholar] [CrossRef]
- Gao, C.; Rao, M.; Huang, W.; Wan, Q.; Yan, P.; Long, Y.; Guo, M.; Xu, Y.; Xu, Y. Resistant starch ameliorated insulin resistant in patients of type 2 diabetes with obesity: A systematic review and meta-analysis. Lipids Health Dis. 2019, 18, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Conway, P.L.; Brown, I.L.; Evans, A.J. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria. Appl. Environ. Microbiol. 1999, 65, 4848–4854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Leu, R.K.; Hu, Y.; Brown, I.L.; Young, G.P. Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutr. Metab. 2009, 6, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charrier, J.A.; Martin, R.J.; McCutcheon, K.L.; Raggio, A.M.; Goldsmith, F.; Goita, M.; Senevirathne, R.N.; Brown, I.L.; Pelkman, C.; Zhou, J.; et al. High fat diet partially attenuates fermentation responses in rats fed resistant starch from high-amylose maize. Obesity 2013, 21, 2350–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barouei, J.; Bendiks, Z.; Martinic, A.; Mishchuk, D.; Heeney, D.; Hsieh, Y.H.; Kieffer, D.; Zaragoza, J.; Martin, R.; Slupsky, C.; et al. Microbiota, metabolome, and immune alterations in obese mice fed a high-fat diet containing type 2 resistant starch. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Nielsen, T.S.; Bendiks, Z.; Thomsen, B.; Wright, M.E.; Theil, P.K.; Scherer, B.L.; Marco, M.L. High-Amylose Maize, Potato, and Butyrylated Starch Modulate Large Intestinal Fermentation, Microbial Composition, and Oncogenic miRNA Expression in Rats Fed A High-Protein Meat Diet. Int. J. Mol. Sci. 2019, 20, 2137. [Google Scholar] [CrossRef] [Green Version]
- Wolever, T.M.S.; Tosh, S.M.; Spruill, S.E.; Jenkins, A.L.; Ezatagha, A.; Duss, R.; Johnson, J.; Chu, Y.; Steinert, R.E. Increasing oat beta-glucan viscosity in a breakfast meal slows gastric emptying and reduces glycemic and insulinemic responses but has no effect on appetite, food intake, or plasma ghrelin and PYY responses in healthy humans: A randomized, placebo-controlled, crossover trial. Am. J. Clin. Nutr. 2020, 111, 319–328. [Google Scholar] [CrossRef]
- Nicolosi, R.; Bell, S.J.; Bistrian, B.R.; Greenberg, I.; Forse, R.A.; Blackburn, G.L. Plasma lipid changes after supplementation with beta-glucan fiber from yeast. Am. J. Clin. Nutr. 1999, 70, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Maki, K.C.; Pelkman, C.L.; Finocchiaro, E.T.; Kelley, K.M.; Lawless, A.L.; Schild, A.L.; Rains, T.M. Resistant starch from high-amylose maize increases insulin sensitivity in overweight and obese men. J. Nutr. 2012, 142, 717–723. [Google Scholar] [CrossRef]
- Dainty, S.A.; Klingel, S.L.; Pilkey, S.E.; McDonald, E.; McKeown, B.; Emes, M.J.; Duncan, A.M. Resistant starch bagels reduce fasting and postprandial insulin in adults at risk of type 2 diabetes. J. Nutr. 2016, 146, 2252–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodinham, C.L.; Smith, L.; Thomas, E.L.; Bell, J.D.; Swann, J.R.; Costabile, A.; Russell-Jones, D.; Umpleby, A.M.; Robertson, M.D. Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr. Connect. 2014, 3, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hald, S.; Schioldan, A.G.; Moore, M.E.; Dige, A.; Laerke, H.N.; Agnholt, J.; Bach Knudsen, K.E.; Hermansen, K.; Marco, M.L.; Gregersen, S.; et al. Effects of arabinoxylan and resistant starch on intestinal microbiota and short-chain fatty acids in subjects with metabolic syndrome: A randomised crossover study. PLoS ONE 2016, 11, e0159223. [Google Scholar] [CrossRef] [PubMed]
- Muthuramalingam, K.; Singh, V.; Choi, C.; Choi, S.I.; Kim, Y.M.; Unno, T.; Cho, M. Dietary intervention using (1,3)/(1,6)-beta-glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model. Eur. J. Nutr. 2020, 59, 2617–2629. [Google Scholar] [CrossRef] [PubMed]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, C.; Kihara, M.; Aoe, S.; Araki, S.; Ito, K.; Hayashi, K.; Watari, J.; Sakata, Y.; Ikegami, S. Effect of high beta-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men--a randomized, double-blinded, placebo-controlled trial. Plant Foods Hum. Nutr. 2008, 63, 21–25. [Google Scholar] [CrossRef]
- Aoe, S.; Ichinose, Y.; Kohyama, N.; Komae, K.; Takahashi, A.; Abe, D.; Yoshioka, T.; Yanagisawa, T. Effects of high beta-glucan barley on visceral fat obesity in Japanese individuals: A randomized, double-blind study. Nutrition 2017, 42, 1–6. [Google Scholar] [CrossRef]
- Luo, K.; Wang, X.; Zhang, G. Starch and beta-glucan in a whole-grain-like structural form improve hepatic insulin sensitivity in diet-induced obese mice. Food Funct. 2019, 10, 5091–5101. [Google Scholar] [CrossRef] [PubMed]
- Brockman, D.A.; Chen, X.; Gallaher, D.D. Consumption of a high beta-glucan barley flour improves glucose control and fatty liver and increases muscle acylcarnitines in the Zucker diabetic fatty rat. Eur. J. Nutr. 2013, 52, 1743–1753. [Google Scholar] [CrossRef]
- Everard, A.; Lazarevic, V.; Derrien, M.; Girard, M.; Muccioli, G.G.; Neyrinck, A.M.; Possemiers, S.; Van Holle, A.; Francois, P.; de Vos, W.M.; et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 2011, 60, 2775–2786. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, J.; Watanabe, K.; Taira, S.; Kasubuchi, M.; Li, X.; Irie, J.; Itoh, H.; Kimura, I. Barley beta-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PLoS ONE 2018, 13, e0196579. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Wang, T.; Sun, C.; Wang, J.; Sun, B. Whole barley prevents obesity and dyslipidemia without the involvement of the gut microbiota in germ free C57BL/6J obese mice. Food Funct. 2019, 10, 7498–7508. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Vitaglione, P.; Lumaga, R.B.; Stanzione, A.; Scalfi, L.; Fogliano, V. beta-Glucan-enriched bread reduces energy intake and modifies plasma ghrelin and peptide YY concentrations in the short term. Appetite 2009, 53, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Kim, H.; Jung, M.H.; Hong, S.; Song, J. Consumption of barley beta-glucan ameliorates fatty liver and insulin resistance in mice fed a high-fat diet. Mol. Nutr. Food Res. 2010, 54, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.F.; Yu, Y.; Beck, E.J.; South, T.; Li, Y.; Batterham, M.J.; Tapsell, L.C.; Chen, J. Diet high in oat beta-glucan activates the gut-hypothalamic (PYY(3)(-)(3)(6)-NPY) axis and increases satiety in diet-induced obesity in mice. Mol. Nutr. Food Res. 2011, 55, 1118–1121. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Scholte, J.; Scheurink, A.J.W.; van den Berg, M.; Bruggeman, G.; Bruininx, E.; de Vos, P.; Schols, H.A.; Gruppen, H. Effect of oat and soybean rich in distinct non-starch polysaccharides on fermentation, appetite regulation and fat accumulation in rat. Int. J. Biol. Macromol. 2019, 140, 515–521. [Google Scholar] [CrossRef]
- Mosikanon, K.; Arthan, D.; Kettawan, A.; Tungtrongchitr, R.; Prangthip, P. Yeast beta-Glucan Modulates Inflammation and Waist Circumference in Overweight and Obese Subjects. J. Diet Suppl. 2017, 14, 173–185. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; De Backer, F.; Cani, P.D.; Bindels, L.B.; Stroobants, A.; Portetelle, D.; Delzenne, N.M. Immunomodulatory properties of two wheat bran fractions-aleurone-enriched and crude fractions-in obese mice fed a high fat diet. Int. Immunopharmacol. 2008, 8, 1423–1432. [Google Scholar] [CrossRef]
- Stevenson, L.; Phillips, F.; O’Sullivan, K.; Walton, J. Wheat bran: Its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr. 2012, 63, 1001–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Jiao, J.; Zhang, W.; Xu, J.; Wan, Z.; Zhang, W.; Gao, X.; Qin, L. Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet. Sci. Rep. 2015, 5, 15256. [Google Scholar] [CrossRef] [PubMed]
- Suriano, F.; Bindels, L.B.; Verspreet, J.; Courtin, C.M.; Verbeke, K.; Cani, P.D.; Neyrinck, A.M.; Delzenne, N.M. Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity. Sci. Rep. 2017, 7, 5621. [Google Scholar] [CrossRef] [Green Version]
- Freeland, K.R.; Anderson, G.H.; Wolever, T.M. Acute effects of dietary fibre and glycaemic carbohydrate on appetite and food intake in healthy males. Appetite 2009, 52, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Junejo, S.A.; Geng, H.; Li, S.; Kaka, A.K.; Rashid, A.; Zhou, Y. Superfine wheat bran improves the hyperglycemic and hyperlipidemic properties in a high-fat rat model. Food Sci. Biotechnol. 2020, 29, 559–567. [Google Scholar] [CrossRef]
- Neyrinck, A.M.; Van Hee, V.F.; Piront, N.; De Backer, F.; Toussaint, O.; Cani, P.D.; Delzenne, N.M. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr. Diabetes 2012, 2, e28. [Google Scholar] [CrossRef] [Green Version]
- Numan Ahmad, M.; Rabah Takruri, H. The Effect of Dietary Wheat Bran on Sucrose-Induced Changes of Serum Glucose and Lipids in Rats. Nutr. Hosp. 2015, 32, 1636–1644. [Google Scholar] [CrossRef]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [Green Version]
- Kondo, S.; Xiao, J.Z.; Satoh, T.; Odamaki, T.; Takahashi, S.; Sugahara, H.; Yaeshima, T.; Iwatsuki, K.; Kamei, A.; Abe, K. Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci. Biotechnol. Biochem. 2010, 74, 1656–1661. [Google Scholar] [CrossRef] [Green Version]
- Neyrinck, A.M.; Possemiers, S.; Druart, C.; Van de Wiele, T.; De Backer, F.; Cani, P.D.; Larondelle, Y.; Delzenne, N.M. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE 2011, 6, e20944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delzenne, N.M.; Olivares, M.; Neyrinck, A.M.; Beaumont, M.; Kjolbaek, L.; Larsen, T.M.; Benitez-Paez, A.; Romani-Perez, M.; Garcia-Campayo, V.; Bosscher, D.; et al. Nutritional interest of dietary fiber and prebiotics in obesity: Lessons from the MyNewGut consortium. Clin. Nutr. 2020, 39, 414–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliasgharzadeh, A.; Dehghan, P.; Gargari, B.P.; Asghari-Jafarabadi, M. Resistant dextrin, as a prebiotic, improves insulin resistance and inflammation in women with type 2 diabetes: A randomised controlled clinical trial. Br. J. Nutr. 2015, 113, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gamage, H.; Tetu, S.G.; Chong, R.W.W.; Bucio-Noble, D.; Rosewarne, C.P.; Kautto, L.; Ball, M.S.; Molloy, M.P.; Packer, N.H.; Paulsen, I.T. Fiber Supplements derived from sugarcane stem, wheat dextrin and psyllium husk have different in vitro effects on the human gut microbiota. Front Microbiol. 2018, 9, 1618. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.L.; Savarino, V.; Slavin, J.L. Assessment of dietary fiber fermentation: Effect of Lactobacillus reuteri and reproducibility of short-chain fatty acid concentrations. Mol. Nutr. Food Res. 2009, 53 (Suppl. 1), S114–S120. [Google Scholar] [CrossRef]
- Lefranc-Millot, C.; Guérin-Deremaux, L.; Wils, D.; Neut, C.; Miller, L.E.; Saniez-Degrave, M.H. Impact of a resistant dextrin on intestinal ecology: How altering the digestive ecosystem with NUTRIOSE®, a soluble fibre with prebiotic properties, may be beneficial for health. J. Int. Med. Res. 2012, 40, 211–224. [Google Scholar] [CrossRef]
- Larsen, N.; Bussolo de Souza, C.; Krych, L.; Barbosa Cahú, T.; Wiese, M.; Kot, W.; Hansen, K.M.; Blennow, A.; Venema, K.; Jespersen, L. Potential of pectins to beneficially modulate the gut microbiota depends on their structural properties. Front Microbiol. 2019, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Adam, C.L.; Gratz, S.W.; Peinado, D.I.; Thomson, L.M.; Garden, K.E.; Williams, P.A.; Richardson, A.J.; Ross, A.W. Effects of dietary fibre (pectin) and/or increased protein (casein or pea) on satiety, body weight, adiposity and caecal fermentation in high fat diet-induced obese rats. PLoS ONE 2016, 11, e0155871. [Google Scholar] [CrossRef]
- Adam, C.L.; Thomson, L.M.; Williams, P.A.; Ross, A.W. Soluble fermentable dietary fibre (pectin) decreases caloric intake, adiposity and lipidaemia in high-fat diet-induced obese rats. PLoS ONE 2015, 10, e0140392. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Gao, X.; Wu, C.; Tian, F.; Lei, Q.; Bi, J.; Xie, B.; Wang, H.Y.; Chen, S.; Wang, X. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients 2016, 8, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, J.K.; Chiu, G.S.; McNeil, L.K.; Moon, M.L.; Wall, R.; Towers, A.E.; Freund, G.G. Switching from a high-fat cellulose diet to a high-fat pectin diet reverses certain obesity-related morbidities. Nutr. Metab. 2018, 15, 55. [Google Scholar] [CrossRef] [PubMed]
- Capomolla, A.S.; Janda, E.; Paone, S.; Parafati, M.; Sawicki, T.; Mollace, R.; Ragusa, S.; Mollace, V. Atherogenic index reduction and weight loss in metabolic syndrome patients treated with a novel pectin-enriched formulation of bergamot polyphenols. Nutrients 2019, 11, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, S.E.; Levine, R.A.; Weinstock, R.S.; Petokas, S.; Mills, C.A.; Thomas, F.D. Sustained pectin ingestion: Effect on gastric emptying and glucose tolerance in non-insulin-dependent diabetic patients. Am. J. Clin. Nutr. 1988, 48, 1413–1417. [Google Scholar] [CrossRef]
- Drew, J.E.; Reichardt, N.; Williams, L.M.; Mayer, C.D.; Walker, A.W.; Farquharson, A.J.; Kastora, S.; Farquharson, F.; Milligan, G.; Morrison, D.J.; et al. Dietary fibers inhibit obesity in mice, but host responses in the cecum and liver appear unrelated to fiber-specific changes in cecal bacterial taxonomic composition. Sci. Rep. 2018, 8, 15566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaffarzadegan, T.; Marungruang, N.; Fak, F.; Nyman, M. Molecular properties of guar gum and pectin modify cecal bile acids, microbiota, and plasma lipopolysaccharide-binding protein in rats. PLoS ONE 2016, 11, e0157427. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, K.; Yang, H. Pectin alleviates high fat (lard) diet-induced nonalcoholic fatty liver disease in mice: Possible role of short-chain fatty acids and gut microbiota regulated by pectin. J. Agric. Food Chem. 2018, 66, 8015–8025. [Google Scholar] [CrossRef] [PubMed]
- Licht, T.R.; Hansen, M.; Bergstrom, A.; Poulsen, M.; Krath, B.N.; Markowski, J.; Dragsted, L.O.; Wilcks, A. Effects of apples and specific apple components on the cecal environment of conventional rats: Role of apple pectin. BMC Microbiol. 2010, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Samout, N.; Bouzenna, H.; Dhibi, S.; Ncib, S.; ElFeki, A.; Hfaiedh, N. Therapeutic effect of apple pectin in obese rats. Biomed. Pharmacother. 2016, 83, 1233–1238. [Google Scholar] [CrossRef]
- Wilms, E.; Jonkers, D.; Savelkoul, H.F.J.; Elizalde, M.; Tischmann, L.; de Vos, P.; Masclee, A.A.M.; Troost, F.J. The impact of pectin supplementation on intestinal barrier function in healthy young adults and healthy elderly. Nutrients 2019, 11, 1554. [Google Scholar] [CrossRef] [Green Version]
- An, R.; Wilms, E.; Smolinska, A.; Hermes, G.D.A.; Masclee, A.A.M.; de Vos, P.; Schols, H.A.; van Schooten, F.J.; Smidt, H.; Jonkers, D.; et al. Sugar beet pectin supplementation did not alter profiles of fecal microbiota and exhaled breath in healthy young adults and healthy elderly. Nutrients 2019, 11, 2193. [Google Scholar] [CrossRef] [Green Version]
- Van der Beek, C.M.; Canfora, E.E.; Kip, A.M.; Gorissen, S.H.M.; Olde Damink, S.W.M.; van Eijk, H.M.; Holst, J.J.; Blaak, E.E.; Dejong, C.H.C.; Lenaerts, K. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism 2018, 87, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Weitkunat, K.; Stuhlmann, C.; Postel, A.; Rumberger, S.; Fankhänel, M.; Woting, A.; Petzke, K.J.; Gohlke, S.; Schulz, T.J.; Blaut, M.; et al. Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Sci. Rep. 2017, 7, 6109. [Google Scholar] [CrossRef] [PubMed]
- Guess, N.D.; Dornhorst, A.; Oliver, N.; Bell, J.D.; Thomas, E.L.; Frost, G.S. A randomized controlled trial: The effect of inulin on weight management and ectopic fat in subjects with prediabetes. Nutr. Metab. 2015, 12, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Wiele, T.; Boon, N.; Possemiers, S.; Jacobs, H.; Verstraete, W. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol. 2007, 102, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Kleessen, B.; Sykura, B.; Zunft, H.J.; Blaut, M. Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am. J. Clin. Nutr. 1997, 65, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Farias, C.; Slezak, K.; Fuller, Z.; Duncan, A.; Holtrop, G.; Louis, P. Effect of inulin on the human gut microbiota: Stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br. J. Nutr. 2009, 101, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Tuohy, K.M.; Kolida, S.; Lustenberger, A.M.; Gibson, G.R. The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides--a human volunteer study. Br. J. Nutr. 2001, 86, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Stenman, L.K.; Waget, A.; Garret, C.; Klopp, P.; Burcelin, R.; Lahtinen, S. Potential probiotic Bifidobacterium animalis ssp. lactis 420 prevents weight gain and glucose intolerance in diet-induced obese mice. Benef. Microbes 2014, 5, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Niness, K.R. Inulin and oligofructose: What are they? J. Nutr. 1999, 129, 1402s–1406s. [Google Scholar] [CrossRef] [Green Version]
- Bomhof, M.R.; Paul, H.A.; Geuking, M.B.; Eller, L.K.; Reimer, R.A. Improvement in adiposity with oligofructose is modified by antibiotics in obese rats. FASEB J. 2016, 30, 2720–2732. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D.; Daubioul, C.A.; Reusens, B.; Remacle, C.; Catillon, G.; Delzenne, N.M. Involvement of endogenous glucagon-like peptide-1(7-36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J. Endocrinol. 2005, 185, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.A.; Ward, L.C.; Brown, L. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. Br. J. Nutr. 2016, 116, 1502–1511. [Google Scholar] [CrossRef] [Green Version]
- Alligier, M.; Dewulf, E.M.; Salazar, N.; Mairal, A.; Neyrinck, A.M.; Cani, P.D.; Langin, D.; Delzenne, N.M. Positive interaction between prebiotics and thiazolidinedione treatment on adiposity in diet-induced obese mice. Obesity 2014, 22, 1653–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Yin, A.; Li, H.; Wang, R.; Wu, G.; Shen, J.; Zhang, M.; Wang, L.; Hou, Y.; Ouyang, H.; et al. Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine 2015, 2, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Parnell, J.A.; Reimer, R.A. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 2009, 89, 1751–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parnell, J.A.; Klancic, T.; Reimer, R.A. Oligofructose decreases serum lipopolysaccharide and plasminogen activator inhibitor-1 in adults with overweight/obesity. Obesity 2017, 25, 510–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pol, K.; de Graaf, C.; Meyer, D.; Mars, M. The efficacy of daily snack replacement with oligofructose-enriched granola bars in overweight and obese adults: A 12-week randomised controlled trial. Br. J. Nutr. 2018, 119, 1076–1086. [Google Scholar] [CrossRef]
- Lightowler, H.; Thondre, S.; Holz, A.; Theis, S. Replacement of glycaemic carbohydrates by inulin-type fructans from chicory (oligofructose, inulin) reduces the postprandial blood glucose and insulin response to foods: Report of two double-blind, randomized, controlled trials. Eur. J. Nutr. 2018, 57, 1259–1268. [Google Scholar] [CrossRef]
- Drabinska, N.; Jarocka-Cyrta, E.; Markiewicz, L.H.; Krupa-Kozak, U. The Effect of oligofructose-enriched inulin on faecal bacterial counts and microbiota-associated characteristics in celiac disease children following a gluten-free diet: Results of a randomized, placebo-controlled trial. Nutrients 2018, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Gibson, G.R. Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J. Appl. Bacteriol. 1993, 75, 373–380. [Google Scholar] [CrossRef]
- Cani, P.D.; Neyrinck, A.M.; Maton, N.; Delzenne, N.M. Oligofructose promotes satiety in rats fed a high-fat diet: Involvement of glucagon-like Peptide-1. Obes. Res. 2005, 13, 1000–1007. [Google Scholar] [CrossRef]
- Cani, P.D.; Knauf, C.; Iglesias, M.A.; Drucker, D.J.; Delzenne, N.M.; Burcelin, R. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 2006, 55, 1484–1490. [Google Scholar] [CrossRef]
- Davis, B.C.; Bajaj, J.S. The human gut microbiome in liver diseases. Semin. Liver. Dis. 2017, 37, 128–140. [Google Scholar] [CrossRef]
- Clarke, S.F.; Murphy, E.F.; Nilaweera, K.; Ross, P.R.; Shanahan, F.; O’Toole, P.W.; Cotter, P.D. The gut microbiota and its relationship to diet and obesity: New insights. Gut Microbes 2012, 3, 186–202. [Google Scholar] [CrossRef]
- Kleessen, B.; Hartmann, L.; Blaut, M. Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br. J. Nutr. 2003, 89, 597–606. [Google Scholar] [CrossRef]
- Tan, W.S.K.; Chia, P.F.W.; Ponnalagu, S.; Karnik, K.; Henry, C.J. The role of soluble corn fiber on glycemic and insulin response. Nutrients 2020, 12, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costabile, A.; Deaville, E.R.; Morales, A.M.; Gibson, G.R. Prebiotic Potential of a maize-based soluble fibre and impact of dose on the human gut microbiota. PLoS ONE 2016, 11, e0144457. [Google Scholar] [CrossRef] [Green Version]
- Whisner, C.M.; Martin, B.R.; Nakatsu, C.H.; Story, J.A.; MacDonald-Clarke, C.J.; McCabe, L.D.; McCabe, G.P.; Weaver, C.M. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: A randomized dose-response trial in free-living pubertal females. J. Nutr. 2016, 146, 1298–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whisner, C.M.; Martin, B.R.; Nakatsu, C.H.; McCabe, G.P.; McCabe, L.D.; Peacock, M.; Weaver, C.M. Soluble maize fibre affects short-term calcium absorption in adolescent boys and girls: A randomised controlled trial using dual stable isotopic tracers. Br. J. Nutr. 2014, 112, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Van Hul, M.; Karnik, K.; Canene-Adams, K.; De Souza, M.; Van den Abbeele, P.; Marzorati, M.; Delzenne, N.M.; Everard, A.; Cani, P.D. Comparison of the effects of soluble corn fiber and fructooligosaccharides on metabolism, inflammation, and gut microbiome of high-fat diet-fed mice. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E779–E791. [Google Scholar] [CrossRef] [PubMed]
- Costabile, A.; Bergillos-Meca, T.; Rasinkangas, P.; Korpela, K.; de Vos, W.M.; Gibson, G.R. Effects of soluble corn fiber alone or in synbiotic combination with lactobacillus rhamnosus gg and the pilus-deficient derivative GG-PB12 on fecal microbiota, metabolism, and markers of immune function: A randomized, double-blind, placebo-controlled, crossover study in healthy elderly (saimes study). Front. Immunol. 2017, 8, 1443. [Google Scholar] [CrossRef]
- Cheng, C.; Wei, H.; Xu, C.; Xie, X.; Jiang, S.; Peng, J. Maternal soluble fiber diet during pregnancy changes the intestinal microbiota, improves growth performance, and reduces intestinal permeability in piglets. Appl. Environ. Microbiol. 2018, 84, e01047–18. [Google Scholar] [CrossRef] [Green Version]
- Klosterbuer, A.S.; Hullar, M.A.; Li, F.; Traylor, E.; Lampe, J.W.; Thomas, W.; Slavin, J.L. Gastrointestinal effects of resistant starch, soluble maize fibre and pullulan in healthy adults. Br. J. Nutr. 2013, 110, 1068–1074. [Google Scholar] [CrossRef]
- Bassaganya-Riera, J.; DiGuardo, M.; Viladomiu, M.; de Horna, A.; Sanchez, S.; Einerhand, A.W.; Sanders, L.; Hontecillas, R. Soluble fibers and resistant starch ameliorate disease activity in interleukin-10-deficient mice with inflammatory bowel disease. J. Nutr. 2011, 141, 1318–1325. [Google Scholar] [CrossRef]
- Papathanasopoulos, A.; Camilleri, M. Dietary fiber supplements: Effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology 2010, 138, 65–72.e1–2. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y.; Ni, Y.; Cheung, C.K.Y.; Lam, K.S.L.; Wang, Y.; Xia, Z.; Ye, D.; Guo, J.; Tse, M.A.; et al. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metab. 2020, 31, 77–91.e75. [Google Scholar] [CrossRef]
- Babiker, R.; Elmusharaf, K.; Keogh, M.B.; Saeed, A.M. Effect of Gum Arabic (Acacia Senegal) supplementation on visceral adiposity index (VAI) and blood pressure in patients with type 2 diabetes mellitus as indicators of cardiovascular disease (CVD): A randomized and placebo-controlled clinical trial. Lipids Health Dis. 2018, 17, 56. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.L.; Kable, M.E.; Marco, M.; Keim, N.L. The role of the gut microbiome in predicting response to diet and the development of precision nutrition models. part II: Results. Adv. Nutr. 2019, 10, 979–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miraji, K.F.; Linnemann, A.R.; Fogliano, V.; Laswai, H.S.; Capuano, E. Dry-heat processing at different conditions impact the nutritional composition and in vitro starch and protein digestibility of immature rice-based products. Food Funct. 2021, 12, 7527–7545. [Google Scholar] [CrossRef]
- Topping, D.L. Targeted delivery of short-chain fatty acids to the human large bowel. Am. J. Clin. Nutr. 2016, 104, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fiber | Properties | Dietary Sources | ||
---|---|---|---|---|
Solubility | Viscosity | Fermentation | ||
High-amylose maize | Mixed | High | Easily fermented | Corn |
β-glucan | High | High | Easily fermented | Oat, barley, mushrooms, seaweed |
Wheat bran | Insoluble | Low | Poorly fermented | Whole-wheat grains |
Wheat dextrin | High | Low | Easily fermented | Whole-wheat grains |
Pectin | High | Low | Easily fermented | Apples, carrots, citrus |
Inulin-type fructans | Dependent on source | Low | Easily fermented | Chicory root, garlic, onions, leeks |
Soluble corn fiber | High | Low | Easily fermented | Corn |
Author (Year) | Fiber Type | Treatment | Duration | Participants | Outcome | Effect |
---|---|---|---|---|---|---|
Dainty (2016) | High-amylose maize | bagel with 60% of the wheat flour replaced with Hi-Maize 260 | 57 d | Men and women with overweight/obesity and increased risk of T2D | Body weight | ns |
Fasting blood glucose | ns | |||||
Plasma glucose CMAX | ns | |||||
3-h glucose iAUC | ns | |||||
Fasting insulin | ↓ | |||||
Serum insulin CMAX | ns | |||||
3-h insulin iAUC | ↓ | |||||
HOMA-IR | ↓ | |||||
HOMA-%B | ↓↓ | |||||
HOMA-%S | ↑ | |||||
Maki (2012) | High-amylose maize | high-amylose corn starch containing ~60% RS or a control starch containing no RS, 15 or 30 g/day high-amylose maize | 4 wk | Healthy men and women with waist circumference ≥89.0 cm for females or ≥102.0 cm for males | Body weight | ns |
HOMA-%S, men | ↑ | |||||
acute insulin response to i.v. glucose | ns | |||||
glucose effectiveness | ns | |||||
HOMA-%B | ns | |||||
HOMA-%S, women | ns | |||||
Petersen (2018) | High-amylose maize | 45 g/d of high-amylose maize or an isocaloric amount of amylopectin | 12 wk | Overweight men and women with prediabetes | Body weight | ns |
Fat mass | ns | |||||
Visceral adipose tissue | ns | |||||
HbA1C | ↓ | |||||
Fasting blood glucose | ns | |||||
Fasting insulin | ns | |||||
Glucose AUC (3 h mixed meal tolerance test) | ns | |||||
Insulin AUC (3 h mixed meal tolerance test) | ns | |||||
Insulin sensitivity | ns | |||||
TNF-a | ↓ | |||||
Bodinham (2014) | High-amylose maize | 67 g Hi-maize 260 (60% RS) or 27 ;g Amioca | 12 wk | Men and women with T2D | Body weight | ns |
Body mass index | ns | |||||
Fat mass | ns | |||||
HbA1C | ns | |||||
Fasting blood glucose | ns | |||||
Fasting insulin | ns | |||||
HOMA %S | ns | |||||
HOMA %B | ns | |||||
NEFA | ↑↑ | |||||
TG | ↓ | |||||
Total cholesterol | ns | |||||
HDL-cholesterol | ns | |||||
LDL-cholesterol | ns | |||||
GLP-1 | ↑ | |||||
TNF-a | ↑ | |||||
IL-6 | ns | |||||
Postprandial AUC0–120 min | ↓ | |||||
Wolever (2020) | β-glucan | cream of rice or instant-oatmeal plus either 3 g oat-bran (2 g oat β-glucan), 10 g oat-bran $ (4 g oat β-glucan) | single meal | Healthy men and women | Glucose iAUC0–2 | ↓ |
Glucose iAUC2–3 | ns | |||||
Glucose iAUC0–3 | ↓ | |||||
Glucose peak rise | ↓ | |||||
Insulin iAUC0–2 | ↓ | |||||
Insulin iAUC2–3 | ns | |||||
Insulin iAUC0–3 | ↓ | |||||
Insulin peak rise | ↓ | |||||
PYY iAUC0–3 | ns | |||||
Ghrelin net AUC0–3 | ns | |||||
Nicolosi (1999) | β-glucan | 7.5 g yeast-derived β-glucan fiber consumed twice daily | 8 wk | Males with obesity | Body weight | ns |
Body mass index | ns | |||||
Total cholesterol | ↓ | |||||
LDL cholesterol | ns | |||||
HDL cholesterol | ns | |||||
Total cholesterol: HDL cholesterol | ↓ | |||||
Shimizu (2008) | β-glucan | test diet containing 50% pearl barley and 50% rice (3.5 g β-glucan), or placebo diet containing 100% rice (0.06 g β-glucan) consumed twice daily | 12 wk | Males | Total cholesterol | ↓ |
LDL cholesterol | ↓ | |||||
Body weight (change from baseline) | ↓↓↓ | |||||
Waist circumference | ns | |||||
Visceral fat area | ↓↓ | |||||
Subcutaneous fat area | ns | |||||
Aoe (2017) | β-glucan | mixture of rice and high β-glucan barley (test group, 4.4 g/d) or β-glucan–free barley (placebo group) | 12 wk | Individuals with waist circumference ≥85 cm for men or ≥90 cm for women and body mass index ≥ 24 kg/m2 | Body weight | ns*↓↓ ª |
Body mass index | ns*↓↓ ª | |||||
Waist circumference | ↓↓*ns ª | |||||
Visceral fat area | ↓↓*ns ª | |||||
Subcutaneous fat area | ns *ª | |||||
Total cholesterol | ns *ª | |||||
Triacylglycerol | ns *ª | |||||
HDL cholesterol | ns *ª | |||||
LDL cholesterol | ns *ª | |||||
HbA1C | ↑↑*ns ª | |||||
Insulin | ns *ª | |||||
NEFA | ↓↓*ns ª | |||||
Glucose | ↑*ns ª | |||||
Vitaglione (2009) | β-glucan | bread containing 3% β-glucan or control bread containing no β-glucan | single test meal, 4× | Healthy men and women | Hunger AUC0–60 min | ns |
Hunger AUC60–180 min | ↓ | |||||
Fullness AUC0–60 min | ns | |||||
Fullness AUC60–180 min | ↑ | |||||
Satiety AUC0–60 min | ns | |||||
Satiety Fullness AUC60–180 min | ↑ | |||||
Energy intake | ↓ | |||||
Glucose AUC 3 h following meal | ↓ | |||||
Plasma ghrelin AUC0–60 min | ns | |||||
Plasma ghrelin AUC60–180 min | ↓ | |||||
Plasma PYY | ↑ | |||||
Mosikanon (2016) | β-glucan | 477 mg/capsule of β-glucan or rice flour as placebo | 6 wk (measurements taken at 2 and 6 weeks, indicated by 2, 6) | Men and women with overweight/obesity | Body weight | ns2,6 |
Body mass index | ns2,6 | |||||
Waist circumference | ↑2↑6 | |||||
Triglycerides | ns2,6 | |||||
Total cholesterol | ns2,6 | |||||
HDL cholesterol | ns2,6 | |||||
LDL cholesterol | ns2,6 | |||||
TNF-a | ↓2ns6 | |||||
IL-6 | ns2↓6 | |||||
IL-10 | ↑2↑6 | |||||
Aliasgharzadeh (2015) | Wheat dextrin | supplement of 10 g/d of resistant dextrin and a similar amount of maltodextrin as placebo | 8 wk | Women with T2D | Body weight | ↓*ns ª |
Body mass index | ↓*ns ª | |||||
Energy consumption | ↓*ns ª | |||||
Fasting blood glucose | ns *ª | |||||
Fasting insulin | ↓ *ª | |||||
HbA1C | ns *ª | |||||
HOMA-IR | ↓ *ª | |||||
TNF-a | ↓ *ª | |||||
IL-6 | ↓ *ª | |||||
Endotoxin | ↓ *ª | |||||
Capomolla (2019) | Pectin | low # (650 mg) or high $ (1300 mg) dose bergamot juice extract containing 8% pectin | 90 d | Individuals with metabolic syndrome | Body weight | ns#↓$ |
Body mass index | ↓↓↓#↓↓↓$ | |||||
Total cholesterol | ↓↓↓#↓↓↓$ | |||||
LDL cholesterol | ↓↓↓#↓↓↓$ | |||||
HDL cholesterol | ↑↑#↑↑↑$ | |||||
Triglycerides | ↓↓↓#↓↓↓$ | |||||
Fasting blood glucose | ↓↓↓#↓↓↓$ | |||||
HOMA-IR | ↓↓#↓↓↓$ | |||||
Schwartz (1988) | Pectin | 20 g/day apple pectin powder in a muffin | 4 wk | Men and women with T2D | Gastric emptying | ↑ |
Glucose iAUC 3 h following test meal | ↑↑ | |||||
Body weight | ns | |||||
Plasma glucagon | ns | |||||
Gastrin | ns | |||||
Wilms (2019) | Pectin | 15 g/day sugar beet derived pectin or placebo containing 15 g/day maltodextrin | 4 wk | Healthy young adults (18–40 years of age) and healthy elderly (65–75 years of age) | Gastroduodenal permeability | ns |
Small intestinal permeability | ns | |||||
Colonic permeability | ns | |||||
Whole gut permeability | ns | |||||
Junctional complex related gene expression | ns | |||||
Defense and immune related genes | ns | |||||
van der Beek (2018) | Inulin | high-fat milkshake containing 24 g inulin of which 0.5 g was U-13C-inulin or placebo containing 24 g maltodextrin | Single dose followed by 5 d washout | Healthy men with overweight/obesity | Fat oxidation iAUC0–3 h | ↑ |
Fat oxidation iAUC3–7 h | ns | |||||
Fat oxidation iAUC0–7 h | ns | |||||
Carbohydrate oxidation iAUC0–3 h | ↓ | |||||
Carbohydrate oxidation iAUC3–7 h | ns | |||||
Carbohydrate oxidation iAUC0–7 h | ns | |||||
Energy expenditure | ns | |||||
Free fatty acids iAUC0–3 h | ↑ | |||||
Free fatty acids iAUC3–7 h | ns | |||||
Free fatty acids iAUC0–7 h | ns | |||||
Triglycerides | ns | |||||
Glucose iAUC0–3 h | ↓ | |||||
Glucose iAUC3–7 h | ns | |||||
Glucose iAUC0–7 h | ns | |||||
Insulin iAUC0–3 h | ↓ | |||||
Insulin iAUC3–7 h | ↓ | |||||
Insulin iAUC0–7 h | ↓ | |||||
GLP-1 | ns | |||||
PYY | ns | |||||
Guess (2015) | Inulin | 30 g/day inulin or cellulose placebo | 18 wk, outcomes assessed at week 9 and 18 (indicated by 9, 18) | Men and women with prediabetes | Δ Body weight | ns9↓18 |
Δ Body fat | ↓↓9ns18 | |||||
Intrahepatocellular lipid | ↓9, 18 | |||||
Intramyocellular lipid in the soleus muscle | ↓↓↓9↓18 | |||||
Δ Fasting plasma glucose | ↓↓9ns18 | |||||
Plasma glucose AUC (following mixed meal test) | ns9, 18 | |||||
Fasting insulin | ns9, 18 | |||||
Plasma insulin AUC (following mixed meal test) | ns9, 18 | |||||
HOMA-IR | ns9, 18 | |||||
Matsuda index | ns9, 18 | |||||
Plasma GLP-1 AUC (following mixed meal test) | ↓9↓↓↓18 | |||||
Zhang (2015) | Oligofructose | diet based on whole grains, traditional Chinese medicinal foods, and prebiotics with 3 ready-to-consume food products containing fructo-oligosaccharides and oligoisomaltoses | 90 d, measurements taken at 30, 60, 90 d (indicated by 30, 60, 90) | Morbidly obese children with Prader-Willis syndrome (PWS) or simple obesity (SO) | Body weight (PWS) | ↓↓30↓↓60↓↓90 |
Body weight (SO) | ↓↓ | |||||
Body mass index (PWS) | ↓↓30↓↓60↓↓90 | |||||
Body mass index (SO) | ↓↓ | |||||
Fasting glycemia (PWS) | ↓↓30↓↓60↓↓90 | |||||
Fasting glycemia (SO) | ↓ | |||||
OGTT Glucose AUC (PWS) | ns30↓↓60↓↓90 | |||||
OGTT Glucose AUC (SO) | ns | |||||
Fasting insulinemia (PWS) | ↓↓30↓↓60↓↓90 | |||||
Fasting insulinemia (SO) | ↓↓ | |||||
OGTT Insulin AUC (PWS) | ↓↓30↓↓60↓↓90 | |||||
OGTT Insulin AUC (SO) | ↓ | |||||
HbA1C (PWS) | ↓↓30↓↓60↓↓90 | |||||
HbA1C (SO) | ↓↓ | |||||
Total cholesterol (PWS) | ↓↓30↓↓60↓↓90 | |||||
Total cholesterol (SO) | ↓↓ | |||||
Triglycerides (PWS) | ↓↓30↓↓60↓90 | |||||
Triglycerides (SO) | ↓↓ | |||||
LDL Cholesterol (PWS) | ↓↓30↓↓60↓↓90 | |||||
LDL Cholesterol (SO) | ↓↓ | |||||
Free fatty acids (PWS) | ↑30ns60↑90 | |||||
Free fatty acids (SO) | ↑↑ | |||||
IL-6 (PWS) | ns30,60,90 | |||||
IL-6 (SO) | ↓ | |||||
LPS binding protein (PWS) | ↓↓30ns60,90 | |||||
LPS binding protein (SO) | ↓↓ | |||||
Parnell (2017) | Oligofructose | oligofructose supplement (21 g per day) or an isocaloric maltodextrin placebo | 12 wk | Adults with overweight/obesity | Body weight | ↓ |
Fat mass | ↓ | |||||
IL-6 | ns | |||||
TNF-a | ns | |||||
MCP-1 | ns | |||||
Resistin | ns | |||||
PAI-1 | ↓ | |||||
LPS | ↓ | |||||
Parnell (2009) | Oligofructose | oligofructose supplement (21 g per day) or an isocaloric maltodextrin placebo | 12 wk | Adults with overweight/obesity | Body weight | ↓ |
Fat mass | ↓ | |||||
Trunk fat | ↓ | |||||
Ghrelin | ↓ | |||||
PYY | ↑ | |||||
GLP-1 | ns | |||||
Energy intake | ↓ | |||||
Insulin tAUC 6 h meal tolerance test | ns | |||||
Glucose tAUC 6 h meal tolerance test | ns | |||||
Hume (2017) | Oligofructose | 8 g per day of oligofructose-enriched inulin or placebo | 16 wk | Male and female children with overweight or obesity (BMI ≥85th percentile) | Energy intake | ns |
GIP | ns | |||||
Ghrelin | ↑ | |||||
Insulin | ns | |||||
GLP-1 | ns | |||||
PYY | ns | |||||
Body mass index | ns | |||||
Pol (2018) | Oligofructose | bar containing 16 g oligofructose twice a day | 12 wk | Men and women with overweight/obesity | Body weight | ns |
Waist circumference | ns | |||||
Fat mass | ns | |||||
Body fat % | ns | |||||
Total energy intake | ns | |||||
Hunger | ns | |||||
Fullness | ns | |||||
Lightowler (2018) | Oligofructose | yogurt drink containing 5.6 g oligofructose from chicory instead of sucrose was compared with a control yogurt drink | Single dose | Healthy men and women | Glucose iAUC120min | ↓ |
Glucose peak | ↓ | |||||
Insulin iAUC120min | ↓↓ | |||||
Insulin peak | ns | |||||
Lightowler (2018) | Inulin | fruit jelly containing 13 g inulin from chicory instead of sucrose was compared with a control fruit jelly | Single dose | Healthy men and women | Glucose iAUC120min | ↓ |
Glucose peak | ↓↓ | |||||
Insulin iAUC120min | ↓↓↓ | |||||
Insulin peak | ↓↓↓ | |||||
Tan (2020) | Soluble corn fiber | four test meals (two solid and two beverages), 25 g total carbohydrates consisting of either glucose or glutinous rice and the other 25 g carbohydrates consisting of either soluble corn fiber or maltodextrin | Single dose | Males with a body mass index between 18.5–30.0 kg/m2 | Glucose iAUC130min (drink) | ↓ |
Glucose iAUC130min (rice) | ↓ | |||||
Insulin iAUC130min (drink) | ↓ | |||||
Insulin iAUC130min (rice) | ↓↓ | |||||
Costabile (2017) | Soluble corn fiber | L. rhamnosus GG-PB12 combined with soluble corn fiber, L. rhamnosus GG combined with soluble corn fiber, soluble corn fiber alone, or placebo (results shown only for soluble corn fiber vs. placebo) | 3 wk | Healthy, elderly men and women | Total cholesterol | ns |
HDL cholesterol | ns | |||||
LDL cholesterol | ns | |||||
Triglycerides | ns | |||||
Non-esterified fatty acids | ns | |||||
Glucose | ns | |||||
Total cholesterol: HDL cholesterol | ns | |||||
IL-6 | ↓ | |||||
IL-8 | ns | |||||
Body weight | ns | |||||
Body mass index | ns | |||||
Waist circumference | ns | |||||
Konings (2014) | Soluble corn fiber | test meal with 54.6 g soluble corn fiber and two control diets (full energetic and isoenergetic) | Single meal | Overweight men and women | Postprandial glucose AUC | ns |
Postprandial insulin AUC | ↓ | |||||
Non-esterified fatty acid AUC | ↑ | |||||
Triglyceride AUC | ns | |||||
Energy expenditure (24 h) | ns | |||||
Babiker | Gum arabic | 30 g of powdered gum arabic or 5 g of placebo | 3 mo | Men and women with T2D | Body weight | ↓↓ |
Waist circumference | ns | |||||
Triglycerides | ns | |||||
HDL cholesterol | ↑ | |||||
Waist to hip ratio | ns | |||||
Body mass index | ↓↓ | |||||
Body adiposity index | ↓↓ | |||||
Visceral adiposity index | ↓ | |||||
Deep abdominal adipose tissue | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, T.M.; Meyer, R.K.; Duca, F.A. Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients 2021, 13, 3470. https://doi.org/10.3390/nu13103470
Martinez TM, Meyer RK, Duca FA. Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients. 2021; 13(10):3470. https://doi.org/10.3390/nu13103470
Chicago/Turabian StyleMartinez, Taylor M., Rachel K. Meyer, and Frank A. Duca. 2021. "Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota" Nutrients 13, no. 10: 3470. https://doi.org/10.3390/nu13103470
APA StyleMartinez, T. M., Meyer, R. K., & Duca, F. A. (2021). Therapeutic Potential of Various Plant-Based Fibers to Improve Energy Homeostasis via the Gut Microbiota. Nutrients, 13(10), 3470. https://doi.org/10.3390/nu13103470