The Effect of Growth Rate during Infancy on the Risk of Developing Obesity in Childhood: A Systematic Literature Review
Abstract
:1. Introduction
1.1. Health Consequences and Risk Factors of Childhood Obesity
1.2. Infant Growth Rate
1.3. Current Evidence
1.4. Objectives
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Searches & Information Sources
2.3. Study Selection
2.4. Data Collection and Data Items
2.5. Risk of Bias
2.6. Data Synthesis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Main Exposures
3.4. Variations of Definitions
3.5. Status of Birth Weights
3.6. Studies on Childhood Overweight and Obesity
3.7. Studies of Childhood BMI
3.8. Studies on Waist Circumference
3.9. Studies of Body Composition
3.10. Risk of Bias
4. Discussion
4.1. Overweight and Obesity
4.2. Body Mass Index
4.3. Waist Circumference
4.4. Body Composition
4.5. Primary and Secondary Outcomes
4.6. Effect of Birth Weight Status
4.7. Exposure Duration
4.8. Limitations
4.9. Implications and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization: Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 June 2021).
- Evensen, E.; Wilsgaard, T.; Furberg, A.S.; Skeie, G. Tracking of overweight and obesity from early childhood to adolescence in a population-based cohort—The Tromsø Study, Fit Futures. BMC Pediatrics 2016, 16, 64. [Google Scholar] [CrossRef] [Green Version]
- Di Cesare, M.; Soric, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.P.; Bentham, J. The epidemiological burden of obesity in childhood: A worldwide epidemic requiring urgent action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization: Noncommunicable Diseases: Childhood Overweight and Obesity. Available online: https://www.who.int/news-room/q-a-detail/noncommunicable-diseases-childhood-overweight-and-obesity (accessed on 7 June 2021).
- Moore, T.; Arefadib, N.; Deery, A.; Keyes, M.; West, S. The First Thousand Days: An Evidence Paper—Summary; Centre for Community Child Health, Murdoch Children’s Research Institute: Parkville, VIC, Australia, 2017. [Google Scholar]
- Ong, K.K.; Loos, R.J. Rapid infancy weight gain and subsequent obesity: Systematic reviews and hopeful suggestions. Acta Paediatr 2006, 95, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K.; Suh, B.K. Catch-up growth and catch-up fat in children born small for gestational age. Korean J. Pediatrics 2016, 59, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.H.; Chung, S. Small for gestational age and obesity related comorbidities. Ann. Pediatric Endocrinol. Metab. 2018, 23, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Andrea, S.B.; Hooker, E.R.; Messer, L.C.; Tandy, T.; Boone-Heinonen, J. Does the association between early life growth and later obesity differ by race/ethnicity or socioeconomic status? A sys-tematic review. Ann. Epidemiol. 2017, 27, 583–592. [Google Scholar] [CrossRef]
- Rallis, D.; Balomenou, F.; Tzoufi, M.; Giapros, V. A systematic review indicates an association between birth weight and body fat in childhood. Acta Paediatr. 2021, 110, 2023–2039. [Google Scholar] [CrossRef]
- Arisaka, O.; Ichikawa, G.; Koyama, S.; Sairenchi, T. Childhood obesity: Rapid weight gain in early childhood and subsequent cardiometabolic risk. Clin. Pediatric Endocrinol. 2020, 29, 135–142. [Google Scholar] [CrossRef]
- Rolland-Cachera, M.F.; Akrout, M.; Péneau, S. Nutrient Intakes in Early Life and Risk of Obesity. Int. J. Environ. Res. Public Health 2016, 13, 564. [Google Scholar] [CrossRef] [Green Version]
- Chirwa, E.D.; Griffiths, P.; Maleta, K.; Ashorn, P.; Pettifor, J.M.; Norris, S.A. Postnatal growth velocity and overweight in early adolescents: A comparison of rural and urban African boys and girls. Am. J. Hum. Biol. 2014, 26, 643–651. [Google Scholar] [CrossRef]
- Ejlerskov, K.T.; Christensen, L.B.; Ritz, C.; Jensen, S.M.; Mølgaard, C.; Michaelsen, K.F. The impact of early growth patterns and infant feeding on body composition at 3 years of age. Br. J. Nutr. 2015, 114, 316–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gishti, O.; Gaillard, R.; Manniesing, R.; Abrahamse-Berkeveld, M.; van der Beek, E.M.; Heppe, D.H.; Steegers, E.A.; Hofman, A.; Duijts, L.; Durmuş, B.; et al. Fetal and infant growth patterns associated with total and abdominal fat distribution in school-age children. J. Clin. Endocrinol. Metab. 2014, 99, 2557–2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, F.C.; Amorim, R.J.; Eickmann, S.H.; Lira, P.I.; Lima, M.C. The influence of low birth weight body proportionality and postnatal weight gain on anthropometric measures of 8-year-old children: A cohort study in Northeast Brazil. Eur. J. Clin. Nutr. 2014, 68, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Shaonong, D.; Lingxia, Z.; Wenlong, G.; Duolao, W.; Qiang, L.; Wenhui, J.; Leilei, P.; Chao, L.; Hong, Y.; et al. Rapid Infancy Weight Gain and 7- to 9-year Childhood Obesity Risk: A Prospective Cohort Study in Rural Western China. Medicine 2016, 95, e3425. [Google Scholar] [CrossRef]
- Jones-Smith, J.C.; Neufeld, L.M.; Laraia, B.; Ramakrishnan, U.; Garcia-Guerra, A.; Fernald, L.C.H. Early life growth trajectories and future risk for overweight. Nutr. Diabetes 2013, 3, e60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kagura, J.; Feeley, A.B.; Micklesfield, L.K.; Pettifor, J.M.; Norris, S.A. Association between infant nutrition and anthropometry, and pre-pubertal body composition in urban South African children. J. Dev. Orig. Health Dis. 2012, 3, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Lei, X.; Chen, Y.; Ye, J.; Ouyang, F.; Jiang, F.; Zhang, J. The optimal postnatal growth trajectory for term small for gestational age babies: A prospective cohort study. J. Pediatr. 2015, 166, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Jiang, Y.; Wang, G.; Sun, W.; Dong, S.; Deng, Y.; Meng, M.; Zhu, Q.; Mei, H.; Zhou, Y.; et al. Combined effects of weight change trajectories and eating behaviors on childhood adiposity status: A birth cohort study. Appetite 2021, 162, 105174. [Google Scholar] [CrossRef]
- Liu, J.X.; Liu, J.H.; Frongillo, E.A.; Boghossian, N.S.; Cai, B.; Hazlett, L.J. Body mass index trajectories during infancy and pediatric obesity at 6 years. Ann. Epidemiol. 2017, 27, 708–715e701. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Young, M.F.; Khuong, L.Q.; Tran, L.M.; Duong, T.H.; Nguyen, H.C.; Martorell, R.; Ramakrishnan, U. Maternal Preconception Body Size and Early Childhood Growth during Prenatal and Postnatal Periods Are Positively Associated with Child-Attained Body Size at Age 6–7 Years: Results from a Follow-up of the PRECONCEPT Trial. J. Nutr. 2021, 151, 1302–1310. [Google Scholar] [CrossRef]
- Ong, K.K.; Cheng, T.S.; Olga, L.; Prentice, P.M.; Petry, C.J.; Hughes, I.A.; Dunger, D.B. Which infancy growth parameters are associated with later adiposity? The Cambridge Baby Growth Study. Ann. Hum. Biol. 2020, 47, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Smith-Brown, P.; Morrison, M.; Krause, L.; Newby, R.; Davies, P.S. Growth and protein-rich food intake in infancy is associated with fat-free mass index at 2–3 years of age. J. Paediatr. Child Health 2018, 54, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Taal, H.R.; Vd Heijden, A.J.; Steegers, E.A.; Hofman, A.; Jaddoe, V.W. Small and large size for gestational age at birth, infant growth, and childhood overweight. Obesity 2013, 21, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Vogelezang, S.; Santos, S.; Toemen, L.; Oei, E.H.G.; Felix, J.F.; Jaddoe, V.W.V. Associations of Fetal and Infant Weight Change With General, Visceral, and Organ Adiposity at School Age. JAMA Netw. Open 2019, 2, e192843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanri, H.; Shirasawa, T.; Ochiai, H.; Nomoto, S.; Hoshino, H.; Kokaze, A. Rapid weight gain during infancy and early childhood is related to higher anthropometric measurements in preadolescence. Child Care Health Dev. 2017, 43, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanri, H.; Shirasawa, T.; Ochiai, H.; Ohtsu, T.; Hoshino, H.; Kokaze, A. Rapid weight gain during early childhood is associated with overweight in preadolescence: A longitudinal study in Japan. Child Care Health Dev. 2016, 42, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Péneau, S.; Rouchaud, A.; Rolland-Cachera, M.F.; Arnault, N.; Hercberg, S.; Castetbon, K. Body size and growth from birth to 2 years and risk of overweight at 7–9 years. Int. J. Pediatr. Obes. 2011, 6, e162–e169. [Google Scholar] [CrossRef]
- Polk, S.; Thornton, R.J.; Caulfield, L.; Muñoz, A. Rapid infant weight gain and early childhood obesity in low-income Latinos and non-Latinos. Public Health Nutr. 2016, 19, 1777–1784. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Yang, X.; Wu, D.; Wang, X.; Li, T.; Liu, H.; Guo, C.; Wang, J.; Hu, X.; Yu, G.; et al. Insights into infancy weight gain patterns for term small-for-gestational-age babies. Nutr. J. 2018, 17, 97. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.G.; Sucharew, H.; Su, W.; Khoury, P.R.; Daniels, S.R.; Kalkwarf, H.J. Infant Weight and Length Growth Trajectories Modeled Using Superimposition by Translation and Rotation Are Differentially Associated with Body Composition Components at 3 and 7 Years of Age. J. Pediatr. 2018, 196, 182–188.e181. [Google Scholar] [CrossRef]
- Kramer, M.S.; Martin, R.M.; Bogdanovich, N.; Vilchuk, K.; Dahhou, M.; Oken, E. Is restricted fetal growth associated with later adiposity? Observational analysis of a randomized trial. Am. J. Clin. Nutr. 2014, 100, 176–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penny, M.E.; Jimenez, M.M.; Marin, R.M. Early rapid weight gain and subsequent overweight and obesity in middle childhood in Peru. BMC Obes. 2016, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Taveras, E.M.; Rifas-Shiman, S.L.; Sherry, B.; Oken, E.; Haines, J.; Kleinman, K.; Rich-Edwards, J.W.; Gillman, M.W. Crossing growth percentiles in infancy and risk of obesity in childhood. Arch. Pediatr. Adolesc. Med. 2011, 165, 993–998. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Search Strategy | ||
---|---|---|
Number | Term/s | Limits |
1 | Medical Heading (MH): “child*” | |
2 | “child *” | Title and Abstract |
3 | MH: “obesity” OR “pediatric obesity” OR “body mass index” OR “waist circumference” | |
4 | “obesity” OR “obese” OR “overweight” OR “risk of overweight” OR “risk of obesity” OR “adiposity” OR “adipose” OR “excess body weight” OR “body mass index” OR “bmi” OR “central obesity” OR “waist circumference” | Title and Abstract |
5 | “infant growth” OR “rapid growth” OR “catch-up growth” OR “retarded growth” OR “growth velocity” OR “growth rate” OR “height velocity” OR “weight velocity” OR “weight-for-age” OR “height-for-age” OR “weight-for-length” OR “bmi-for-age” | Title and Abstract |
6 | 1 OR 2 | |
7 | 3 OR 4 | |
8 | 5 AND 6 AND 7 | 2010—current, English, Subject age: child (6–12), preschool (2–5) |
Sample | Infant Growth | Childhood Outcome | Size of Effect | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Study | Location | N | Weight Status | Age (months) | Growth Measure | Age (years) | Growth Measure | Analysis | Primary | Secondary | Risk of Bias (ADA Quality Checklist) |
Jones-Smith et al. (2013). Prospective cohort study | Mexico | 586 | - | 0–24 | BMI velocity, length velocity, weight velocity | 8 | BAZ | Logistic regression | Overweight and infant BMI velocity, OR (95% CI): 1.47 (1.21, 1.78) Overweight and infant length velocity, OR (95% CI): 1.49 (1.23, 1.79) Overweight and infant weight velocity, OR (95% CI): 1.69 (1.40, 2.04) All values p < 0.05 | - | Positive
|
Lei et al. (2015). Prospective cohort study | USA | 1957 | SGA | 0–12 | Weight velocity, length velocity | 7 | Height, weight, BMI | Logistic regression | Overweight/obesity and excessive catch-up growth (SGA), OR (95% CI): 7.5 (5.4, 10.5) | - | Neutral
|
Liu et al. (2017). Prospective cohort study | USA | 1169 | - | 0–12 | Weight, height, BMI trajectory | 6 | Weight, height, BMI | Logistic regression | Obesity and infant BMI trajectory, OR (95% CI): 1.82 (1.14, 2.89) | - | Neutral
|
Nguyen et al. (2021). Prospective cohort study | Vietnam | 1402 | - | 0–12 | Weight, length | 6–7 | Weight, height, HAZ, BMIZ | Multivariable linear and Poisson regression models | Overweight/obesity and infant weight gain, IRR (95% CI): 0–<6 mo: 1.35 (1.06, 1.72), p < 0.05 6–<12 mo: 1.40 (1.09, 1.81), p < 0.01 | - | Positive
|
Peneau et al. (2011). Retrospective cohort study | France | 998 | Preterm infants were included in the sample. | 0–24 | Weight, length, BMI | 7–9 | Weight, height, BMI | Logistic regression model | Overweight and infant average monthly weight gain, OR (95% CI): Boys: 2.47 (1.32, 4.60), p: 0.01 Girls: 2.49 (1.38, 4.51), p: 0.001 Overweight and infant average monthly length gain, OR (95% CI): Girls: 2.15 (1.18, 3.92), p: 0.03 | - | Positive
|
Penny et al. (2016). Longitudinal cohort study | Peru | 1521 | - | 0–12 | Weight, length | 8 | Weight, height, WC | Generalised estimating equations | Overweight/obesity and infant rapid weight gain, OR: Urban: 2.06, p < 0.001 Rural: 2.60, p: 0.001 | - | Neutral
|
Shi et al. (2018). Retrospective cohort study | China | 3004 | SGA | 0–24 | Weight, length, WAZ, HAZ, WHZ | 2–5 | Weight, height, BMIZ, change in WAZ, HAZ, WHZ | Mixed-effects regression model | Overweight/obesity and infant excessive rapid catch-up growth, OR (95% CI): 11.6 (8.8, 15.3) Overweight/obesity and rapid catch-up growth, OR (95% CI): 2.3 (1.8, 3.0) p < 0.001 | - | Positive
|
Taveras et al. (2011). Longitudinal study | USA | 44,622 | - | 0–24 | Weight, length | 5–10 | Weight, height, BMI | Generalised linear mixed models | Obesity and infant growth trajectory (crossed upwards ≥2 weight-for-length percentiles), OR (95% CI): 5 years: 2.08 (1.84, 2.34) 10 years: 1.75 (1.53, 2.00) | - | Neutral
|
Nanri et al.(2016). Retrospective cohort study | Japan | 1296 | 0–18 | Weight, length | 9–10 | Weight, height, BMI | Logistic regression analysis | Overweight and rapid weight gain, adjusted OR (95% CI) Boys: 1.67 (0.83, 3.33) Girls: 2.60 (0.96, 7.04) | Neutral
| ||
Chirwa et al. (2014). Prospective cohort study | South Africa & Malawi | 530 | - | 0–12 | Weight velocity (kg/month), height velocity (cm/month), BMIZ | 9–11 | BMI, BMIZ | Linear and logistic regression | Overweight and infant weight velocity, OR (95% CI): 0–3 mo: 4.80 (2.49, 9.26), 0–6 mo: 2.60 (1.77, 3.83), 0–12 mo: 2.46 (1.89, 3.61) BMI and infant weight velocity, B (SE): 0–3 mo: 12.3 (1.05), 0–6 mo: 14.8 (1.23), 0–12 mo: 17.4 (1.37) BMIZ and infant height velocity, B (SE): 0–3 mo: 0.81 (0.25), 0–6 mo: 1.86 (0.50), 0–12 mo: 1.50 (0.54), all values p < 0.05 | - | Neutral Sources of potential bias:
|
Taal et al. (2013). Prospective cohort study | The Netherlands | 3531 | SGA,AGALGA Preterm infants were included in the sample. | 0–24 | Weight, length | 2–4 | Weight, height, BMI | We used linear regression analysis to assess the associations of being SGA or LGA for birth weight with growth realignment. | BMIZ and infant catch-up growth, B (95% CI): SGA: −0.23 (−0.39, −0.07), p < 0.001 AGA: 0.44 (0.37, 0.52), p < 0.001 Overweight/obesity and infant catch-up growth, OR (95% CI): AGA: 3.11 (2.37, 4.08), p < 0.001 | - | Neutral Sources of potential bias:
|
Kagura et al. (2012). Prospective cohort study | South Africa | 140 | - | 0–12 | WAZ, HAZ, BMIZ | 12 | BMIZ | Regression models | BMIZ and infant Δ weight, B (95% CI): 0.19 (0.03, 0.35), SE: 0.06, p ≤ 0.01 | - | Neutral
|
Polk et al. (2015). Retrospective cohort study | USA | 463 | - | 0–24 | Weight, length, WLZ | 3 | Weight, height, BMI | Mixed-effects models and multivariate linear regression | BMIZ and infant Δ WLZ, B (95% CI): Non Latino: Boys: 1.768 (1.34, 2.23) Girls: 1.031 (0.55, 1.51) Latino: Boys: 1.782 (1.17, 2.39) Girls: 1.430 (1.01, 1.85) | - | Neutral
|
Kramer et al. (2014). Longitudinal cohort study | Republic of Belarus | 13,879 | SGA, AGA, LGA | 0–12 | Δ WAZ | 6.5, 11.5 | Height, weight, BMI, %BF, FMI, WC | Logistic regression | BMI and infant catch-up growth (>0.67 SDS), difference (95% CI): SGA: −0.2 (−0.4, 0.1) | %BF and infant catch-up growth (>0.67 SDS), difference (95% CI): SGA: −0.2 (−0.9, 0.4) | Positive
|
Zhou et al. (2016). Prospective cohort study | China | 579 | - | 0–18 | Δ WAZ | 7–9 | BAZ, MUAC, %BF, FMI using BIA | Multilevel mixed analysis | BAZ and rapid infant weight gain, B (95% CI): 0.69 (−0.49, 0.89), p < 0.001 Overweight/obesity and rapid infant weight gain, OR (95% CI): 2.94 (1.17, 7.43), p: 0.022 | FMI and rapid infant weight gain, B (95% CI): 0.58 (0.37, 0.80) p: < 0.001 | Positive
|
Gishti et al. (2014). Prospective cohort study | The Netherlands | 6464 | - | 0–12 | Length gain, weight gain, abdominal circumference gain, BMI gain | 6 | BMI, FMI, LMI—using DXA and abdominal ultrasound | Linear regression models | BMI and infant growth rate, B (95% CI): Deceleration (D): −0.35 (−0.45, −0.26) Acceleration (A): 0.51 (0.41, 0.60) All values p < 0.01. | FMI and infant growth rate, B (95% CI): D: −0.22 (−0.32, −0.13) A: 0.25 (0.16, 0.35) | Positive
|
Golcalves et al. (2014). Prospective cohort study | Brazil | 167 | LBW ABW | 0–6 | Weight gain (SDS) | 8 | BMI, WC | Multivariate linear regression | BMI and infant weight gain (>0.67 SDS), B (95% CI): 1.4 (0.7, 2.2), p: 0.001 | WC and infant weight gain (>0.67 SDS), B (95% CI): 4.0 (2.1, 5.9), p < 0.001 | Positive
|
Lin et al. (2021). Prospective cohort study | China | 209 | - | 0–12 | Δ WAZ | 4 | WAZ, weight, BMI, WC | Multivariate linear regression | BMI and infant rapid growth, B (95% CI): 0.78 (0.33, 1.23), p < 0.01 | WC and infant rapid growth, B (95% CI): 1.62 (0.45, 1.32), p < 0.05 | Neutral
|
Nanri et al. (2017). Retrospective cohort study | Japan | 439 | - | 0–18 | Weight, length | 9–10 | Weight, height, %BF, WC | General linear model procedure | BMI and infant rapid weight gain, adjusted means Boys: 16.7 (16.2, 17.2) Girls: 16.5 (15.9, 17.0) BMI and infant weight gain (non-rapid) Boys: 16.1 (15.7, 16.6) Girls: 15.6 (15.1, 16.0) All values p < 0.05. | %BF and infant rapid weight gain, adjusted means Boys: 18.4 (17.3, 19.5) Girls: 16.3 (15.0, 17.5) WC and infant rapid weight gain, adjusted means Boys: 58.2 (56.8, 59.5) Girls: 56.6 (55.0, 58.1). | Neutral
|
Ong et al. (2020). Prospective cohort study | United Kingdom | 254 | - | 0–24 | Weight, length, skinfold thickness, WAZ | 5–11 | Weight, height, FM—DXA scan | Multilevel linear regression | BMI and infant Δ WAZ, B (SE): 0–3 mo: 0.28 (0.09), p: 0.002 3–24 mo: 0.26 (0.09), p: 0.001 | %BF and infant Δ WAZ, B (SE): 0–3 mo: 1.38 (0.69), p: 0.0483–24 mo: 1.71 (0.64), p: 0.008 | Positive
|
Woo et al. (2018). Retrospective cohort study | USA | 346 | - | 0–24 | Weight, length | 3–7 | BMIZ, LMI, FMI—using DXA scan, %BF | Linear and logistic regression | Overweight/obesity and infant weight velocity, OR (95% CI): 3 years: 1.07 (1.05, 1.10), p < 0.001 7 years: 1.03 (1.01, 1.05), p < 0.01 | FMI and infant weight velocity, significant parameter estimate (SE): 0.02 (0.003), p < 0.001 | Positive
|
Ejlerskov et al. (2015). Prospective cohort study | Denmark | 233 | - | 0–9 | Δ WAZ | 3 | BMI FFM and FMI—using BIASkinfolds | Multiple linear regression | - | FMI and infant Δ WAZ, B (SE): 0–5 mo: 0.21 (0.05) 5–9 mo: 0.42 (0.06) All values p < 0.001 | Neutral
|
Smith-Brown et al. (2018). Prospective cohort study | Australia | 36 | 0–12 | Weight, length, change in WLZ | 2–3 | Weight, height, WC, BMI, BMIZ, WHR, FFM, FM (D2O dilution technique) | Multiple linear regression | - | FMMI z-score and infant growth velocity, r: 0–6 mo: 0.57, p: 0.019 6–12 mo: −0.75, p: 0.019 FMI z-score and infant growth velocity, r: 6–12 mo: 0.75, p: 0.019 | Neutral
| |
Vogelezang et al. (2019). Prospective cohort study | The Netherlands | 3205 | - | 0–12 | Weight, length | 10 | Weight, height, BMI, FFM, FM—using DXA scan | Conditional and linear regression | - | Visceral fat and infant weight velocity, regression coefficient (95% CI): AGA: 0.04 (0.02, 0.06) | Neutral
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halilagic, A.; Moschonis, G. The Effect of Growth Rate during Infancy on the Risk of Developing Obesity in Childhood: A Systematic Literature Review. Nutrients 2021, 13, 3449. https://doi.org/10.3390/nu13103449
Halilagic A, Moschonis G. The Effect of Growth Rate during Infancy on the Risk of Developing Obesity in Childhood: A Systematic Literature Review. Nutrients. 2021; 13(10):3449. https://doi.org/10.3390/nu13103449
Chicago/Turabian StyleHalilagic, Anela, and George Moschonis. 2021. "The Effect of Growth Rate during Infancy on the Risk of Developing Obesity in Childhood: A Systematic Literature Review" Nutrients 13, no. 10: 3449. https://doi.org/10.3390/nu13103449
APA StyleHalilagic, A., & Moschonis, G. (2021). The Effect of Growth Rate during Infancy on the Risk of Developing Obesity in Childhood: A Systematic Literature Review. Nutrients, 13(10), 3449. https://doi.org/10.3390/nu13103449