Acceptability of Vegetable Fortified Ugali in Sub-Saharan Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Vegetables Foritfied Ugali
2.3. Sensory Evaluation
2.4. Data Analysis
3. Results
3.1. Pre-Tasting Senseory Evaluaiton of Differently Fortified Ugali
3.2. Tasting Sensory Evaluation of Differently Fortified Ugali
3.3. Caregive Acceptability and Preference Ranking of Differently Fortified Ugali
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Wanjala, W.G.; Onyango, A.; Makayoto, M.; Onyango, C. Indigenous technical knowledge and formulations of thick (ugali) and thin (uji) porridges consumed in Kenya. Afr. J. Food Sci. 2016, 10, 11. [Google Scholar] [CrossRef]
- Malimi, K.E.; Ladislaus, K.M.; Grace, M.N.; Elifatio, T.; Cypriana, C. Acceptability Assessment of Ugali Made from Blends of High Quality Cassava Flour and Cereal Flours in the Lake Zone, Tanzania. Asian Food Sci. J. 2018, 2, 11. [Google Scholar] [CrossRef]
- Gibson, R.S.; Yeudall, F.; Drost, N.; Mtitimuni, B.M.; Cullinan, T.R. Experiences of a community-based dietary intervention to enhance micronutrient adequacy of diets low in animal source foods and high in phytate: A case study in rural Malawian children. J. Nutr. 2003, 133, 3992S–3999S. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Munck, L.; Eggum, B.O. Effect of cooking, pH and polyphenol level on carbohydrate composition and nutritional quality of a sorghum (Sorghum bicolor (L.) Moench) food, ugali. Br. J. Nutr. 1988, 59, 31–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gegios, A.; Amthor, R.; Maziya-Dixon, B.; Egesi, C.; Mallowa, S.; Nungo, R.; Gichuki, S.; Mbanaso, A.; Manary, M.J. Children consuming cassava as a staple food are at risk for inadequate zinc, iron, and vitamin A intake. Plant. Foods Hum. Nutr. 2010, 65, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephenson, K.; Amthor, R.; Mallowa, S.; Nungo, R.; Maziya-Dixon, B.; Gichuki, S.; Mbanaso, A.; Manary, M. Consuming cassava as a staple food places children 2-5 years old at risk for inadequate protein intake, an observational study in Kenya and Nigeria. Nutr. J. 2010, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Bumoko, G.M.; Sombo, M.T.; Okitundu, L.D.; Mumba, D.N.; Kazadi, K.T.; Tamfum-Muyembe, J.J.; Lasarev, M.R.; Boivin, M.J.; Banea, J.P.; Tshala-Katumbay, D.D. Determinants of cognitive performance in children relying on cyanogenic cassava as staple food. Metab. Brain Dis. 2014, 29, 359–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillman, J. Effects on Rats of Prolonged Staple African Diet. Br. Med. J. 1944, 1, 149–150. [Google Scholar] [CrossRef] [Green Version]
- De Moura, F.F.; Palmer, A.C.; Finkelstein, J.L.; Haas, J.D.; Murray-Kolb, L.E.; Wenger, M.J.; Birol, E.; Boy, E.; Pena-Rosas, J.P. Are biofortified staple food crops improving vitamin A and iron status in women and children? New evidence from efficacy trials. Adv. Nutr. 2014, 5, 568–570. [Google Scholar] [CrossRef] [Green Version]
- Hotz, C.; Loechl, C.; Lubowa, A.; Tumwine, J.K.; Ndeezi, G.; Nandutu Masawi, A.; Baingana, R.; Carriquiry, A.; de Brauw, A.; Meenakshi, J.V.; et al. Introduction of beta-carotene-rich orange sweet potato in rural Uganda resulted in increased vitamin A intakes among children and women and improved vitamin A status among children. J. Nutr. 2012, 142, 1871–1880. [Google Scholar] [CrossRef] [Green Version]
- Hotz, C.; Loechl, C.; de Brauw, A.; Eozenou, P.; Gilligan, D.; Moursi, M.; Munhaua, B.; van Jaarsveld, P.; Carriquiry, A.; Meenakshi, J.V. A large-scale intervention to introduce orange sweet potato in rural Mozambique increases vitamin A intakes among children and women. Br. J. Nutr. 2012, 108, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Hummel, M.; Talsma, E.F.; Van der Honing, A.; Gama, A.C.; Van Vugt, D.; Brouwer, I.D.; Spillane, C. Sensory and cultural acceptability tradeoffs with nutritional content of biofortified orange-fleshed sweetpotato varieties among households with children in Malawi. PLoS ONE 2018, 13, e0204754. [Google Scholar] [CrossRef]
- Pillay, K.; Derera, J.; Siwela, M.; Veldman, F. Consumer acceptance of yellow, provitamin A-biofortified maize in KwaZulu-Natal. S. Afr. J. Clin. Nutr. 2011, 24, 186–191. [Google Scholar] [CrossRef]
- Gasura, E.; Matsaure, F.; Setimela, P.S.; Rugare, J.T.; Nyakurwa, C.S.; Andrade, M. Performance, Variance Components, and Acceptability of Pro-vitamin A-Biofortified Sweetpotato in Southern Africa and Implications in Future Breeding. Front. Plant. Sci. 2021, 12, 696738. [Google Scholar] [CrossRef] [PubMed]
- Forsido, S.F.; Rupasinghe, H.P.; Astatkie, T. Antioxidant capacity, total phenolics and nutritional content in selected ethiopian staple food ingredients. Int. J. Food Sci. Nutr. 2013, 64, 915–920. [Google Scholar] [CrossRef]
- Ribaya-Mercado, J.D.; Maramag, C.C.; Tengco, L.W.; Dolnikowski, G.G.; Blumberg, J.B.; Solon, F.S. Carotene-rich plant foods ingested with minimal dietary fat enhance the total-body vitamin A pool size in Filipino schoolchildren as assessed by stable-isotope-dilution methodology. Am. J. Clin. Nutr. 2007, 85, 1041–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, L.; Rimm, E.B.; Seddon, J.M.; Giovannucci, E.L.; Chasan-Taber, L.; Spiegelman, D.; Willett, W.C.; Hankinson, S.E. A prospective study of carotenoid intake and risk of cataract extraction in US men. Am. J. Clin. Nutr. 1999, 70, 517–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stajner, D.; Canadanovic-Brunet, J.; Pavlovic, A. Allium schoenoprasum L., as a natural antioxidant. Phytother. Res. 2004, 18, 522–524. [Google Scholar] [CrossRef]
- Caglarirmak, N. Chemical composition and nutrition value of dried cultivated culinary-medicinal mushrooms from Turkey. Int. J. Med. Mushrooms 2011, 13, 351–356. [Google Scholar] [CrossRef]
- Sonnenburg, E.D.; Smits, S.A.; Tikhonov, M.; Higginbottom, S.K.; Wingreen, N.S.; Sonnenburg, J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016, 529, 212–215. [Google Scholar] [CrossRef] [Green Version]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-microbiota-targeted diets modulate human immune status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef]
- Mlotha, V.; Mwangwela, A.M.; Kasapila, W.; Siyame, E.W.P.; Masamba, K. Glycemic responses to maize flour stiff porridges prepared using local recipes in Malawi. Food Sci. Nutr. 2016, 4, 322–328. [Google Scholar] [CrossRef]
- Suri, D.J.; Tanumihardjo, S.A. Effects of Different Processing Methods on the Micronutrient and Phytochemical Contents of Maize: From A to Z. Compr. Rev. Food Sci. Food Saf. 2016, 15, 912–926. [Google Scholar] [CrossRef] [Green Version]
- Maakelo, P.K.; Bultosa, G.; Kobue-Lekalake, R.I.; Gwamba, J.; Sonno, K. Effects of watermelon pulp fortification on maize mageu physicochemical and sensory acceptability. Heliyon 2021, 7, e07128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zheng, J.; Li, Z.; Cai, Z.; Wang, F.; Yang, D. Purification, Characterization, and Self-Assembly of the Polysaccharide from Allium schoenoprasum. Foods 2021, 10, 1352. [Google Scholar] [CrossRef]
- Sagar, V.R.; Suresh Kumar, P. Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.L.; Chen, W.L.; Weng, Y.M.; Tseng, C.Y. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chem. 2003, 83, 85–92. [Google Scholar] [CrossRef]
- Sutrisna, A.; Vossenaar, M.; Izwardy, D.; Tumilowicz, A. Sensory Evaluation of Foods with Added Micronutrient Powder (MNP) “Taburia” to Assess Acceptability among Children Aged 6–24 Months and Their Caregivers in Indonesia. Nutrients 2017, 9, 979. [Google Scholar] [CrossRef] [Green Version]
- McCrickerd, K.; Tay, P.P.S.; Tang, C.S.; Forde, C.G. Using Sensory Cues to Optimise the Satiety Value of a Reduced-Calorie Product Labelled ‘Healthier Choice’. Nutrients 2019, 12, 107. [Google Scholar] [CrossRef] [Green Version]
- Jahan, T.A.; Vandenberg, A.; Glahn, R.P.; Tyler, R.T.; Reaney, M.J.T.; Tar’an, B. Iron Fortification and Bioavailability of Chickpea (Cicer arietinum L.) Seeds and Flour. Nutrients 2019, 11, 2240. [Google Scholar] [CrossRef] [Green Version]
- Chi, C.F.; Dewi, R.S.; Samali, P.; Hsieh, D.Y. Preference ranking test for different icon design formats for smart living room and bathroom functions. Appl. Ergon. 2019, 81, 102891. [Google Scholar] [CrossRef] [PubMed]
- Buttery, R.G.; Takeoka, G.R. Cooked Carrot Volatiles. AEDA and Odor Activity Comparisons. Identification of Linden Ether as an Important Aroma Component. J. Agric. Food Chem. 2013, 61, 9063–9066. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, G.S.; Poll, L. Determination of odor active aroma compounds in freshly cut leek (Allium ampeloprasum Var. Bulga) and in long-term stored frozen unblanched and blanched leek slices by gas chromatography olfactometry analysis. J. Agric. Food Chem. 2004, 52, 1642–1646. [Google Scholar] [CrossRef] [PubMed]
- Zabaras, D.; Roohani, M.; Krishnamurthy, R.; Cochet, M.; Delahunty, C.M. Characterisation of taste-active extracts from raw Brassica oleracea vegetables. Food Funct. 2013, 4, 592–601. [Google Scholar] [CrossRef]
- Dermiki, M.; Phanphensophon, N.; Mottram, D.S.; Methven, L. Contributions of non-volatile and volatile compounds to the umami taste and overall flavour of shiitake mushroom extracts and their application as flavour enhancers in cooked minced meat. Food Chem. 2013, 141, 77–83. [Google Scholar] [CrossRef]
- Makame, J.; Cronje, T.; Emmambux, N.M.; De Kock, H. Dynamic Oral Texture Properties of Selected Indigenous Complementary Porridges Used in African Communities. Foods 2019, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, X.; Deng, Y.H.; Matinfar, G.; Singh, A.; Mandal, R.; Pratap-Singh, A. Impact of Three Different Dehydration Methods on Nutritional Values and Sensory Quality of Dried Broccoli, Oranges, and Carrots. Foods 2020, 9, 1464. [Google Scholar] [CrossRef]
- Laguna, L.; Manickam, I.; Arancibia, C.; Tarrega, A. Viscosity decay of hydrocolloids under oral conditions. Food Res. Int. 2020, 136. [Google Scholar] [CrossRef]
- Yang, M.H.; Kim, N.H.; Heo, J.D.; Rho, J.R.; Ock, K.J.; Shin, E.C.; Jeong, E.J. Comparative Evaluation of Sulfur Compounds Contents and Antiobesity Properties of Allium hookeri Prepared by Different Drying Methods. Evid.-Based Complement. Altern. Med. 2017, 2017, 2436927. [Google Scholar] [CrossRef]
- Vasilaki, A.; Panagiotopoulou, E.; Koupantsis, T.; Katsanidis, E.; Mourtzinos, I. Recent insights in flavor-enhancers: Definition, mechanism of action, taste-enhancing ingredients, analytical techniques and the potential of utilization. Crit Rev. Food Sci. Nutr. 2021, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bellisle, F. Glutamate and the UMAMI taste: Sensory, metabolic, nutritional and behavioural considerations. A review of the literature published in the last 10 years. Neurosci. Biobehav. Rev. 1999, 23, 423–438. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Ninomiya, K. Umami and food palatability. J. Nutr. 2000, 130, 921S–926S. [Google Scholar] [CrossRef] [PubMed]
Appellation | Country |
---|---|
Bugali | Burundi, DR Congo, Rwanda |
Chima | Mozambique |
Isitshwala | Botswana |
Gari | Gabon |
Kaunga | Uganda |
Mealie pap | Lesotho, South Africa |
Mutuku | South Africa |
Ngima | Kenya |
Nkima | Kenya |
Nshima | Malawi, Zambia |
Nsima | Malawi, Zambia |
Oshifima | Namibia |
Pap | Namibia, South Africa |
Papa | Lesotho, South Africa |
Shima | Malawi |
Ubugali | Rwanda |
Ugali | Kenya, Malawi, Mozambique, Tanzania, Uganda |
Upswa | Mozambique |
Vhuswa | Venda |
Xima | Mozambique |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Meng, X.; Nyirenda, D.; Mandala, W.; Li, X.; Yang, D. Acceptability of Vegetable Fortified Ugali in Sub-Saharan Africa. Nutrients 2021, 13, 3405. https://doi.org/10.3390/nu13103405
Cai Z, Meng X, Nyirenda D, Mandala W, Li X, Yang D. Acceptability of Vegetable Fortified Ugali in Sub-Saharan Africa. Nutrients. 2021; 13(10):3405. https://doi.org/10.3390/nu13103405
Chicago/Turabian StyleCai, Zixuan, Xin Meng, Dennis Nyirenda, Wilson Mandala, Xiaoyun Li, and Dong Yang. 2021. "Acceptability of Vegetable Fortified Ugali in Sub-Saharan Africa" Nutrients 13, no. 10: 3405. https://doi.org/10.3390/nu13103405
APA StyleCai, Z., Meng, X., Nyirenda, D., Mandala, W., Li, X., & Yang, D. (2021). Acceptability of Vegetable Fortified Ugali in Sub-Saharan Africa. Nutrients, 13(10), 3405. https://doi.org/10.3390/nu13103405