Increased Adiposity Appraised with CUN-BAE Is Highly Predictive of Incident Hypertension. The SUN Project
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Ethics
2.3. CUN-BAE
2.4. Incident Hypertension
2.5. Other Covariates
2.6. Statistical Analyses
3. Results
3.1. Participants
3.2. Body Fat and Incident Hypertension
3.3. Interaction between Sex and the CUN-BAE Index
3.4. Sensitivity Analyses
4. Discussion
4.1. Previous Investigations
4.2. Mechanisms
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar]
- Gregg, E.W.; Shaw, J.E. Global Health Effects of Overweight and Obesity. N. Engl. J. Med. 2017, 377, 80–81. [Google Scholar] [CrossRef] [PubMed]
- Landsberg, L.; Aronne, L.J.; Beilin, L.J.; Burke, V.; Igel, L.I.; Lloyd-Jones, D.; Sowers, J. Obesity-related hypertension: Pathogenesis, cardiovascular risk, and treatment: A position paper of The Obesity Society and the American Society of Hypertension. J. Clin. Hypertens. 2013, 15, 14–33. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; da Silva, A.A.; do Carmo, J.M.; Dubinion, J.; Hamza, S.; Munusamy, S.; Smith, G.; Stec, D.E. Obesity-induced hypertension: Role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 2010, 285, 17271–17276. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity-induced hypertension: Interaction of neurohumoral and renal mechanisms. Circ. Res. 2015, 116, 991–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landecho, M.F.; Moncada, R.; Valenti, V.; Fruhbeck, G. Cardiovascular Prevention in Obese Patients. Curr. Pharm. Des. 2016, 22, 5687–5697. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E., Jr.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018, 138, e426–e483. [Google Scholar]
- Faulkner, J.L.; Belin de Chantemele, E.J. Sex Differences in Mechanisms of Hypertension Associated With Obesity. Hypertension 2018, 71, 15–21. [Google Scholar] [CrossRef]
- Garrison, R.J.; Kannel, W.B.; Stokes, J., 3rd; Castelli, W.P. Incidence and precursors of hypertension in young adults: The Framingham Offspring Study. Prev. Med. 1987, 16, 235–251. [Google Scholar] [CrossRef]
- Vasan, R.S.; Larson, M.G.; Leip, E.P.; Kannel, W.B.; Levy, D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: A cohort study. Lancet 2001, 358, 1682–1686. [Google Scholar] [CrossRef]
- Forman, J.P.; Stampfer, M.J.; Curhan, G.C. Diet and lifestyle risk factors associated with incident hypertension in women. JAMA 2009, 302, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Stevens, V.J.; Obarzanek, E.; Cook, N.R.; Lee, I.M.; Appel, L.J.; Smith West, D.; Milas, N.C.; Mattfeldt-Beman, M.; Belden, L.; Bragg, C.; et al. Long-term weight loss and changes in blood pressure: Results of the Trials of Hypertension Prevention, phase II. Ann. Intern. Med. 2001, 134, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Hassen Abate, K.; Akinyemiju, T.F.; et al. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990–2015. JAMA 2017, 317, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Olsen, M.H.; Angell, S.Y.; Asma, S.; Boutouyrie, P.; Burger, D.; Chirinos, J.A.; Damasceno, A.; Delles, C.; Gimenez-Roqueplo, A.P.; Hering, D.; et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: The Lancet Commission on hypertension. Lancet 2016, 388, 2665–2712. [Google Scholar] [CrossRef]
- Borga, M.; West, J.; Bell, J.D.; Harvey, N.C.; Romu, T.; Heymsfield, S.B.; Dahlqvist Leinhard, O. Advanced body composition assessment: From body mass index to body composition profiling. J. Investig. Med. 2018, 66, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Belarmino, G.; Horie, L.M.; Sala, P.C.; Torrinhas, R.S.; Heymsfield, S.B.; Waitzberg, D.L. Body adiposity index performance in estimating body fat in a sample of severely obese Brazilian patients. Nutr. J. 2015, 14, 130. [Google Scholar] [CrossRef] [Green Version]
- Chambers, A.J.; Parise, E.; McCrory, J.L.; Cham, R. A comparison of prediction equations for the estimation of body fat percentage in non-obese and obese older Caucasian adults in the United States. J. Nutr. Health Aging 2014, 18, 586–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolcott, O.O.; Bergman, R.N. Relative fat mass (RFM) as a new estimator of whole-body fat percentage horizontal line A cross-sectional study in American adult individuals. Sci. Rep. 2018, 8, 10980. [Google Scholar] [CrossRef] [Green Version]
- Mill-Ferreyra, E.; Cameno-Carrillo, V.; Saul-Gordo, H.; Cami-Lavado, M.C. Estimation of the percentage of body fat based on the body mass index and the abdominal circumference: Palafolls Formula. Semergen 2019, 45, 101–108. [Google Scholar] [CrossRef]
- Molina-Luque, R.; Romero-Saldana, M.; Alvarez-Fernandez, C.; Bennasar-Veny, M.; Alvarez-Lopez, A.; Molina-Recio, G. Equation Cordoba: A Simplified Method for Estimation of Body Fat (ECORE-BF). Int. J. Environ. Res. Public Health 2019, 16, 4529. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Ambrosi, J.; Silva, C.; Catalan, V.; Rodriguez, A.; Galofre, J.C.; Escalada, J.; Valenti, V.; Rotellar, F.; Romero, S.; Ramirez, B.; et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care 2012, 35, 383–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suliga, E.; Ciesla, E.; Gluszek-Osuch, M.; Rogula, T.; Gluszek, S.; Koziel, D. The Usefulness of Anthropometric Indices to Identify the Risk of Metabolic Syndrome. Nutrients 2019, 11, 2598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Marcos, M.A.; Gomez-Sanchez, L.; Patino-Alonso, M.C.; Recio-Rodriguez, J.I.; Gomez-Sanchez, M.; Rigo, F.; Marti, R.; Agudo-Conde, C.; Maderuelo-Fernandez, J.A.; Ramos, R.; et al. Capacity adiposity indices to identify metabolic syndrome in subjects with intermediate cardiovascular risk (MARK study). PLoS ONE 2019, 14, e0209992. [Google Scholar] [CrossRef] [Green Version]
- Davila-Batista, V.; Molina, A.J.; Vilorio-Marques, L.; Lujan-Barroso, L.; de Souza-Teixeira, F.; Olmedo-Requena, R.; Arias de la Torre, J.; Garcia-Martinez, L.; Alvarez-Alvarez, L.; Freisling, H.; et al. Net contribution and predictive ability of the CUN-BAE body fatness index in relation to cardiometabolic conditions. Eur. J. Nutr. 2019, 58, 1853–1861. [Google Scholar] [CrossRef] [Green Version]
- Martin, V.; Davila-Batista, V.; Castilla, J.; Godoy, P.; Delgado-Rodriguez, M.; Soldevila, N.; Molina, A.J.; Fernandez-Villa, T.; Astray, J.; Castro, A.; et al. Comparison of body mass index (BMI) with the CUN-BAE body adiposity estimator in the prediction of hypertension and type 2 diabetes. BMC Public Health 2016, 16, 82. [Google Scholar] [CrossRef] [Green Version]
- Vinknes, K.J.; Nurk, E.; Tell, G.S.; Sulo, G.; Refsum, H.; Elshorbagy, A.K. The relation of CUN-BAE index and BMI with body fat, cardiovascular events and diabetes during a 6-year follow-up: The Hordaland Health Study. Clin. Epidemiol. 2017, 9, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gonzalez, M.A.; Sanchez-Villegas, A.; De Irala, J.; Marti, A.; Martinez, J.A. Mediterranean diet and stroke: Objectives and design of the SUN project. Seguimiento Universidad de Navarra. Nutr. Neurosci. 2002, 5, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Segui-Gomez, M.; de la Fuente, C.; Vazquez, Z.; de Irala, J.; Martinez-Gonzalez, M.A. Cohort profile: The ‘Seguimiento Universidad de Navarra’ (SUN) study. Int. J. Epidemiol. 2006, 35, 1417–1422. [Google Scholar] [CrossRef] [Green Version]
- Carlos, S.; De La Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Razquin, C.; Rico-Campà, A.; Martínez-González, M.A.; Ruiz-Canela, M. Mediterranean Diet and Health Outcomes in the SUN Cohort. Nutrients 2018, 10, 439. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C. Issues in analysis and presentation of dietary data. In Nutritional Epidemiology, 3rd ed.; Willett, W.C., Ed.; Oxford University Press: New York, NY, USA, 2012; pp. 321–346. [Google Scholar]
- Alonso, A.; Beunza, J.J.; Delgado-Rodriguez, M.; Martinez-Gonzalez, M.A. Validation of self reported diagnosis of hypertension in a cohort of university graduates in Spain. BMC Public Health 2005, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Barrio-Lopez, M.T.; Bes-Rastrollo, M.; Beunza, J.J.; Fernandez-Montero, A.; Garcia-Lopez, M.; Martinez-Gonzalez, M.A. Validation of metabolic syndrome using medical records in the SUN cohort. BMC Public Health 2011, 11, 867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Montero, A.; Beunza, J.J.; Bes-Rastrollo, M.; Barrio, M.T.; de la Fuente-Arrillaga, C.; Moreno-Galarraga, L.; Martinez-Gonzalez, M.A. Validity of self-reported metabolic syndrome components in a cohort study. Gac. Sanit. 2011, 25, 303–307. [Google Scholar]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Vander Weele, T.J. On the relative nature of overadjustment and unnecessary adjustment. Epidemiology 2009, 20, 496–499. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Lopez-Fontana, C.; Varo, J.J.; Sanchez-Villegas, A.; Martinez, J.A. Validation of the Spanish version of the physical activity questionnaire used in the Nurses’ Health Study and the Health Professionals’ Follow-up Study. Public Health Nutr. 2005, 8, 920–927. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32 (Suppl. S9), S498–S504. [Google Scholar] [CrossRef] [Green Version]
- Bes-Rastrollo, M.; Perez Valdivieso, J.R.; Sanchez-Villegas, A.; Alonso, A.; Martinez-Gonzalez, M.A. Validación del peso e índice de masa corporal auto-declarados de los participantes de una cohorte de graduados universitarios. Rev. Esp. Obes. 2005, 3, 183–189. [Google Scholar]
- Ranasinghe, C.; Gamage, P.; Katulanda, P.; Andraweera, N.; Thilakarathne, S.; Tharanga, P. Relationship between Body Mass Index (BMI) and body fat percentage, estimated by bioelectrical impedance, in a group of Sri Lankan adults: A cross sectional study. BMC Public Health 2013, 13, 797. [Google Scholar] [CrossRef] [Green Version]
- Hastuti, J.; Kagawa, M.; Byrne, N.M.; Hills, A.P. Anthropometry to assess body fat in Indonesian adults. Asia Pac. J. Clin. Nutr. 2018, 27, 592–598. [Google Scholar]
- Castro-Porras, L.V.; Rojas-Russell, M.E.; Villanueva-Sanchez, J.; Lopez-Cervantes, M. An anthropometry-based equation of fat mass percentage as a valid discriminator of obesity. Public Health Nutr. 2019, 22, 1250–1258. [Google Scholar] [CrossRef]
- Smalley, K.J.; Knerr, A.N.; Kendrick, Z.V.; Colliver, J.A.; Owen, O.E. Reassessment of body mass indices. Am. J. Clin. Nutr. 1990, 52, 405–408. [Google Scholar] [CrossRef]
- Gomez-Sanchez, L.; Garcia-Ortiz, L.; Patino-Alonso, M.C.; Recio-Rodriguez, J.I.; Rigo, F.; Marti, R.; Agudo-Conde, C.; Rodriguez-Sanchez, E.; Maderuelo-Fernandez, J.A.; Ramos, R.; et al. Adiposity measures and arterial stiffness in primary care: The MARK prospective observational study. BMJ Open 2017, 7, e016422. [Google Scholar] [CrossRef]
- Chen, X.; Fan, R.; Peng, F.; Liu, J.; Huang, J.; Chen, Z.; Chen, Y.; Jiang, Y. Blood pressure and body fat percent in women with NMOSD. Brain Behav. 2019, 9, e01350. [Google Scholar] [CrossRef] [Green Version]
- Lambert, E.A.; Esler, M.D.; Schlaich, M.P.; Dixon, J.; Eikelis, N.; Lambert, G.W. Obesity-Associated Organ Damage and Sympathetic Nervous Activity. Hypertension 2019, 73, 1150–1159. [Google Scholar] [CrossRef] [PubMed]
- Gentile, C.L.; Orr, J.S.; Davy, B.M.; Davy, K.P. Modest weight gain is associated with sympathetic neural activation in nonobese humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R1834–R1838. [Google Scholar] [CrossRef] [Green Version]
- Lambert, E.; Straznicky, N.; Schlaich, M.; Esler, M.; Dawood, T.; Hotchkin, E.; Lambert, G. Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension 2007, 50, 862–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz, M.; Jennings, G.; Turner, A.; Cox, H.; Lambert, G.; Esler, M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation 1997, 96, 3423–3429. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, G.E.; Ballard, T.P.; Beske, S.D.; Davy, K.P. Subcutaneous obesity is not associated with sympathetic neural activation. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H414–H418. [Google Scholar] [CrossRef] [Green Version]
- Bentley-Lewis, R.; Adler, G.K.; Perlstein, T.; Seely, E.W.; Hopkins, P.N.; Williams, G.H.; Garg, R. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J. Clin. Endocrinol. Metab. 2007, 92, 4472–4475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engeli, S.; Sharma, A.M. The renin-angiotensin system and natriuretic peptides in obesity-associated hypertension. J. Mol. Med. 2001, 79, 21–29. [Google Scholar] [CrossRef]
- Cabandugama, P.K.; Gardner, M.J.; Sowers, J.R. The Renin Angiotensin Aldosterone System in Obesity and Hypertension: Roles in the Cardiorenal Metabolic Syndrome. Med. Clin. N. Am. 2017, 101, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.E.; do Carmo, J.M.; da Silva, A.A.; Juncos, L.A.; Wang, Z.; Hall, J.E. Obesity, hypertension, and chronic kidney disease. Int. J. Nephrol. Renovasc. Dis. 2014, 7, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Schutten, M.T.; Houben, A.J.; de Leeuw, P.W.; Stehouwer, C.D. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology 2017, 32, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Yiannikouris, F.; Karounos, M.; Charnigo, R.; English, V.L.; Rateri, D.L.; Daugherty, A.; Cassis, L.A. Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, R244–R251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, J.H.; Kim, K.Y.; Kim, J.H.; Baek, A.; Cho, H.; Lee, Y.H.; Kim, J.W.; Kim, D.; Han, S.H.; Lim, J.S.; et al. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J. 2008, 22, 1502–1511. [Google Scholar] [CrossRef]
- Ehrhart-Bornstein, M.; Lamounier-Zepter, V.; Schraven, A.; Langenbach, J.; Willenberg, H.S.; Barthel, A.; Hauner, H.; McCann, S.M.; Scherbaum, W.A.; Bornstein, S.R. Human adipocytes secrete mineralocorticoid-releasing factors. Proc. Natl. Acad. Sci. USA 2003, 100, 14211–14216. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.W.; Woods, S.C.; Porte, D.; Seeley, R.J., Jr.; Baskin, D.G. Central nervous system control of food intake. Nature 2000, 404, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Shek, E.W.; Brands, M.W.; Hall, J.E. Chronic leptin infusion increases arterial pressure. Hypertension 1998, 31 Pt 2, 409–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295. [Google Scholar] [CrossRef]
- Rahmouni, K.; Morgan, D.A.; Morgan, G.M.; Mark, A.L.; Haynes, W.G. Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes 2005, 54, 2012–2018. [Google Scholar] [CrossRef] [Green Version]
- Kshatriya, S.; Liu, K.; Salah, A.; Szombathy, T.; Freeman, R.H.; Reams, G.P.; Spear, R.M.; Villarreal, D. Obesity hypertension: The regulatory role of leptin. Int. J. Hypertens. 2011, 2011, 270624. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, T.M.; Banks, S.A.; Alonso-Galicia, M.; Cockrell, K.; Carroll, J.F.; Bigler, S.A.; Hall, J.E. Distribution of renal medullary hyaluronan in lean and obese rabbits. Kidney Int. 2000, 58, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Kambham, N.; Markowitz, G.S.; Valeri, A.M.; Lin, J.; D’Agati, V.D. Obesity-related glomerulopathy: An emerging epidemic. Kidney Int. 2001, 59, 1498–1509. [Google Scholar] [CrossRef] [Green Version]
- Kotsis, V.; Stabouli, S.; Papakatsika, S.; Rizos, Z.; Parati, G. Mechanisms of obesity-induced hypertension. Hypertens. Res. 2010, 33, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Gudbjornsdottir, S.; Elam, M.; Sellgren, J.; Anderson, E.A. Insulin increases forearm vascular resistance in obese, insulin-resistant hypertensives. J. Hypertens. 1996, 14, 91–97. [Google Scholar]
- Ward, K.R.; Bardgett, J.F.; Wolfgang, L.; Stocker, S.D. Sympathetic response to insulin is mediated by melanocortin 3/4 receptors in the hypothalamic paraventricular nucleus. Hypertension 2011, 57, 435–441. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A.; Cooke, C.R.; Andres, R.; Faloona, G.R.; Davis, P.J. The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J. Clin. Investig. 1975, 55, 845–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strazzullo, P.; Barbato, A.; Galletti, F.; Barba, G.; Siani, A.; Iacone, R.; D’Elia, L.; Russo, O.; Versiero, M.; Farinaro, E.; et al. Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti Heart Study. J. Hypertens. 2006, 24, 1633–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniyappa, R.; Sowers, J.R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord. 2013, 14, 5–12. [Google Scholar] [CrossRef]
Men | ||||
Q1 | Q2 | Q3 | Q4 | |
Limits of body fat (range) | 19.5, 32.3 | 32.3, 35.6 | 35.6, 38.7 | 38.7, 58.4 |
N | 1446 | 1445 | 1446 | 1445 |
Age, y | 30.4 (7.3) | 37.8 (9.3) | 44.0 (10.5) | 48.1 (11.7) |
Married men, % | 27.3 | 56.0 | 71.7 | 78.2 |
University education, year | 5.1 (1.6) | 5.5 (1.7) | 5.5 (1.8) | 5.4 (1.8) |
BMI, kg/m2 | 22.1 (1.3) | 24.2 (1.0) | 25.7 (1.1) | 28.8 (2.4) |
Smoking | ||||
- Never, % | 64.2 | 53.0 | 40.6 | 32.0 |
- Current, % | 21.6 | 21.5 | 22.1 | 21.7 |
- Former smoker, % | 14.3 | 25.5 | 37.3 | 46.3 |
Leisure-time physical activity, METs-h/week | 32.8 (32.2) | 27.9 (26.1) | 25.9 (26.1) | 21.1 (20.4) |
Television watching, h/day | 1.5 (1.2) | 1.5 (1.0) | 1.5 (1.0) | 1.6 (1.1) |
Family history of hypertension, % | 32.2 | 37.7 | 40.2 | 37.5 |
Hypercholesterolemia at baseline, % | 8.1 | 15.6 | 23.7 | 31.6 |
Hypertriglyceridemia at baseline, % | 2.4 | 6.0 | 10.9 | 19.4 |
Use of analgesic drugs, % | 4.8 | 7.5 | 8.8 | 10.7 |
Total energy intake, kcal/day | 2591 (662) | 2481 (633) | 2397 (658) | 2326 (666) |
Adherence to Mediterranean Diet 2 | 4.2 (1.8) | 4.5 (1.8) | 4.9 (1.8) | 5.0 (1.7) |
Adoption of special diets, % | 3.8 | 4.6 | 5.9 | 7.4 |
Between-meal snacking, % | 32.1 | 23.8 | 25.3 | 27.4 |
Dietary consumption | ||||
Vegetables (g/day) | 433 (296) | 445 (285) | 482 (341) | 475 (324) |
Fruit (g/day) | 265 (229) | 287 (249) | 331 (315) | 314 (312) |
Legumes (g/day) | 25 (20) | 24 (19) | 25 (20) | 24 (18) |
Cereals (g/day) | 118 (80) | 110 (76) | 109 (82) | 107 (83) |
Whole bread (g/day) | 9 (26) | 9 (24) | 9 (31) | 11 (30) |
Nuts (g/day) | 8 (12) | 8 (11) | 8 (11) | 8 (12) |
Olive oil (g/day) | 17 (14) | 16 (13) | 17 (14) | 16 (14) |
Eggs (g/day) | 27 (19) | 26 (20) | 24 (15) | 24 (20) |
Fish and other seafood (g/day) | 88 (52) | 91 (53) | 102 (61) | 104 (59) |
Whole-fat dairy products (g/day) | 294 (238) | 245 (212) | 196 (182) | 179 (188) |
Low-fat dairy products (g/day) | 140 (216) | 168 (229) | 181 (215) | 191 (240) |
Meat (g/day) | 198 (82) | 186 (80) | 175 (79) | 177 (79) |
Coffee (cups/day) | 3 (2) | 4 (2) | 4 (2) | 4 (2) |
Alcohol | 7.6 (8.3) | 9.4 (11.9) | 10.7 (12.6) | 12.1 (14.2) |
SSB (servings/day) 3 | 0.3 (0.5) | 0.3 (0.5) | 0.2 (0.5) | 0.2 (0.5) |
Dietary intakes | ||||
Carbohydrate (% of energy) | 44 (7) | 43 (7) | 44 (8) | 43 (8) |
Protein (% of energy) | 17 (3) | 18 (3) | 18 (3) | 18 (3) |
Total fat (% of energy) | 37 (6) | 36 (6) | 35 (6) | 35 (6) |
MUFAs (% of energy) | 15 (3) | 15 (3) | 15 (3) | 15 (4) |
SFAs (% of energy) | 13 (3) | 13 (3) | 12 (3) | 12 (3) |
PUFAs (% of energy) | 5 (2) | 5 (1) | 5 (1) | 5 (1) |
Vitamin C (mg/day) | 245 (144) | 245 (129) | 259 (146) | 248 (139) |
Vitamin D (mcg/day) | 6.1 (4.0) | 6.1 (4.3) | 6.3 (4.6) | 6.2 (4.3) |
Na (mg/day) | 3917 (2440) | 3619 (2140) | 3510 (2444) | 3525 (2401) |
K (mg/day) | 4593 (1443) | 4569 (1443) | 4650 (1662) | 4575 (1636) |
Ca (mg/day) | 1207 (448) | 1199 (468) | 1156 (441) | 1130 (468) |
Mg (mg/day) | 415 (119) | 410 (118) | 412 (129) | 405 (127) |
Iron from heme sources (mg/day) | 17 (5) | 17 (5) | 17 (5) | 17 (5) |
Folate (mcg/day) | 373 (157) | 375 (150) | 390 (175) | 382 (172) |
Dietary fibre (g/day) | 26 (11) | 26 (11) | 27 (13) | 26 (12) |
Women | ||||
Q1 | Q2 | Q3 | Q4 | |
Limits of body fat (range) | 27.9, 38.5 | 38.5, 41.6 | 41.6, 45.3 | 45.3, 65.0 |
N | 2542 | 2543 | 2541 | 2542 |
Age, year | 27.0 (5.0) | 31.6 (7.1) | 36.6 (9.0) | 42.2 (10.7) |
Married women, % | 19.0 | 37.6 | 52.4 | 57.6 |
University education, year | 4.6 (1.2) | 4.9 (1.3) | 4.9 (1.4) | 4.9 (1.4) |
BMI, kg/m2 | 19.1 (1.0) | 20.8 (0.9) | 22.4 (1.1) | 25.7 (2.7) |
Smoking | ||||
- Never, % | 60.4 | 54.8 | 49.1 | 44.1 |
- Current, % | 25.7 | 23.6 | 22.7 | 21.1 |
- Former smoker, % | 13.9 | 21.6 | 28.2 | 34.8 |
Leisure-time physical activity, METs-h/week | 19.4 (20.7) | 19.7 (20.2) | 19.4 (20.7) | 17.2 (17.6) |
Television watching, h/dat | 1.6 (1.4) | 1.6 (1.1) | 1.6 (1.3) | 1.7 (1.2) |
Family history of hypertension, % | 31.8 | 39.2 | 47.2 | 51.4 |
Hypercholesterolemia at baseline, % | 7.3 | 9.1 | 11.7 | 17.3 |
Hypertriglyceridemia at baseline, % | 1.4 | 1.6 | 1.8 | 4.9 |
Use of analgesic drugs, % | 9.5 | 11.4 | 12.6 | 14.8 |
Total energy intake, kcal/day | 2348 (563) | 2320 (575) | 2286 (567) | 2245 (579) |
Adherence to Mediterranean Diet 2 | 4.3 (1.7) | 4.4 (1.7) | 4.6 (1.7) | 4.9 (1.7) |
Adoption of special diets, % | 4.5 | 5.5 | 8.0 | 14.2 |
Between-meal snacking, % | 38.3 | 35.1 | 35.5 | 40.1 |
Dietary consumption | ||||
Vegetables (g/day) | 544 (348) | 538 (315) | 566 (341) | 601 (365) |
Fruit (g/day) | 338 (291) | 345 (286) | 374 (290) | 400 (327) |
Legumes (g/day) | 22 (16) | 22 (17) | 21 (17) | 22 (19) |
Cereals (g/day) | 98 (64) | 97 (63) | 99 (67) | 93 (66) |
Whole bread (g/day) | 14 (31) | 15 (32) | 16 (34) | 16 (31) |
Nuts (g/day) | 7 (12) | 7 (11) | 7 (12) | 7 (11) |
Olive oil (g/day) | 19 (15) | 19 (15) | 20 (15) | 21 (16) |
Eggs (g/day) | 22 (15) | 22 (14) | 22 (13) | 22 (14) |
Fish and other seafood (g/day) | 92 (59) | 94 (61) | 96 (59) | 105 (62) |
Whole dairy products (g/day) | 207 (196) | 193 (191) | 175 (180) | 149 (175) |
Low-fat dairy products (g/day) | 239 (252) | 247 (250) | 259 (249) | 288 (246) |
Meat (g/day) | 173 (78) | 169 (77) | 171 (75) | 173 (79) |
Coffee (cups/day) | 4 (2) | 4 (2) | 4 (2) | 4 (2) |
Alcohol (g/day) | 3.5 (4.7) | 4.1 (5.6) | 4.2 (6.4) | 4.2 (6.2) |
SSB (servings/day) 3 | 0.2 (0.4) | 0.2 (0.3) | 0.2 (0.3) | 0.1 (0.3) |
Dietary intakes | ||||
Carbohydrate (% of energy) | 44 (7) | 44 (7) | 43 (7) | 43 (8) |
Protein (% of energy) | 18 (3) | 18 (3) | 18 (3) | 19 (4) |
Total fat (% of energy) | 37 (7) | 37 (6) | 37 (6) | 37 (7) |
MUFAs (% of energy) | 16 (4) | 16 (4) | 16 (4) | 16 (4) |
SFAs (% of energy) | 13 (3) | 13 (3) | 12 (3) | 12 (3) |
PUFAs (% of energy) | 5 (2) | 5 (2) | 5 (2) | 5 (2) |
Vitamin C (mg/day) | 287 (160) | 286 (146) | 299 (156) | 313 (167) |
Vitamin D (mcg/day) | 6.0 (4.0) | 5.9 (4.2) | 6.0 (4.8) | 6.4 (4.6) |
Na (mg/day) | 3313 (2059) | 3173 (2020) | 3074 (1802) | 2985 (2440) |
K (mg/day) | 4781 (1576) | 4747 (1517) | 4852 (1551) | 4992 (1666) |
Ca (mg/day) | 1248 (466) | 1249 (465) | 1256 (472) | 1270 (464) |
Mg (g/day) | 413 (120) | 412 (118) | 417 (121) | 424 (128) |
Iron from heme sources (mg/day) | 17 (5) | 17 (5) | 17 (5) | 17 (5) |
Folate (mcg/day) | 415 (173) | 413 (168) | 423 (177) | 440 (191) |
Dietary fibre (g/day) | 28 (12) | 28 (12) | 29 (12) | 30 (13) |
Men | BF Quartiles | ||||||
Q1 | Q2 | Q3 | Q4 | p-Trend | HR for + 10 Units of BF Increase | HR for + 2 Units of BF Increase | |
n | 1446 | 1445 | 1446 | 1445 | |||
Median (p25, p75) | 30.1 (28.4, 31.3) | 34.1 (33.2, 34.8) | 37.1 (36.4, 37.8) | 40.8 (39.6, 42.5) | |||
Incident hypertension (cases) | 123 | 223 | 391 | 529 | |||
Person-years of follow-up | 17,061 | 17,802 | 17,501 | 16,480 | |||
Crude rate (×10−3) | 7.2 | 12.5 | 22.3 | 32.1 | |||
Crude HR | 1 (ref.) | 1.69 (1.36, 2.11) | 3.30 (2.70, 4.04) | 5.49 (4.51, 6.69) | <0.001 | 3.47 (2.87, 4.21) | 1.28 (1.23, 1.33) |
Multivariable-adjusted HR 2 Model 1 | 1 (ref.) | 1.42 (1.13, 1.77) | 2.31 (1.86, 2.87) | 3.30 (2.64, 4.11) | <0.001 | 3.16 (2.62, 3.81) | 1.26 (1.21, 1.31) |
Multivariable-adjusted HR 3 Model 2 | 1 (ref.) | 1.41 (1.13, 1.77) | 2.31 (1.86, 2.87) | 3.19 (2.55, 4.00) | <0.001 | 3.35 (2.65, 4.24) | 1.27 (1.22, 1.33) |
Repeated measures | |||||||
Crude HR | 1 (ref.) | 1.79 (1.43, 2.25) | 3.07 (2.49, 3.79) | 5.24 (4.29, 6.40) | <0.001 | 3.36 (2.81, 4.02) | 1.27 (1.23, 1.32) |
Multivariable-adjusted HR 2 Model 1 | 1 (ref.) | 1.51 (1.19, 1.90) | 2.32 (1.86, 2.89) | 3.37 (2.71, 4.19) | <0.001 | 3.24 (2.67, 3.94) | 1.26 (1.22, 1.32) |
Multivariable-adjusted HR 3 Model 2 | 1 (ref.) | 1.50 (1.19, 1.89) | 2.31 (1.85, 2.88) | 3.15 (2.51, 3.95) | <0.001 | 3.72 (2.86, 4.84) | 1.30 (1.23, 1.37) |
Women | |||||||
n | 2542 | 2543 | 2541 | 2542 | |||
Median | 36.6 (35.2, 37.6) | 40.1 (39.3, 40.9) | 43.4 (42.5, 44.3) | 48.0 (46.5, 50.1) | |||
Incident hypertension (n) | 78 | 136 | 222 | 258 | |||
Person-years | 28,936 | 29,212 | 29,440 | 28,337 | |||
Crude rate (×10−3) | 2.7 | 4.7 | 7.5 | 16.1 | |||
Crude HR | 1 (ref.) | 1.70 (1.29, 2.25) | 2.90 (2.24, 3.75) | 7.07 (5.56, 8.99) | <0.001 | 3.58 (3.04, 4.20) | 1.29 (1.25, 1.33) |
Multivariable-adjusted HR 2 Model 1 | 1 (ref.) | 1.52 (1.15, 2.02) | 2.18 (1.67, 2.85) | 4.50 (3.46, 5.85) | <0.001 | 3.28 (2.75, 3.92) | 1.27 (1.22, 1.31) |
Multivariable-adjusted HR 3 Model 2 | 1 (ref.) | 1.52 (1.15, 2.02) | 2.18 (1.66, 2.85) | 4.35 (3.34, 5.68) | <0.001 | 3.53 (2.86, 3.36) | 1.29 (1.23, 1.34) |
Repeated measures | |||||||
Crude HR | 1 (ref.) | 1.81 (1.35, 2.42) | 3.19 (2.44, 4.16) | 6.83 (5.33, 8.75) | <0.001 | 3.08 (2.61, 3.64) | 1.25 (1.21, 1.29) |
Multivariable-adjusted HR 2 Model 1 | 1 (ref.) | 1.61 (1.21, 2.16) | 2.59 (1.97, 3.40) | 4.72 (3.63, 6.14) | <0.001 | 3.16 (2.68, 3.73) | 1.26 (1.22, 1.30) |
Multivariable-adjusted HR 3 Model 2 | 1 (ref.) | 1.61 (1.20, 2.16) | 2.58 (1.96, 3.39) | 4.26 (3.26, 5.57) | <0.001 | 3.20 (2.63, 3.89) | 1.26 (1.21, 1.31) |
z-BF | Men | p | Women | p |
---|---|---|---|---|
n | 5783 | 10,168 | ||
Persons year | 68,844 | 115,954 | ||
Crude rate (×10−3) | 18.4 | 7.7 | ||
Crude HR | 1.90 (1.79, 2.01) | <0.001 | 2.02 (1.91, 2.15) | <0.001 |
Multivariable-adjusted HR 2 Model 1 | 1.58 (1.47, 1.69) | <0.001 | 1.72 (1.60, 1.85) | <0.001 |
Multivariable-adjusted HR 3 Model 2 | 1.72 (1.57, 1.87) | <0.001 | 1.80 (1.66, 1.97) | <0.001 |
Repeated measures | ||||
Crude HR | 1.75 (1.66, 1.85) | <0.001 | 1.92 (1.82, 2.04) | <0.001 |
Multivariable-adjusted HR 2 Model 1 | 1.51 (1.42, 1.60) | <0.001 | 1.72 (1.61, 1.84) | <0.001 |
Multivariable-adjusted HR 3 Model 2 | 1.62 (1.49, 1.76) | <0.001 | 1.78 (1.63, 1.94) | <0.001 |
Men | n | Cases of Incident Hypertension n | HR (95% CI) 2,3 |
Main analysis 2,3 | 5782 | 1266 | 3.19 (2.55, 4.00) |
Changing allowable energy limits (percentiles 1–99) 2,3,4 | 6105 | 1342 | 2.95 (2.38, 3.67) |
Censoring follow-up at ≥ 14 year 2,3 | 5782 | 1144 | 3.69 (2.56, 5.34) |
Excluding early incident hypertension (first 2 year) 2,3 | 5491 | 975 | 3.01 (2.34, 3.87) |
Including only participants < 40 year 2,3 | 3076 | 397 | 3.63 (2.52, 5.24) |
Including only participants < 60 year 2,3 | 5487 | 1144 | 3.14 (2.49, 3.96) |
BF in quintiles (Q5 vs. Q1) 2 | 5782 | 1266 | 3.67 (2.82, 4.78) |
Women | |||
Main analysis 2,3 | 10,168 | 894 | 4.35 (3.34, 5.68) |
Changing allowable energy limits (percentiles 1–99) 2,3,4 | 11,197 | 978 | 4.14 (3.23, 5.32) |
Censoring follow-up at ≥ 14 year 2,3 | 10,168 | 785 | 5.25 (3.47, 7.96) |
Excluding early incident hypertension (first 2 year) 2,3 | 9981 | 707 | 4.45 (3.30, 6.01) |
Including only participants < 40 year 2,3 | 7391 | 419 | 2.95 (2.13, 4.09) |
Including only participants < 60 year 2,3 | 10,067 | 856 | 4.08 (3.12, 5.33) |
BF in quintiles (Q5 vs. Q1) 2 | 10,168 | 894 | 4.31 (3.23, 5.75) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez, L.J.; Sayón-Orea, C.; Gea, A.; Toledo, E.; Barbagallo, M.; Martínez-González, M.A. Increased Adiposity Appraised with CUN-BAE Is Highly Predictive of Incident Hypertension. The SUN Project. Nutrients 2021, 13, 3309. https://doi.org/10.3390/nu13103309
Dominguez LJ, Sayón-Orea C, Gea A, Toledo E, Barbagallo M, Martínez-González MA. Increased Adiposity Appraised with CUN-BAE Is Highly Predictive of Incident Hypertension. The SUN Project. Nutrients. 2021; 13(10):3309. https://doi.org/10.3390/nu13103309
Chicago/Turabian StyleDominguez, Ligia J., Carmen Sayón-Orea, Alfredo Gea, Estefania Toledo, Mario Barbagallo, and Miguel A. Martínez-González. 2021. "Increased Adiposity Appraised with CUN-BAE Is Highly Predictive of Incident Hypertension. The SUN Project" Nutrients 13, no. 10: 3309. https://doi.org/10.3390/nu13103309
APA StyleDominguez, L. J., Sayón-Orea, C., Gea, A., Toledo, E., Barbagallo, M., & Martínez-González, M. A. (2021). Increased Adiposity Appraised with CUN-BAE Is Highly Predictive of Incident Hypertension. The SUN Project. Nutrients, 13(10), 3309. https://doi.org/10.3390/nu13103309