Effects of Reduced Carbohydrate Intake after Sprint Exercise on Breath Acetone Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Overview
2.3. Familiarization Session
2.4. Repeated Cycle Sprint Exercise Session on Day1 (Main Trial)
2.5. Dietary Manipulation in NOR Trial and LOW Trial
2.6. Measurements
2.6.1. Breath Acetone Level
2.6.2. Blood Variables
2.6.3. Resting Respiratory Gas Variables
2.7. Statistical Analysis
3. Results
3.1. Power Output and Heart Rate During Repeated Sprint Exercise
3.2. Breath Acetone Level
3.3. Blood Variables
3.4. Resting Respiratory Gas Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holloszy, J.O.; Kohrt, W.M. Regulation of carbohydrate and fat metabolism during and after exercise. Annu. Rev. Nutr. 1996, 16, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Bergström, J.; Hermansen, L.; Hultman, E.; Saltin, B. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 1967, 71, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Temesi, J.; Johnson, N.A.; Raymond, J.; Burdon, C.A.; O’Connor, H.T. Carbohydrate ingestion during endurance exercise improves performance in adults. J. Nutr. 2011, 141, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Alghannam, A.F.; Jedrzejewski, D.; Tweddle, M.G.; Gribble, H.; Bilzon, J.; Thompson, D.; Tsintzas, K.; Betts, J.A. Impact of Muscle Glycogen Availability on the Capacity for Repeated Exercise in Man. Med. Sci. Sports Exerc. 2016, 48, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Bogdanis, G.C.; Nevill, M.E.; Boobis, L.H.; Lakomy, H.K.; Nevill, A.M. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J. Physiol. 1995, 482, 467–480. [Google Scholar] [CrossRef]
- Betts, J.A.; Williams, C. Short-term recovery from prolonged exercise: Exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements. Sports Med. 2010, 40, 941–959. [Google Scholar] [CrossRef] [Green Version]
- Tsintzas, K.; Williams, C.; Boobis, L.; Symington, S.; Moorehouse, J.; Garcia-Roves, P.; Nicholas, C. Effect of carbohydrate feeding during recovery from prolonged running on muscle glycogen metabolism during subsequent exercise. Int. J. Sports Med. 2003, 24, 452–458. [Google Scholar] [CrossRef]
- Wong, S.H.; Williams, C. Influence of different amounts of carbohydrate on endurance running capacity following short term recovery. Int. J. Sports Med. 2000, 21, 444–452. [Google Scholar] [CrossRef]
- Qiao, Y.; Gao, Z.; Liu, Y.; Cheng, Y.; Yu, M.; Zhao, L.; Duan, Y.; Liu, Y. Breath ketone testing: A new biomarker for diagnosis and therapeutic monitoring of diabetic ketosis. BioMed Res. Int. 2014, 2014, 869186. [Google Scholar] [CrossRef]
- Anderson, J.C. Measuring breath acetone for monitoring fat loss: Review. Obesity 2015, 23, 2327–2334. [Google Scholar] [CrossRef]
- Hancock, G.; Sharma, S.; Galpin, M.; Lunn, D.; Megson, C.; Peverall, R.; Richmond, G.; Ritchie, G.A.D.; Owen, K.R. The correlation between breath acetone and blood betahydroxybutyrate in individuals with type 1 diabetes. J. Breath Res. 2020, 15. [Google Scholar] [CrossRef] [PubMed]
- Tanda, N.; Hinokio, Y.; Washio, J.; Takahashi, N.; Koseki, T. Analysis of ketone bodies in exhaled breath and blood of ten healthy Japanese at OGTT using a portable gas chromatograph. J. Breath Res. 2014, 8, 046008. [Google Scholar] [CrossRef] [PubMed]
- Samudrala, D.; Lammers, G.; Mandon, J.; Blanchet, L.; Schreuder, T.H.A.; Hopman, M.T.; Harren, F.J.H.; Tappy, L.; Cristescu, S.M. Breath acetone to monitor life style interventions in field conditions: An exploratory study. Obesity 2014, 22, 980–983. [Google Scholar] [CrossRef] [PubMed]
- Saasa, V.; Beukes, M.; Lemmer, Y.; Mwakikunga, B. Blood Ketone Bodies and Breath Acetone Analysis and Their Correlations in Type 2 Diabetes Mellitus. Diagnostics 2019, 9, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güntner, A.T.; Kompalla, J.F.; Landis, H.; Theodore, S.J.; Geidl, B.; Sievi, N.A.; Kohler, M.; Pratsinis, S.E.; Gerber, P.A. Guiding Ketogenic Diet with Breath Acetone Sensors. Sensors 2018, 18, 3655. [Google Scholar] [CrossRef] [Green Version]
- Hori, A.; Ichihara, M.; Kimura, H.; Ogata, H.; Kondo, T.; Hotta, N. Inhalation of molecular hydrogen increases breath acetone excretion during submaximal exercise: A randomized, single-blinded, placebo-controlled study. Med. Gas. Res. 2020, 10, 96–102. [Google Scholar] [CrossRef]
- Kasai, N.; Kojima, C.; Sumi, D.; Takahashi, H.; Goto, K.; Suzuki, Y. Impact of 5 Days of Sprint Training in Hypoxia on Performance and Muscle Energy Substances. Int. J. Sports Med. 2017, 38, 983–991. [Google Scholar] [CrossRef] [Green Version]
- Manetta, J.; Brun, J.F.; Perez-Martin, A.; Callis, A.; Prefaut, C.; Mercier, J. Fuel oxidation during exercise in middle-aged men: Role of training and glucose disposal. Med. Sci. Sports Exerc. 2002, 34, 423–429. [Google Scholar] [CrossRef]
- Lundsgaard, A.M.; Fritzen, A.M.; Kiens, B. The Importance of Fatty Acids as Nutrients during Post-Exercise Recovery. Nutrients 2020, 12, 280. [Google Scholar] [CrossRef] [Green Version]
- Casey, A.; Mann, R.; Banister, K.; Fox, J.; Morris, P.G.; Macdonald, I.A.; Greenhaff, P.l. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. Am. J. Physiol. Endocrinol. Metab. 2000, 278, E65–E75. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, J.T.; Fuchs, C.J.; Betts, J.A.; van Loon, L.J. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E543–E553. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, C.J.; Gonzalez, J.T.; Beelen, M.; Cermak, N.M.; Smith, F.E.; Thelwall, P.E.; Taylor, R.; Trenell, M.I.; Stevenson, E.J.; van Loon, L.J.C. Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes. J. Appl. Physiol. 2016, 120, 1328–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, L.M.; van Loon, L.J.C.; Hawley, J.A. Postexercise muscle glycogen resynthesis in humans. J. Appl. Physiol. 2017, 122, 1055–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güntner, A.T.; Sievi, N.A.; Theodore, S.J.; Gulich, T.; Kohler, M.; Pratsinis, S.E. Noninvasive Body Fat Burn Monitoring from Exhaled Acetone with Si-doped WO3-sensing Nanoparticles. Anal. Chem. 2017, 89, 10578–10584. [Google Scholar] [CrossRef]
- Bovey, F.; Cros, J.; Tuzson, B.; Seyssel, K.; Schneiter, P.; Emmenegger, L.; Tappy, L. Breath acetone as a marker of energy balance: An exploratory study in healthy humans. Nutr. Diabetes 2018, 8, 50. [Google Scholar] [CrossRef]
- Margolis, L.M.; Wilson, M.A.; Whitney, C.C.; Carrigan, C.T.; Murphy, N.E.; Hatch, A.M.; Montain, S.J.; Pasiakos, S.M. Exercising with low muscle glycogen content increases fat oxidation and decreases endogenous, but not exogenous carbohydrate oxidation. Metabolism 2019, 97, 1–8. [Google Scholar] [CrossRef]
Set 1 | Set 2 | Set 3 | Set 4 | ||
---|---|---|---|---|---|
Maximal pedaling frequency (rpm) | NOR | 154 ± 3 | 153 ± 2 | 148 ± 4 * | 144 ± 3 * |
LOW | 154 ± 3 | 148 ± 3 | 145 ± 2 * | 143 ± 2 * | |
Mean power output (W) | NOR | 612 ± 20 | 583 ± 20 | 556 ± 21 * | 539 ± 18 * |
LOW | 585 ± 20 | 575 ± 18 | 548 ± 18 * | 537 ± 19 * | |
Relative mean power output (W/KG) | NOR | 9.4 ± 0.4 | 9.0 ± 0.2 | 8.5 ± 0.2 * | 8.3 ± 0.2 * |
LOW | 9.0 ± 0.3 | 8.8 ± 0.2 | 8.4 ± 0.2 * | 8.2 ± 0.2 * |
Day1 | Pre | Set1 | Set2 | Set3 | Set4 | Day2 | ||
---|---|---|---|---|---|---|---|---|
Lactate (mmol/L) | NOR | 1.3 ± 0.1 | 1.2 ± 0.1 | 8.1 ± 0.6 * | 13.2 ± 0.8 * | 17.4 ± 0.8 * | 19.8 ± 1 * | 1.2 ± 0.1 |
LOW | 1.4 ± 0.1 | 1.4 ± 0.1 | 10.8 ± 0.8 * | 13.8 ± 0.5 * | 15.6 ± 0.7 * | 17.6 ± 0.9 * | 1.1 ± 0.1 | |
Glucose (mg/dL) | NOR | 83 ± 2 | 90 ± 3 | 85 ± 3 | 86 ± 3 | 92 ± 4 | 92 ± 4 | 81 ± 1 |
LOW | 85 ± 2 | 88 ± 2 | 86 ± 3 | 87 ± 3 | 89 ± 4 | 91 ± 3 | 81 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ota, N.; Ito, H.; Goto, K. Effects of Reduced Carbohydrate Intake after Sprint Exercise on Breath Acetone Level. Nutrients 2021, 13, 58. https://doi.org/10.3390/nu13010058
Ota N, Ito H, Goto K. Effects of Reduced Carbohydrate Intake after Sprint Exercise on Breath Acetone Level. Nutrients. 2021; 13(1):58. https://doi.org/10.3390/nu13010058
Chicago/Turabian StyleOta, Naoki, Hiroto Ito, and Kazushige Goto. 2021. "Effects of Reduced Carbohydrate Intake after Sprint Exercise on Breath Acetone Level" Nutrients 13, no. 1: 58. https://doi.org/10.3390/nu13010058
APA StyleOta, N., Ito, H., & Goto, K. (2021). Effects of Reduced Carbohydrate Intake after Sprint Exercise on Breath Acetone Level. Nutrients, 13(1), 58. https://doi.org/10.3390/nu13010058