Diet, Exercise, Lifestyle, and Mental Distress among Young and Mature Men and Women: A Repeated Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Demographics
2.3. Specifics of FMQ
2.4. Sampling Techniques
2.5. Data Categorization
2.6. Statistical Analysis
3. Results
3.1. Young Women
3.2. Mature Women
3.3. Young Men
3.4. Mature Men
4. Discussion
4.1. Dietary and Lifestyle Approaches to Improve Mental Wellbeing among Young and Mature Women
4.1.1. Mental Distress and the Spring Season
4.1.2. Mental Distress and Caffeine Metabolism
4.1.3. Fruit Consumption and Mental Distress among Mature Women
4.1.4. Exercise and Mental Wellbeing
4.2. Dietary and Lifestyle Approaches to Improve Mental Wellbeing among Young and Mature Men
4.2.1. Animal Proteins, Men’s Maturing Brain and Mental Wellbeing?
4.2.2. Men, Meat Consumption, High Exercise Frequency, Higher Education from an Evolutionary Point of View
4.3. Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Trautmann, S.; Rehm, J.; Wittchen, H.-U. The Economic Costs of Mental Disorders: Do Our Societies React Appropriately to the Burden of Mental Disorders? EMBO Rep. 2016, 17, 1245–1249. [Google Scholar] [CrossRef]
- Clarke, D.M.; Currie, K.C. Depression, Anxiety and Their Relationship with Chronic Diseases: A Review of the Epidemiology, Risk and Treatment Evidence. Med. J. Aust 2009, 190, S54–S60. [Google Scholar] [CrossRef]
- Konttinen, H.; van Strien, T.; Männistö, S.; Jousilahti, P.; Haukkala, A. Depression, Emotional Eating and Long-Term Weight Changes: A Population-Based Prospective Study. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 28. [Google Scholar] [CrossRef] [Green Version]
- Nyer, M.; Farabaugh, A.; Fehling, K.; Soskin, D.; Holt, D.; Papakostas, G.I.; Pedrelli, P.; Fava, M.; Pisoni, A.; Vitolo, O.; et al. Relationship between sleep disturbance and depression, anxiety, and functioning in college students. Depress. Anxiety 2013, 30, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Hohls, J.K.; König, H.-H.; Quirke, E.; Hajek, A. Association between Anxiety, Depression and Quality of Life: Study Protocol for a Systematic Review of Evidence from Longitudinal Studies. BMJ Open 2019, 9, e027218. [Google Scholar] [CrossRef] [PubMed]
- Saatcioglu, O.; Yapici, A.; Cakmak, D. Quality of Life, Depression and Anxiety in Alcohol Dependence. Drug Alcohol Rev. 2008, 27, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Bjelland, I.; Tell, G.S.; Vollset, S.E.; Konstantinova, S.; Ueland, P.M. Choline in Anxiety and Depression: The Hordaland Health Study. Am. J. Clin. Nutr. 2009, 90, 1056–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourre, J.M. Dietary Omega-3 Fatty Acids and Psychiatry: Mood, Behaviour, Stress, Depression, Dementia and Aging. J. Nutr. Health Aging 2005, 9, 31. [Google Scholar]
- Psaltopoulou, T.; Sergentanis, T.N.; Panagiotakos, D.B.; Sergentanis, I.N.; Kosti, R.; Scarmeas, N. Mediterranean Diet, Stroke, Cognitive Impairment, and Depression: A Meta-analysis. Ann. Neurol. 2013, 74, 580–591. [Google Scholar] [CrossRef]
- Steenson, S. The Mediterranean Diet and Depression—Can a Healthier Dietary Pattern Reduce the Risk of Depression? Nutr. Bull. 2019, 44, 65–73. [Google Scholar] [CrossRef]
- Smith, P.J.; Blumenthal, J.A. Diet and Neurocognition: Review of Evidence and Methodological Considerations. Curr. Aging Sci. 2010, 3, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, J.K. Cognitive Deficits in Psychiatric Disorders: Current Status. Indian J. Psychiatry 2006, 48, 10–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacka, F.N.; Pasco, J.A.; Mykletun, A.; Williams, L.J.; Hodge, A.M.; O’Reilly, S.L.; Nicholson, G.C.; Kotowicz, M.A.; Berk, M. Association of Western and Traditional Diets with Depression and Anxiety in Women. Am. J. Psychiatry 2010, 167, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Pinilla, F.; Nguyen, T.T.J. Natural Mood Foods: The Actions of Polyphenols against Psychiatric and Cognitive Disorders. Nutr. Neurosci. 2012, 15, 127–133. [Google Scholar] [CrossRef]
- Rao, T.S.S.; Asha, M.R.; Ramesh, B.N.; Rao, K.S.J. Understanding Nutrition, Depression and Mental Illnesses. Indian J. Psychiatry 2008, 50, 77. [Google Scholar] [CrossRef]
- Somerville, L.H. Searching for Signatures of Brain Maturity: What Are We Searching For? Neuron 2016, 92, 1164–1167. [Google Scholar] [CrossRef] [Green Version]
- Albert, P.R. Why Is Depression More Prevalent in Women? J. Psychiatry Neurosci. Jpn. 2015, 40, 219. [Google Scholar] [CrossRef]
- Bonnie, R.J.; Stroud, C.; Breiner, H. Investing in the Health and Well-Being of Young Adults; National Academies Press: Washington, DC, USA, 2014; ISBN 0-309-30995-6. [Google Scholar]
- Villarroel, M.A.; Terlizz, E.P. Symptoms of Depression Among Adults: United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020. [Google Scholar]
- Arain, M.; Haque, M.; Johal, L.; Mathur, P.; Nel, W.; Rais, A.; Sandhu, R.; Sharma, S. Maturation of the Adolescent Brain. Neuropsychiatr. Dis. Treat. 2013, 9, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, S.J.; Cox, S.R.; Shen, X.; Lombardo, M.V.; Reus, L.M.; Alloza, C.; Harris, M.A.; Alderson, H.L.; Hunter, S.; Neilson, E.; et al. Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants. Cereb. Cortex 2018, 28, 2959–2975. [Google Scholar] [CrossRef]
- Coutlee, C.G.; Huettel, S.A. The Functional Neuroanatomy of Decision Making: Prefrontal Control of Thought and Action. Brain Res. 2012, 1428, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Kolb, B.; Gibb, R. Brain Plasticity and Behaviour in the Developing Brain. J. Can. Acad. Child. Adolesc. Psychiatry 2011, 20, 265. [Google Scholar] [PubMed]
- Ingalhalikar, M.; Smith, A.; Parker, D.; Satterthwaite, T.D.; Elliott, M.A.; Ruparel, K.; Hakonarson, H.; Gur, R.E.; Gur, R.C.; Verma, R. Sex Differences in the Structural Connectome of the Human Brain. Proc. Natl. Acad. Sci. USA 2014, 111, 823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, A.-M.; Swaab, D.F. Sexual Differentiation of the Human Brain: Relation to Gender Identity, Sexual Orientation and Neuropsychiatric Disorders. Front. Neuroendocrinol. 2011, 32, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Kornstein, S.G.; Schatzberg, A.F.; Thase, M.E.; Yonkers, K.A.; McCullough, J.P.; Keitner, G.I.; Gelenberg, A.J.; Ryan, C.E.; Hess, A.L.; Harrison, W.; et al. Gender Differences in Chronic Major and Double Depression. J. Affect. Disord. 2000, 60, 1–11. [Google Scholar] [CrossRef]
- Seney, M.L.; Sibille, E. Sex Differences in Mood Disorders: Perspectives from Humans and Rodent Models. Biol. Sex Differ. 2014, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Ryman, S.G.; van den Heuvel, M.P.; Yeo, R.A.; Caprihan, A.; Carrasco, J.; Vakhtin, A.A.; Flores, R.A.; Wertz, C.; Jung, R.E. Sex Differences in the Relationship between White Matter Connectivity and Creativity. NeuroImage 2014, 101, 380–389. [Google Scholar] [CrossRef] [Green Version]
- Ando, S.; Tanaka, Y.; Toyoda, Y.; Kon, K. Turnover of Myelin Lipids in Aging Brain. Neurochem. Res. 2003, 28, 5–13. [Google Scholar] [CrossRef]
- De Graaf, R.; van Dorsselaer, S.; ten Have, M.; Schoemaker, C.; Vollebergh, W.A.M. Seasonal Variations in Mental Disorders in the General Population of a Country with a Maritime Climate: Findings from the Netherlands Mental Health Survey and Incidence Study. Am. J. Epidemiol. 2005, 162, 654–661. [Google Scholar] [CrossRef]
- Gandré, C.; Gervaix, J.; Thillard, J.; Macé, J.-M.; Roelandt, J.-L.; Chevreul, K. Understanding Geographic Variations in Psychiatric Inpatient Admission Rates: Width of the Variations and Associations with the Supply of Health and Social Care in France. BMC Psychiatry 2018, 18, 174. [Google Scholar] [CrossRef] [Green Version]
- Thomson, K.C.; Guhn, M.; Richardson, C.G.; Shoveller, J.A. Associations between Household Educational Attainment and Adolescent Positive Mental Health in Canada. SSM Popul. Health 2017, 3, 403–410. [Google Scholar] [CrossRef]
- Begdache, L.; Marhaba, R.; Chaar, M. Validity and Reliability of Food–Mood Questionnaire (FMQ). Nutr. Health 2019, 1–12. [Google Scholar] [CrossRef]
- Lai, J.S.; Hiles, S.; Bisquera, A.; Hure, A.J.; McEvoy, M.; Attia, J. A Systematic Review and Meta-Analysis of Dietary Patterns and Depression in Community-Dwelling Adults. Am. J. Clin. Nutr. 2014, 99, 181–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Analysis of Total Food Intake and Composition of Individual’s Diet. Based on USDA’s 1994–1996, 1998 Continuing Survey of Food Intakes by Individuals (CSFII); United States Environmental Protection Agency: Washington, DC, USA, 2007.
- Taylor, C.B.; Sallis, J.F.; Needle, R. The Relation of Physical Activity and Exercise to Mental Health. Public Health Rep. 1985, 100, 195–202. [Google Scholar] [PubMed]
- Craft, L.L.; Perna, F.M. The Benefits of Exercise for the Clinically Depressed. Prim. Care Companion J. Clin. Psychiatry 2004, 6, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ströhle, A. Physical Activity, Exercise, Depression and Anxiety Disorders. J. Neural. Transm. 2009, 116, 777–784. [Google Scholar] [CrossRef]
- Kukull, W.A.; Ganguli, M. Generalizability: The Trees, the Forest, and the Low-Hanging Fruit. Neurology 2012, 78, 1886–1891. [Google Scholar] [CrossRef] [Green Version]
- Prochaska, J.J.; Sung, H.-Y.; Max, W.; Shi, Y.; Ong, M. Validity Study of the K6 Scale as a Measure of Moderate Mental Distress Based on Mental Health Treatment Need and Utilization. Int. J. Methods Psychiatr. Res. 2012, 21, 88–97. [Google Scholar] [CrossRef]
- Mullinix, K.J.; Leeper, T.J.; Druckman, J.N.; Freese, J. The Generalizability of Survey Experiments. J. Exp. Political Sci. 2015, 2, 109–138. [Google Scholar] [CrossRef] [Green Version]
- Brener, N.D.; Billy, J.O.G.; Grady, W.R. Assessment of Factors Affecting the Validity of Self-Reported Health-Risk Behavior among Adolescents: Evidence from the Scientific Literature. J. Adolesc. Health 2003, 33, 436–457. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Brickman, A.; Stern, Y.; Habeck, C.; Razlighi, Q.; Luchsinger, J.; Manly, J.; Schupf, N.; Mayeux, R.; Scarmeas, N. Mediterranean Diet and Brain Structure in a Multiethnic Elderly Cohort. Neurology 2015, 85, 1744–1751. [Google Scholar] [CrossRef] [Green Version]
- Afonso, R.F.; Balardin, J.B.; Lazar, S.; Sato, J.R.; Igarashi, N.; Santaella, D.F.; Lacerda, S.S.; Jr, E.A.; Kozasa, E.H. Greater Cortical Thickness in Elderly Female Yoga Practitioners—A Cross-Sectional Study. Front. Aging Neurosci. 2017, 9. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. 2015–2020 Dietary Guidelines for Americans; US Department of Agriculture: Washington, DC, USA, 2015.
- Furukawa, T.A.; Kessler, R.C.; Slade, T.; Andrews, G. The Performance of the K6 and K10 Screening Scales for Psychological Distress in the Australian National Survey of Mental Health and Well-Being. Psychol. Med. 2003, 33, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Krynen, A.M.; Osborne, D.; Duck, I.M.; Houkamau, C.A.; Sibley, C.G. Measuring Psychological Distress in New Zealand: Item Response Properties and Demographic Differences in the Kessler-6 Screening Measure. N. Z. J. Psychol. 2013, 42, 69. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26. [Google Scholar]
- Manfredini, R.; Fabbian, F.; Cappadona, R.; Modesti, P.A. Daylight Saving Time, Circadian Rhythms, and Cardiovascular Health. Intern. Emerg Med. 2018, 13, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, G.A.; Tölle, R. Sleep Deprivation and Circadian Rhythm in Depression. Psychiatr Clin. 1978, 11, 198–212. [Google Scholar] [CrossRef] [PubMed]
- Santhi, N.; Lazar, A.S.; McCabe, P.J.; Lo, J.C.; Groeger, J.A.; Dijk, D.-J. Sex Differences in the Circadian Regulation of Sleep and Waking Cognition in Humans. Proc. Natl. Acad. Sci. USA 2016, 113, E2730–E2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramkisoensing, A.; Meijer, J.H. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health. Front. Neurol. 2015, 6, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seney, M.L.; Cahill, K.; Enwright, J.F.; Logan, R.W.; Huo, Z.; Zong, W.; Tseng, G.; McClung, C.A. Diurnal Rhythms in Gene Expression in the Prefrontal Cortex in Schizophrenia. Nat. Commun. 2019, 10, 3355. [Google Scholar] [CrossRef] [Green Version]
- Duffy, J.F.; Cain, S.W.; Chang, A.-M.; Phillips, A.J.K.; Münch, M.Y.; Gronfier, C.; Wyatt, J.K.; Dijk, D.-J.; Wright, K.P., Jr.; Czeisler, C.A. Sex Difference in the Near-24-Hour Intrinsic Period of the Human Circadian Timing System. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 3), 15602–15608. [Google Scholar] [CrossRef] [Green Version]
- Giannelli, F.R. Major Depressive Disorder. J. Am. Acad. PAs 2020, 33, 19–20. [Google Scholar] [CrossRef]
- Øverland, S.; Woicik, W.; Sikora, L.; Whittaker, K.; Heli, H.; Skjelkvåle, F.S.; Sivertsen, B.; Colman, I. Seasonality and Symptoms of Depression: A Systematic Review of the Literature. Epidemiol. Psychiatr. Sci. 2020, 29, e31. [Google Scholar] [CrossRef] [Green Version]
- Lim, A.S.P.; Myers, A.J.; Yu, L.; Buchman, A.S.; Duffy, J.F.; De Jager, P.L.; Bennett, D.A. Sex Difference in Daily Rhythms of Clock Gene Expression in the Aged Human Cerebral Cortex. J. Biol. Rhythms 2013, 28, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Bedrosian, T.A.; Nelson, R.J. Timing of Light Exposure Affects Mood and Brain Circuits. Transl. Psychiatry 2017, 7, e1017. [Google Scholar] [CrossRef]
- Milenkovic, V.M.; Stanton, E.H.; Nothdurfter, C.; Rupprecht, R.; Wetzel, C.H. The Role of Chemokines in the Pathophysiology of Major Depressive Disorder. Int. J. Mol. Sci. 2019, 20, 2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leighton, S.P.; Nerurkar, L.; Krishnadas, R.; Johnman, C.; Graham, G.J.; Cavanagh, J. Chemokines in Depression in Health and in Inflammatory Illness: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2018, 23, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine Targets in the Brain: Impact on Neurotransmitters and Neurocircuits. Depress. Anxiety 2013, 30, 297–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishizawa, S.; Benkelfat, C.; Young, S.N.; Leyton, M.; Mzengeza, S.; Montigny, C.D.; Blier, P.; Diksic, M. Differences between Males and Females in Rates of Serotonin Synthesis in Human Brain. Proc. Natl. Acad. Sci. USA 1997, 94, 5308–5313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temple, J.L.; Ziegler, A.M. Gender Differences in Subjective and Physiological Responses to Caffeine and the Role of Steroid Hormones. J. Caffeine Res. 2011, 1, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Abernethy, D.R.; Todd, E.L. Impairment of Caffeine Clearance by Chronic Use of Low-Dose Oestrogen-Containing Oral Contraceptives. Eur J. Clin. Pharm. 1985, 28, 425–428. [Google Scholar] [CrossRef]
- O’Connell, M.; Frye, R.; Matzke, G.; St. Peter, J.; Willhite, L.; Welch, M.; Kowal, P.; LaValleur, J. Effect of Conjugated Equine Estrogens on Oxidative Metabolism in Middle-Aged and Elderly Postmenopausal Women. J. Clin. Pharmacol. 2006, 46, 1299–1307. [Google Scholar] [CrossRef]
- Sisti, J.S.; Hankinson, S.E.; Caporaso, N.E.; Gu, F.; Tamimi, R.M.; Rosner, B.; Xu, X.; Ziegler, R.; Eliassen, A.H. Caffeine, Coffee, and Tea Intake and Urinary Estrogens and Estrogen Metabolites in Premenopausal Women. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1174–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholson, S.A. Stimulatory Effect of Caffeine on the Hypothalamo-Pituitary-Adrenocortical Axis in the Rat. J. Endocrinol. 1989, 122, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Svenningsson, P.; Hall, H.; Sedvall, G.; Fredholm, B.B. Distribution of Adenosine Receptors in the Postmortem Human Brain: An Extended Autoradiographic Study. Synapse 1997, 27, 322–335. [Google Scholar] [CrossRef]
- Phelps, E.A.; LeDoux, J.E. Contributions of the Amygdala to Emotion Processing: From Animal Models to Human Behavior. Neuron 2005, 48, 175–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, R.N.; Hancock, N.J. Effects of Acute Caffeine on Anxiety-Related Behavior in Rats Chronically Exposed to the Drug, with Some Evidence of Possible Withdrawal-Reversal. Behav. Brain Res. 2017, 321, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.A. Caffeine Consumption and Telomere Length in Men and Women of the National Health and Nutrition Examination Survey (NHANES). Nutr. Metab. 2017, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Sundquist, K.; Hedelius, A.; Palmér, K.; Memon, A.A.; Sundquist, J. Leukocyte Telomere Length and Depression, Anxiety and Stress and Adjustment Disorders in Primary Health Care Patients. BMC Psychiatry 2017, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Erickson, M.A.; Banks, W.A. Age-Associated Changes in the Immune System and Blood−Brain Barrier Functions. Int. J. Mol. Sci. 2019, 20, 1632. [Google Scholar] [CrossRef] [Green Version]
- Borrás, C.; Gambini, J.; López-Grueso, R.; Pallardó, F.V.; Viña, J. Direct Antioxidant and Protective Effect of Estradiol on Isolated Mitochondria. Biochimica Biophysica Acta (BBA) Mol. Basis Dis. 2010, 1802, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Bremer Boaventura, B.C.; Di Pietro, P.F. Oxidative Stress and Antioxidants in Elderly Women. In Aging; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2014; Chapter 7; pp. 73–79. ISBN 978-0-12-405933-7. [Google Scholar]
- Gautam, M.; Agrawal, M.; Gautam, M.; Sharma, P.; Gautam, A.S.; Gautam, S. Role of Antioxidants in Generalised Anxiety Disorder and Depression. Indian J. Psychiatry 2012, 54, 244. [Google Scholar] [CrossRef]
- Begdache, L.; Chaar, M.; Sabounchi, N.; Kianmehr, H. Assessment of Dietary Factors, Dietary Practices and Exercise on Mental Distress in Young Adults versus Matured Adults: A Cross-Sectional Study. Nutr. Neurosci. 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Neshatdoust, S.; Saunders, C.; Castle, S.M.; Vauzour, D.; Williams, C.; Butler, L.; Lovegrove, J.A.; Spencer, J.P.E. High-Flavonoid Intake Induces Cognitive Improvements Linked to Changes in Serum Brain-Derived Neurotrophic Factor: Two Randomised, Controlled Trials. Nutr. Healthy Aging 2016, 4, 81–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Lian, D.; Wu, J.; Liu, Y.; Zhu, M.; Sun, J.; He, D.; Li, L. Brain-Derived Neurotrophic Factor Reduces Inflammation and Hippocampal Apoptosis in Experimental Streptococcus pneumoniae Meningitis. J. Neuroinflammation 2017, 14, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fletcher, J.L.; Murray, S.S.; Xiao, J. Brain-Derived Neurotrophic Factor in Central Nervous System Myelination: A New Mechanism to Promote Myelin Plasticity and Repair. Int. J. Mol. Sci. 2018, 19, 4131. [Google Scholar] [CrossRef] [Green Version]
- Cocks, G.; Carta, M.G.; Arias-Carrión, O.; Nardi, A.E. Neural Plasticity and Neurogenesis in Mental Disorders. Neural Plast. 2016, 2016, 3738015. [Google Scholar] [CrossRef]
- Sohrabji, F.; Miranda, R.C.; Toran-Allerand, C.D. Identification of a Putative Estrogen Response Element in the Gene Encoding Brain-Derived Neurotrophic Factor. Proc. Natl. Acad. Sci. USA 1995, 92, 11110–11114. [Google Scholar] [CrossRef] [Green Version]
- Komulainen, P.; Pedersen, M.; Hänninen, T.; Bruunsgaard, H.; Lakka, T.A.; Kivipelto, M.; Hassinen, M.; Rauramaa, T.H.; Pedersen, B.K.; Rauramaa, R. BDNF Is a Novel Marker of Cognitive Function in Ageing Women: The DR’s EXTRA Study. Neurobiol. Learn. Mem. 2008, 90, 596–603. [Google Scholar] [CrossRef]
- Dalla, C.; Papachristos, E.B.; Whetstone, A.S.; Shors, T.J. Female Rats Learn Trace Memories Better than Male Rats and Consequently Retain a Greater Proportion of New Neurons in Their Hippocampi. Proc. Natl. Acad. Sci. USA 2009, 106, 2927–2932. [Google Scholar] [CrossRef] [Green Version]
- Kurdi, F.N.; Flora, R. Physical Exercise Increased Brain-Derived Neurotrophic Factor in Elderly Population with Depression. Open Access Maced. J. Med. Sci. 2019, 7, 2057–2061. [Google Scholar] [CrossRef] [Green Version]
- Hibbeln, J.R.; Northstone, K.; Evans, J.; Golding, J. Vegetarian Diets and Depressive Symptoms among Men. J. Affect. Disord. 2018, 225, 13–17. [Google Scholar] [CrossRef]
- Sinclair, R.; Millar, L.; Allender, S.; Snowdon, W.; Waqa, G.; Jacka, F.; Moodie, M.; Petersen, S.; Swinburn, B. The Cross-Sectional Association between Diet Quality and Depressive Symptomology amongst Fijian Adolescents. PLoS ONE 2016, 11, e0161709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baxter, A.J.; Vos, T.; Scott, K.M.; Norman, R.E.; Flaxman, A.D.; Blore, J.; Whiteford, H.A. The Regional Distribution of Anxiety Disorders: Implications for the Global Burden of Disease Study, 2010. Int. J. Methods Psychiatr. Res. 2014, 23, 422–438. [Google Scholar] [CrossRef] [PubMed]
- Berk, L.; Lohman, E.; Bains, G.; Bruhjell, K.; Bradburn, J.; Vijayan, N.; More, S.; Patel, K.; Dhuri, S.; Mourya, S.; et al. Nuts and Brain Health: Nuts Increase EEG Power Spectral Density (ΜV&[Sup2]) for Delta Frequency (1–3Hz) and Gamma Frequency (31–40 Hz) Associated with Deep Meditation, Empathy, Healing, as Well as Neural Synchronization, Enhanced Cognitive Processing, Recall, and Memory All Beneficial For Brain Health. FASEB J 2017, 31, 636.24. [Google Scholar] [CrossRef]
- Marques, P.; Soares, J.M.; Magalhães, R.; Santos, N.C.; Sousa, N. The Bounds of Education in the Human Brain Connectome. Sci. Rep. 2015, 5, 12812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baines, S.; Powers, J.; Brown, W.J. How Does the Health and Well-Being of Young Australian Vegetarian and Semi-Vegetarian Women Compare with Non-Vegetarians? Public Health Nutr. 2007, 10, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Beezhold, B.L.; Johnston, C.S. Restriction of Meat, Fish, and Poultry in Omnivores Improves Mood: A Pilot Randomized Controlled Trial. Nutr. J. 2012, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Beezhold, B.L.; Johnston, C.S.; Daigle, D.R. Vegetarian Diets Are Associated with Healthy Mood States: A Cross-Sectional Study in Seventh Day Adventist Adults. Nutr. J. 2010, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Michalak, J.; Zhang, X.C.; Jacobi, F. Vegetarian Diet and Mental Disorders: Results from a Representative Community Survey. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, Y.; Xie, M.-S.; Ding, X.; Li, H.; Liu, Z.-C.; Peng, S.-F. Is Meat Consumption Associated with Depression? A Meta-Analysis of Observational Studies. BMC Psychiatry 2017, 17, 409. [Google Scholar] [CrossRef] [Green Version]
- Lavallee, K.; Zhang, X.C.; Michalak, J.; Schneider, S.; Margraf, J. Vegetarian Diet and Mental Health: Cross-Sectional and Longitudinal Analyses in Culturally Diverse Samples. J. Affect. Disord. 2019, 248, 147–154. [Google Scholar] [CrossRef]
- Yokoi, K.; Sandstead, H.H.; Egger, N.G.; Alcock, N.W.; Sadagopa Ramanujam, V.M.; Dayal, H.H.; Penland, J.G. Association between Zinc Pool Sizes and Iron Stores in Premenopausal Women without Anaemia. Br. J. Nutr 2007, 98, 1214–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuso, P.; Stoll, S.R.; Li, W.W. A Plant-Based Diet, Atherogenesis, and Coronary Artery Disease Prevention. Perm. J. 2015, 19, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, H. Amino Acid and Protein Requirements: Cognitive Performance, Stress, and Brain Function. In The Role of Protein and Amino Acids in Sustaining and Enhancing Performance; National Academies Press: Washington, DC, USA, 2000; pp. 289–308. ISBN 1-01-722696-2. [Google Scholar]
- Li, D.; Ke, Y.; Zhan, R.; Liu, C.; Zhao, M.; Zeng, A.; Shi, X.; Ji, L.; Cheng, S.; Pan, B.; et al. Trimethylamine-N-oxide Promotes Brain Aging and Cognitive Impairment in Mice. Aging Cell 2018, 17, e1276. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, A.; Le Blanc, S.; Olivares, M.; Pizarro, F.; Ruz, M.; Arredondo, M. Iron, Copper, and Zinc Transport: Inhibition of Divalent Metal Transporter 1 (DMT1) and Human Copper Transporter 1 (HCTR1) by ShRNA. Biol. Trace Elem. Res. 2012, 146, 281–286. [Google Scholar] [CrossRef]
- Dupic, F.; Fruchon, S.; Bensaid, M.; Loreal, O.; Brissot, P.; Borot, N.; Roth, M.P.; Coppin, H. Duodenal MRNA Expression of Iron Related Genes in Response to Iron Loading and Iron Deficiency in Four Strains of Mice. Gut 2002, 51, 648–653. [Google Scholar] [CrossRef]
- Bajbouj, K.; Shafarin, J.; Allam, H.; Madkour, M.; Awadallah, S.; El-Serafy, A.; Sandeep, D.; Hamad, M. Elevated Levels of Estrogen Suppress Hepcidin Synthesis and Enhance Serum Iron Availability in Premenopausal Women. Exp. Clin. Endocrinol. Diabetes 2018, 126, 453–459. [Google Scholar] [CrossRef]
- Lim, K.; Booth, A.; Szymlek-Gay, E.A.; Gibson, R.S.; Bailey, K.B.; Irving, D.; Nowson, C.; Riddell, L. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women. Nutrients 2015, 7, 2983–2999. [Google Scholar] [CrossRef] [Green Version]
- Begdache, L. Cognitive Decline and Mental Distress: A Potential Mismatch between the Contemporary Diet and the Evolved Brain. Anthr. Ethnol. Open Acc. J. 2018, 1, 1–9. [Google Scholar]
- Zink, K.D.; Lieberman, D.E. Impact of Meat and Lower Palaeolithic Food Processing Techniques on Chewing in Humans. Nature 2016, 531, 500–503. [Google Scholar] [CrossRef]
- DeCasien, A.R.; Williams, S.A.; Higham, J.H. Primate Brain Size Is Predicted by Diet but Not Sociality. Nat. Ecol. Evol. 2017, 1, 0112. [Google Scholar] [CrossRef]
- Gong, G.; He, Y.; Evans, A.C. Brain Connectivity. Neuroscientist 2011, 17, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Festa-Bianchet, M.; Mysterud, A. Hunting and Evolution: Theory, Evidence, and Unknowns. J. Mammal. 2018, 99, 1281–1292. [Google Scholar] [CrossRef] [Green Version]
- Speth, J.D. Early Hominid Hunting and Scavenging: The Role of Meat as an Energy Source. J. Hum. Evol. 1989, 18, 329–343. [Google Scholar] [CrossRef]
- Adamo, A.M.; Oteiza, P.I. Zinc Deficiency and Neurodevelopment: The Case of Neurons. BioFactors 2010, 36, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, J.; Brosnan, B.M. The Sulfur-Containing Amino Acids: An Overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, P.; Humeres, A. Iron Deficiency on Neuronal Function. BioMetals 2012, 25, 825–835. [Google Scholar] [CrossRef]
- Chen, S.W.; Kong, W.X.; Zhang, Y.J.; Li, Y.L.; Mi, X.J.; Mu, X.S. Possible Anxiolytic Effects of Taurine in the Mouse Elevated Plus-Maze. Life Sci. 2004, 75, 1503–1511. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, H.V.; Yoon, J.H.; Kang, B.R.; Cho, S.M.; Lee, S.; Kim, J.Y.; Kim, J.W.; Cho, Y.; Woo, J.; et al. Taurine in Drinking Water Recovers Learning and Memory in the Adult APP/PS1 Mouse Model of Alzheimer’s Disease. Sci. Rep. 2014, 4, 7467. [Google Scholar] [CrossRef] [Green Version]
- Gebara, E.; Udry, F.; Sultan, S.; Toni, N. Taurine Increases Hippocampal Neurogenesis in Aging Mice. Stem Cell Res. 2015, 14, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Frías-Lasserre, D.; Villagra, C.A. The Importance of NcRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front. Microbiol. 2017, 8, 2483. [Google Scholar] [CrossRef]
- Raichlen, D.A.; Alexander, G.E. Adaptive Capacity: An Evolutionary Neuroscience Model Linking Exercise, Cognition, and Brain Health. Trends Neurosci. 2017, 40, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.; Kaufmann, J.; Lessmann, V.; Brigadski, T.; Hokelmann, A.; Rehfeld, K.; Schmicker, M.; Dordevic, M.; Muller, N.G. Evolution of Neuroplasticity in Response to Physical Activity in Old Age: The Case for Dancing. Front. Aging Neurosci. 2017, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, C.; Brambilla, R.; Thomas, K.L. A Simple Role for BDNF in Learning and Memory? Front. Mol. Neurosci 2010, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolwani, R.J.; Buckmaster, P.S.; Varma, S.; Cosgaya, J.M.; Wu, Y.; Suri, C.; Shooter, E.M. BDNF Overexpression Increases Dendrite Complexity in Hippocampal Dentate Gyrus. Neuroscience 2002, 114, 795–805. [Google Scholar] [CrossRef]
- Begdache, L.; Kianmehr, H.; Sabounchi, N.; Chaar, M.; Marhaba, J. Principal Component Analysis Identifies Differential Gender-Specific Dietary Patterns That May Be Linked to Mental Distress in Human Adults. Nutr. Neurosci. 2018, 1–14. [Google Scholar] [CrossRef]
- Bujang, M.A.; Sa’at, N.; Sidik, T.M.I.T.A.B.; Joo, L.C. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays. J. Med. Sci 2018, 25, 122–130. [Google Scholar] [CrossRef]
Independent Variables | Age 18–29 | Age 30 and Older | Total |
---|---|---|---|
Biological Sex | |||
Women | 1147 | 628 | 1780 |
Men | 641 | 207 | 848 |
Geographical Location | |||
Asia | 109 | 68 | 177 |
North America | 1319 | 423 | 1742 |
Middle east/North Africa (MENA) | 247 | 271 | 518 |
Europe | 113 | 76 | 189 |
Independent Variable | Coefficient | Standard Deviation | t-Value |
---|---|---|---|
Spring Season | 0.533 | 0.148 | 3.595 * |
Exercise (Moderate) | −0.402 | 0.153 | −2.620 * |
Exercise (High) | −0.653 | 0.167 | −3.899 * |
Breakfast (Moderate) | −0.425 | 0.221 | −1.922 |
Breakfast (High) | −0.672 | 0.190 | −3.532 * |
Caffeine (Moderate) | −0.044 | 0.166 | −0.262 |
Caffeine (High) | 0.391 | 0.147 | 2.654 * |
Fast Food (Moderate) | 0.613 | 0.139 | 4.418 * |
Fast Food (High) | 1.029 | 0.217 | 4.733 * |
Independent Variable | Coefficient | Standard Deviation | t-Value |
---|---|---|---|
Spring Season | 1.145 | 0.300 | 3.818 * |
Asia | 0.956 | 0.293 | 3.264 * |
MENA ** | 0.884 | 0.185 | 4.782 * |
Exercise (Moderate) | 0.003 | 0.203 | 0.015 |
Exercise (High) | −0.668 | 0.220 | −3.043 * |
Breakfast (Moderate) | −0.690 | 0.313 | −2.202 * |
Breakfast (High) | −0.541 | 0.244 | −2.219 * |
Caffeine (Moderate) | 0.346 | 0.252 | 1.372 |
Caffeine (High) | 0.793 | 0.234 | 3.392 * |
Fruits (Moderate) | −0.267 | 0.221 | −1.205 |
Fruits (High) | −0.491 | 0.236 | −2.078 * |
HGI Food (Moderate) | 0.109 | 0.201 | 0.542 |
HGI Food (High) | 0.455 | 0.236 | 1.923 |
Vegetables (Moderate) | −0.164 | 0.324 | −0.506 |
Vegetables (High) | −0.591 | 0.329 | −1.796 |
Beans (Moderate) | −0.081 | 0.180 | −0.449 |
Beans (High) | 0.612 | 0.317 | 1.934 |
Independent Variable | Coefficient | Standard Deviation | t-Value |
---|---|---|---|
Summer | −1.228 | 0.695 | −1.766 |
Asia | 0.648 | 0.357 | 1.815 |
Exercise (Moderate) | −0.316 | 0.206 | −1.535 |
Exercise (High) | −0.636 | 0.217 | −2.936 * |
Dairy (Moderate) | −0.529 | 0.238 | −2.226 * |
Dairy (High) | −0.323 | 0.236 | −1.367 |
Caffeine (Moderate) | 0.397 | 0.228 | 1.744 |
Caffeine (High) | 0.642 | 0.205 | 3.135 * |
Meat (Moderate) | −0.679 | 0.335 | −2.023 * |
Meat (High) | −0.703 | 0.319 | −2.201 * |
Vegetables (Moderate) | 0.081 | 0.220 | 0.368 |
Vegetables (High) | −0.146 | 0.245 | −0.596 |
Beans (Moderate) | 0.263 | 0.201 | 1.308 |
Beans (High) | 0.248 | 0.307 | 0.811 |
Fish (Moderate) | 0.438 | 0.231 | 1.900 |
Fish (High) | 0.526 | 0.428 | 1.228 |
Fast Food (Moderate) | 0.434 | 0.189 | 2.285 * |
Fast Food (High) | 0.988 | 0.248 | 3.983 * |
Independent Variable | Coefficient | Standard Deviation | t-Value |
---|---|---|---|
Asia | 1.171 | 0.697 | 1.679 |
Middle East/North Africa (MENA) | 1.382 | 0.415 | 3.330 * |
Education | −0.536 | 0.246 | −2.180 * |
Exercise (Moderate) | −0.463 | 0.428 | −1.080 |
Exercise (High) | −0.584 | 0.476 | −1.228 |
Whole Grain (Moderate) | −0.703 | 0.423 | −1.660 |
Whole Grain (High) | 0.268 | 0.475 | 0.563 |
Dairy (Moderate) | 0.391 | 0.448 | 0.872 |
Dairy (High) | −0.697 | 0.495 | −1.409 |
Caffeine (Moderate) | −0.833 | 0.529 | −1.575 |
Caffeine (High) | 0.185 | 0.430 | 0.429 |
Fruits (Moderate) | −0.140 | 0.485 | −0.288 |
Fruits (High) | 0.529 | 0.492 | 1.075 |
Nuts (Moderate) | −0.918 | 0.428 | −2.146 * |
Nuts (High) | −1.069 | 0.570 | −1.876 |
HGI Food (Moderate) | 0.683 | 0.439 | 1.556 |
HGI Food (High) | 0.211 | 0.503 | 0.418 |
Meat (Moderate) | 0.262 | 0.599 | 0.437 |
Meat (High) | 0.773 | 0.575 | 1.344 |
Vegetables (Moderate) | −0.690 | 0.450 | −1.534 |
Vegetables (High) | −0.920 | 0.488 | −1.885 |
Description | Young Women | Mature Women | Young Men | Mature Men |
---|---|---|---|---|
Positive Associations | Exercice (M a) Exercice (H b) Breakfast (H) | Exercise (H) Breakfast (M) Breakfast (H) Fruits (H) | Exercise (H) Dairy (M) Meat (M) Meat (H) | Education Nuts (M) |
Negative Associations | Spring Caffeine (H) Fast Food (M) Fast Food (H) | Spring Caffeine (H) Asia MENA * | Caffeine (H) Fast Food (M) Fast Food (H) | MENA * |
Average K-6 Score ± Sd (95% CI) | 8.1 ± 5.1 (7.80, 8.34) | 5.7 ± 4.4 (5.36, 6.04) | 7.5 ± 4.9 (7.12, 7.88) | 5.4 ± 3.9 (4.87, 5.93) |
Total Number | 1147 | 628 | 641 | 207 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begdache, L.; Sadeghzadeh, S.; Derose, G.; Abrams, C. Diet, Exercise, Lifestyle, and Mental Distress among Young and Mature Men and Women: A Repeated Cross-Sectional Study. Nutrients 2021, 13, 24. https://doi.org/10.3390/nu13010024
Begdache L, Sadeghzadeh S, Derose G, Abrams C. Diet, Exercise, Lifestyle, and Mental Distress among Young and Mature Men and Women: A Repeated Cross-Sectional Study. Nutrients. 2021; 13(1):24. https://doi.org/10.3390/nu13010024
Chicago/Turabian StyleBegdache, Lina, Saloumeh Sadeghzadeh, Gia Derose, and Cassandra Abrams. 2021. "Diet, Exercise, Lifestyle, and Mental Distress among Young and Mature Men and Women: A Repeated Cross-Sectional Study" Nutrients 13, no. 1: 24. https://doi.org/10.3390/nu13010024